Mechanical and Fatigue Properties of Welded Fe-Mn-Si Shape Memory Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Microstructures and Hardness
2.3. Mechanical and Recovery Properties
2.4. Fatigue Test Method and Specimens
3. Test Results
3.1. Microstructural Characterization
3.2. Hardness Distribution
3.3. Mechanical Properties
3.4. Recovery Properties
3.5. Fracture Location of Fatigue Specimens
3.6. Stress–Strain Behavior under Cyclic Loading
3.7. Fatigue Life
3.8. Microstructures of Fatigue Specimens
4. Discussion
5. Conclusions
- Welding has been shown to degrade the mechanical properties of Fe-Mn-Si SMA, including a significant reduction in elastic modulus, yield strength, and tensile strength. However, post-weld heat treatment can effectively improve these properties due to precipitation hardening in Fe-Mn-Si SMA, suggesting its potential as a construction material for prestressed applications.
- The hardness of the heat-affected zone (HAZ) decreased by 41.9% and 49.9% compared to the base metal (BM) and fusion zone (FZ), respectively, due to grain growth and other microstructural changes caused by welding. Conversely, heat treatment increased the hardness of the BM by an average of 14.3%, indicating that controlled heat treatment processes can restore and enhance the material’s hardness.
- The fatigue test results showed that no low-cycle fatigue failure occurred at stress amplitudes at the yield strength level, and under the fatigue limit condition of 2 million cycles, the fatigue strengths of the SCN, SWN, and SWH specimens were 350 MPa, 250 MPa, and 250 MPa, respectively. Additionally, the differences in fatigue performance between the specimens were primarily due to microstructural changes caused by welding and heat treatment, with heat treatment notably improving fatigue performance at high stress amplitudes.
- At low stress amplitudes, increasing the stress amplitude caused the fracture mode to transition from ductile dimpling to brittle cleavage. In particular, the particle inhomogeneity in the welded and heat-treated specimens was found to have a negative impact on fatigue performance by creating stress concentrations that facilitate crack initiation.
- The fatigue results obtained in this study suggest that welded Fe-Mn-Si SMA could achieve excellent fatigue performance in construction components subjected to stress amplitudes below the yield stress level. Additionally, it is necessary to optimize the heat treatment conditions to minimize grain growth and improve particle homogeneity in welded Fe-Mn-Si SMA to further enhance fatigue performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otsuka, K.; Ren, X. Recent developments in the research of shape memory alloys. Intermetallics 1999, 7, 511–528. [Google Scholar] [CrossRef]
- Ma, J.; Karaman, I.; Noebe, R.D. High temperature shape memory alloys. Int. Mater. Rev. 2010, 55, 257–315. [Google Scholar] [CrossRef]
- Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. (1980–2015) 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Cladera, A.; Weber, B.; Leinenbach, C.; Czaderski, C.; Shahverdi, M.; Motavalli, M. Iron-based shape memory alloys for civil engineering structures: An overview. Constr. Build. Mater. 2014, 63, 281–293. [Google Scholar] [CrossRef]
- Barbarino, S.; Flores, E.S.; Ajaj, R.M.; Dayyani, I.; Friswell, M.I. A review on shape memory alloys with applications to morphing aircraft. Smart Mater. Struct. 2014, 23, 063001. [Google Scholar] [CrossRef]
- Zainal, M.A.; Sahlan, S.; Mohamed Ali, M.S. Micromachined shape-memory-alloy microactuators and their application in biomedical devices. Micromachines 2015, 6, 879–901. [Google Scholar] [CrossRef]
- Han, M.W.; Rodrigue, H.; Kim, H.I.; Song, S.H.; Ahn, S.H. Shape memory alloy/glass fiber woven composite for soft morphing winglets of unmanned aerial vehicles. Compos. Struct. 2016, 140, 202–212. [Google Scholar] [CrossRef]
- Maruyama, T.; Kubo, H. Ferrous (Fe-based) shape memory alloys (SMAs): Properties, processing and applications. Shape Mem. Superelastic Alloys 2011, 141–159. [Google Scholar] [CrossRef]
- Leinenbach, C.; Czaderski, C.; Michels, J.; Graf, M.; Kawalla, R. Development of rolling technology for an iron-based shape-memory-alloy. Mater. Sci. Forum 2016, 854, 79–86. [Google Scholar] [CrossRef]
- Lee, W.J.; Weber, B.; Leinenbach, C. Recovery stress formation in a restrained Fe–Mn–Si-based shape memory alloy used for prestressing or mechanical joining. Constr. Build. Mater. 2015, 95, 600–610. [Google Scholar] [CrossRef]
- Sato, A.; Soma, K.; Chishima, E.; Mori, T. Shape memory effect and mechanical behaviour of an Fe-30Mn-1Si alloy single crystal. J. Phys. Colloq. 1982, 43, 797–802. [Google Scholar] [CrossRef]
- Otsuka, H. Fe-Mn-Si based shape memory alloys. MRS Online Proc. Libr. 1991, 246, 309–320. [Google Scholar] [CrossRef]
- Dong, Z.; Klotz, U.E.; Leinenbach, C.; Bergamini, A.; Czaderski, C.; Motavalli, M. A novel Fe-Mn-Si shape memory alloy with improved shape recovery properties by VC precipitation. Adv. Eng. Mater. 2009, 11, 40–44. [Google Scholar] [CrossRef]
- Lee, W.J.; Weber, B.; Feltrin, G.; Czaderski, C.; Motavalli, M.; Leinenbach, C. Phase transformation behavior under uniaxial deformation of an Fe–Mn–Si–Cr–Ni–VC shape memory alloy. Mater. Sci. Eng. A 2013, 581, 1–7. [Google Scholar] [CrossRef]
- Shahverdi, M.; Czaderski, C.; Motavalli, M. Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams. Constr. Build. Mater. 2016, 112, 28–38. [Google Scholar] [CrossRef]
- Rojob, H.; El-Hacha, R. Self-prestressing using iron-based shape memory alloy for flexural strengthening of reinforced concrete beams. ACI Struct. J. 2017, 114, 523–532. [Google Scholar] [CrossRef]
- Abouali, S.; Shahverdi, M.; Ghassemieh, M.; Motavalli, M. Nonlinear simulation of reinforced concrete beams retrofitted by near-surface mounted iron-based shape memory alloys. Eng. Struct. 2019, 187, 133–148. [Google Scholar] [CrossRef]
- Yeon, Y.M.; Hong, K.N.; Ji, S.W. Flexural Behavior of Self-Prestressed RC Slabs with Fe-Based Shape Memory Alloy Rebar. Appl. Sci. 2022, 12, 1640. [Google Scholar] [CrossRef]
- Czaderski, C.; Shahverdi, M.; Michels, J. Iron based shape memory alloys as shear reinforcement for bridge girders. Constr. Build. Mater. 2021, 274, 121793. [Google Scholar] [CrossRef]
- Hong, K.N.; Ji, S.W.; Yeon, Y.M. Predicting the shear behavior of reinforced concrete beams with Fe-Based shape memory alloy stirrups. Eng. Struct. 2023, 293, 116644. [Google Scholar] [CrossRef]
- Izadi, M.R.; Ghafoori, E.; Shahverdi, M.; Motavalli, M.; Maalek, S. Development of an iron-based shape memory alloy (Fe-SMA) strengthening system for steel plates. Eng. Struct. 2018, 174, 433–446. [Google Scholar] [CrossRef]
- Zerbe, L.; Vieira, D.; Belarbi, A.; Senouci, A. Uniaxial compressive behavior of circular concrete columns actively confined with Fe-SMA strips. Eng. Struct. 2022, 255, 113878. [Google Scholar] [CrossRef]
- Nikulin, I.; Sawaguchi, T.; Ogawa, K.; Tsuzaki, K. Effect of γ to ε martensitic transformation on low-cycle fatigue behaviour and fatigue microstructure of Fe–15Mn–10Cr–8Ni–xSi austenitic alloys. Acta Mater. 2016, 105, 207–218. [Google Scholar] [CrossRef]
- Fang, C.; Wang, W.; Ji, Y.; Yam, M.C. Superior low-cycle fatigue performance of iron-based SMA for seismic damping application. J. Constr. Steel Res. 2021, 184, 106817. [Google Scholar] [CrossRef]
- Sawaguchi, T.; Nikulin, I.; Ogawa, K.; Takamori, S.; Yoshinaka, F.; Chiba, Y.; Otsuka, H.; Inoue, Y.; Kushibe, A. Low-cycle fatigue life and plasticity mechanisms of a Fe−15Mn−10Cr−8Ni−4Si seismic damping alloy under cyclic loading at various temperatures. Acta Mater. 2021, 220, 117267. [Google Scholar] [CrossRef]
- Zhang, J.; Fang, C.; Yam, M.C.; Lin, C. Fe-Mn-Si alloy U-shaped dampers with extraordinary low-cycle fatigue resistance. Eng. Struct. 2022, 264, 114475. [Google Scholar] [CrossRef]
- Fan, J.L.; Guo, X.L.; Wu, C.W.; Zhao, Y.G. Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints. Mater. Sci. Eng. A 2011, 528, 8417–8427. [Google Scholar] [CrossRef]
- Lei, C.H.; Li, L.J.; Shu, Y.C.; Li, J.Y. Austenite–martensite interface in shape memory alloys. Appl. Phys. Lett. 2010, 96, 141910. [Google Scholar] [CrossRef]
- Sidharth, R.; Wu, Y.; Brenne, F.; Abuzaid, W.; Sehitoglu, H. Relationship between functional fatigue and structural fatigue of iron-based shape memory alloy FeMnNiAl. Shape Mem. Superelasticity 2020, 6, 256–272. [Google Scholar] [CrossRef]
- Koster, M.; Lee, W.J.; Schwarzenberger, M.; Leinenbach, C. Cyclic deformation and structural fatigue behavior of an FE–Mn–Si shape memory alloy. Mater. Sci. Eng. A 2015, 637, 29–39. [Google Scholar] [CrossRef]
- Ghafoori, E.; Hosseini, E.; Leinenbach, C.; Michels, J.; Motavalli, M. Fatigue behavior of a Fe-Mn-Si shape memory alloy used for prestressed strengthening. Mater. Des. 2017, 133, 349–362. [Google Scholar] [CrossRef]
- Marinopoulou, E.; Katakalos, K. Thermomechanical Fatigue Testing on Fe-Mn-Si Shape Memory Alloys in Prestress Conditions. Materials 2022, 16, 237. [Google Scholar] [CrossRef] [PubMed]
- Cerit, M.; Kokumer, O.; Genel, K. Stress concentration effects of undercut defect and reinforcement metal in butt welded joint. Eng. Fail. Anal. 2010, 17, 571–578. [Google Scholar] [CrossRef]
- Yang, Y.; Leinenbach, C.; Shahverdi, M. Simulation and experimental characterization of VC precipitation and recovery stress formation in an FeMnSi-based shape memory alloy. J. Alloys Compd. 2023, 940, 168856. [Google Scholar] [CrossRef]
- Yang, Y.; Arabi-Hashemi, A.; Leinenbach, C.; Shahverdi, M. Influence of thermal treatment conditions on recovery stress formation in an FeMnSi-SMA. Mater. Sci. Eng. A 2021, 802, 140694. [Google Scholar] [CrossRef]
- ASTM A370-19e1; Standard Test Methods and Definitions for Mechanical Testing of Steel Products. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM E466-21; Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM E1823-23; Standard Terminology Relating to Fatigue and Fracture Testing. ASTM International: West Conshohocken, PA, USA, 2023.
- Oliveira, J.P.; Curado, T.M.; Zeng, Z.; Lopes, J.G.; Rossinyol, E.; Park, J.M.; Schell, N.; Fernandes, F.M.B.; Kim, H.S. Gas tungsten arc welding of as-rolled CrMnFeCoNi high entropy alloy. Mater. Des. 2020, 189, 108505. [Google Scholar] [CrossRef]
- Felice, I.O.; Shen, J.; Barragan, A.F.; Moura, I.A.; Li, B.; Wang, B.; Khodaverdi, H.; Mohri, M.; Schell, N.; Ghafoori, E.; et al. Wire and arc additive manufacturing of Fe-based shape memory alloys: Microstructure, mechanical and functional behavior. Mater. Des. 2023, 231, 112004. [Google Scholar] [CrossRef]
- Nikulin, I.; Sawaguchi, T.; Yoshinaka, F.; Takamori, S. Influence of cold rolling deformation mechanisms on the grain refinement of Fe–15Mn–10Cr–8Ni–4Si austenitic alloy. Mater. Charact. 2020, 162, 110191. [Google Scholar] [CrossRef]
- Kajiwara, S.; Liu, D.; Kikuchi, T.; Shinya, N. Remarkable improvement of shape memory effect in Fe-Mn-Si based shape memory alloys by producing NbC precipitates. Scr. Mater. 2001, 44, 2809–2814. [Google Scholar] [CrossRef]
- Martins, D.M.P. Tig Welding of Iron Based Shape Memory Alloys. Master’s Thesis, NOVA University, Lisbon, Portugal, September 2022. [Google Scholar]
- Zhu, M.L.; Xuan, F.Z. Effect of microstructure on strain hardening and strength distributions along a Cr–Ni–Mo–V steel welded joint. Mater. Des. (1980–2015) 2015, 65, 707–715. [Google Scholar] [CrossRef]
- Baruj, A.; Bertolino, G.; Troiani, H.E. Temperature dependence of critical stress and pseudoelasticity in a Fe–Mn–Si–Cr pre-rolled alloy. J. Alloys Compd. 2010, 502, 54–58. [Google Scholar] [CrossRef]
- Lopes, J.G.; Martins, D.; Zhang, K.; Li, B.; Wang, B.; Wang, X.; Schellm, N.; Ghafoori, E.; Baptista, A.C.; Oliveira, J.P. Unveiling the microstructure evolution and mechanical properties in a gas tungsten arc-welded Fe–Mn–Si–Cr–Ni shape memory alloy. J. Mater. Sci. 2024, 59, 7387–7408. [Google Scholar] [CrossRef]
- Dong, Z.Z.; Kajiwara, S.; Kikuchi, T.; Sawaguchi, T. Effect of pre-deformation at room temperature on shape memory properties of stainless type Fe–15Mn–5Si–9Cr–5Ni–(0.5–1.5) NbC alloys. Acta Mater. 2005, 53, 4009–4018. [Google Scholar] [CrossRef]
- Shahverdi, M.; Michels, J.; Czaderski, C.; Motavalli, M. Iron-based shape memory alloy strips for strengthening RC members: Material behavior and characterization. Constr. Build. Mater. 2018, 173, 586–599. [Google Scholar] [CrossRef]
- Li, W.; Zuo, S.; Khedr, M.; Li, X.; Xiong, K.; Xiao, F. Microstructural mechanism underlying the stress recovery behavior of a Fe–Mn–Si shape memory alloy. J. Mater. Res. Technol. 2024, 30, 5394–5401. [Google Scholar] [CrossRef]
- Gu, X.L.; Chen, Z.Y.; Yu, Q.Q.; Ghafoori, E. Stress recovery behavior of an Fe-Mn-Si shape memory alloy. Eng. Struct. 2021, 243, 112710. [Google Scholar] [CrossRef]
- Hajisafari, M.; Nategh, S.; Yoozbashizadeh, H.; Ekrami, A. Fatigue properties of heat-treated 30MSV6 vanadium microalloyed steel. J. Mater. Eng. Perform. 2013, 22, 830–839. [Google Scholar] [CrossRef]
- Hong, K.N.; Yeon, Y.M.; Shim, W.B.; Ji, S.W. Fatigue characteristics of Fe-based shape-memory alloys. Appl. Sci. 2020, 10, 5812. [Google Scholar] [CrossRef]
- Sawaguchi, T.; Sahu, P.; Kikuchi, T.; Ogawa, K.; Kajiwara, S.; Kushibe, A.; Ogawa, T. Vibration mitigation by the reversible fcc/hcp martensitic transformation during cyclic tension–compression loading of an Fe–Mn–Si-based shape memory alloy. Scr. Mater. 2006, 54, 1885–1890. [Google Scholar] [CrossRef]
- Yang, X.; Li, S.; Qi, H. Ti–6Al–4V welded joints via electron beam welding: Microstructure, fatigue properties, and fracture behavior. Mater. Sci. Eng. A 2014, 597, 225–231. [Google Scholar] [CrossRef]
- Grönlund, K.; Ahola, A.; Riski, J.; Pesonen, T.; Lipiäinen, K.; Björk, T. Overload and variable amplitude load effects on the fatigue strength of welded joints. Weld. World 2023, 68, 411–425. [Google Scholar] [CrossRef]
- Ren, D.; Jiang, Y.; Hu, X.; Zhang, X.; Xiang, X.; Huang, K.; Ling, H. Investigation of tensile and high cycle fatigue failure behavior on a TIG welded titanium alloy. Intermetallics 2021, 132, 107115. [Google Scholar] [CrossRef]
Specimens | Chemical Composition (Weight %) | Welding | Heat Treatment |
---|---|---|---|
SCN | Fe-17Mn-5Si-10Cr-4Ni-1(V,C) | Non-welding | Non-heat treatment |
SWN | Welding | Non-heat treatment | |
SWH | Welding | Heat treatment |
Specimens | Elastic Modulus (GPa) | Yield Strength (MPa) | Ultimate Strength (MPa) | Elongation (%) |
---|---|---|---|---|
SCN | 115.5 | 495.5 | 940.0 | 24.3 |
SWN | 74.6 | 435.7 | 858.8 | 20.7 |
SWH | 88.5 | 457.0 | 869.6 | 9.1 |
Temperature (°C) | SCN | SWN | SWH | |||
---|---|---|---|---|---|---|
σRec,Max (MPa) | σRec,Final (MPa) | σRec,Max (MPa) | σRec,Final (MPa) | σRec,Max (MPa) | σRec,Final (MPa) | |
160 | 319.5 | 318.6 | 301.22 | 301.1 | 354.3 | 343.0 |
200 | 346.1 | 344.0 | 365.9 | 356.9 | 372.5 | 360.6 |
240 | 380.4 | 376.8 | 392.8 | 392.8 | 404.3 | 376.4 |
Stress Amplitude (MPa) | SCN | SWN | SWH | |||
---|---|---|---|---|---|---|
Number of Cycle | Log N | Number of Cycle | Log N | Number of Cycle | Log N | |
700 | 8794 | 3.944 | 321 | 2.507 | 4081 | 3.611 |
600 | 20,363 | 4.309 | 1123 | 3.050 | 19,041 | 4.280 |
500 | 52,771 | 4.722 | 44,440 | 4.648 | 50,994 | 4.708 |
400 | 985,858 | 5.994 | 164,466 | 5.216 | 112,361 | 5.051 |
375 | 1,427,544 | 6.155 | - | - | - | - |
350 | IL | - | - | - | - | - |
300 | IL | - | 577,574 | 5.762 | 230,425 | 5.363 |
275 | - | - | 960,702 | 5.983 | 719,431 | 5.857 |
250 | - | - | IL | - | IL | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, K.; Ji, S.; Kim, D.; Bae, J. Mechanical and Fatigue Properties of Welded Fe-Mn-Si Shape Memory Alloys. Materials 2024, 17, 4304. https://doi.org/10.3390/ma17174304
Hong K, Ji S, Kim D, Bae J. Mechanical and Fatigue Properties of Welded Fe-Mn-Si Shape Memory Alloys. Materials. 2024; 17(17):4304. https://doi.org/10.3390/ma17174304
Chicago/Turabian StyleHong, Kinam, Sangwon Ji, Dohyung Kim, and Jinyoung Bae. 2024. "Mechanical and Fatigue Properties of Welded Fe-Mn-Si Shape Memory Alloys" Materials 17, no. 17: 4304. https://doi.org/10.3390/ma17174304
APA StyleHong, K., Ji, S., Kim, D., & Bae, J. (2024). Mechanical and Fatigue Properties of Welded Fe-Mn-Si Shape Memory Alloys. Materials, 17(17), 4304. https://doi.org/10.3390/ma17174304