Analysis of the Current State of Research on Bio-Healing Concrete (Bioconcrete)
Abstract
:1. Introduction
2. Methods
3. Basic Principles of the Technology for the Autonomous Restoration of Concrete Using Bacteria
4. The Process of Introducing a Bacterial Self-Healing Agent into a Concrete Mixture
5. The Process of the Autonomous Restoration of Concrete Using Biomineralization
6. Effect of an Autonomous Bacterial-Based Reducing Agent on the Properties of Concrete
7. The Influence of Additives in the Form of a Nutrient Medium for Bacteria and Microcapsules on the Concrete Performance
8. The Physical and Mechanical Properties of Self-Healing Concrete Restored Using a Bacterial Reducing Factor
9. The Features of the Macro-, Micro- and Nanostructure of Self-Healing Bioconcrete
10. Impact on the Environment
11. Advantages and Prospects for Further Research on Self-Healing Bioconcrete
12. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Šovljanski, O.; Tomić, A.; Markov, S. Relationship between Bacterial Contribution and Self-Healing Effect of Cement-Based Materials. Microorganisms 2022, 10, 1399. [Google Scholar] [CrossRef]
- Kashif Ur Rehman, S.; Mahmood, F.; Jameel, M.; Riaz, N.; Javed, M.F.; Salmi, A.; Awad, Y.A. A Biomineralization, Mechanical and Durability Features of Bacteria-Based Self-Healing Concrete—A State of the Art Review. Crystals 2022, 12, 1222. [Google Scholar] [CrossRef]
- Mahmood, F.; Kashif Ur Rehman, S.; Jameel, M.; Riaz, N.; Javed, M.F.; Salmi, A.; Awad, Y.A. Self-Healing Bio-Concrete Using Bacillus subtilis Encapsulated in Iron Oxide Nanoparticles. Materials 2022, 15, 7731. [Google Scholar] [CrossRef]
- Chen, H.-J.; Chang, H.-L.; Tang, C.-W.; Yang, T.-Y. Application of Biomineralization Technology to Self-Healing of Fiber-Reinforced Lightweight Concrete after Exposure to High Temperatures. Materials 2022, 15, 7796. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, J.M.P.; Di Sarno, L. Low Carbon Bacterial Self-Healing Concrete. Buildings 2022, 12, 2226. [Google Scholar] [CrossRef]
- Shivanshi, S.; Chakraborti, G.; Upadhyaya, K.S.; Kannan, N. A study on bacterial self-healing concrete encapsulated in lightweight expanded clay aggregates. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Hungria, R.; Hassan, M.M.; Mousa, M. Effects of hydrogel-encapsulated bacteria on the healing efficiency and compressive strength of concrete. J. Road Eng. 2023, 3, 156–170. [Google Scholar] [CrossRef]
- Sundravel, K.V.; Jagatheeshwaran, S.; Dineshkumar, P.; Parthasarathi, C. Experimental investigation on strength and durability of self-healing concrete using bacteria. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Xiao, X.; Tan, A.C.Y.; Unluer, C.; Yang, E.-H. Development of a functionally graded bacteria capsule for self-healing concrete. Cem. Concr. Compos. 2023, 136, 104863. [Google Scholar] [CrossRef]
- Sadeghpour, M.; Baradaran, M. Effect of bacteria on the self-healing ability of fly ash concrete. Constr. Build. Mater. 2023, 364, 129956. [Google Scholar] [CrossRef]
- Aldea, C.M.; Shah, S.P.I.; Karr, A. Permeability of cracked concrete. Mater. Struct. 1999, 32, 370–376. [Google Scholar] [CrossRef]
- Wu, M.; Hu, X.; Zhang, Q.; Xue, D.; Zhao, Y. Growth environment optimization for inducing bacterial mineralization and its application in concrete healing. Constr. Build. Mater. 2019, 209, 631–643. [Google Scholar] [CrossRef]
- Chiadighikaobi, P.C.; Hematibahar, M.; Kharun, M.; Stashevskaya, N.A.; Camara, K. Predicting mechanical properties of self-healing concrete with Trichoderma Reesei Fungus using machine learning. Cogent Eng. 2024, 11, 2307193. [Google Scholar] [CrossRef]
- Xue, C.; Li, W.; Li, J.; Tam, V.W.; Ye, G. A review study on encapsulation-based self-healing for cementitious materials. Struct. Concr. 2019, 20, 198–212. [Google Scholar] [CrossRef]
- Luo, M.; Qian, C.X.; Li, R.Y. Factors affecting crack repairing capacity of bacteria based self-healing concrete. Constr. Build. Mater. 2015, 87, 1–7. [Google Scholar] [CrossRef]
- Tziviloglou, E.; Wiktor, V.; Jonkers, H.M.; Schlangen, E. Bacteria-based selfhealing concrete to increase liquid tightness of cracks. Constr. Build. Mater. 2016, 122, 118–125. [Google Scholar] [CrossRef]
- Siddique, R.; Singh, K.; Kunal, M.; Singh, V.C.; Rajor, A. Properties of bacterial rice husk ash concrete. Constr. Build. Mater. 2016, 121, 112–119. [Google Scholar] [CrossRef]
- Andalib, R.; Majid, M.Z.A. Hussin, Optimum concentration of Bacillus megaterium for strengthening structural concrete. Constr. Build. Mater. 2016, 118, 180–193. [Google Scholar] [CrossRef]
- Chahal, N.; Siddique, R.; Rajor, A. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr. Build. Mater. 2012, 28, 351–356. [Google Scholar] [CrossRef]
- Luo, J.; Chen, X.; Crump, J.; Zhou, H.; David, G.D.; Zhou, G.; Zhang, N.; Jin, C. Interactions of fungi with concrete: Significant importance for bio-based self-healing concrete. Constr. Build. Mater. 2018, 164, 275–285. [Google Scholar] [CrossRef]
- Menon, R.R.; Luo, J.; Chen, X.; Zhou, H.; Liu, Z.; Zhou, G.; Zhang, N.; Jin, C. Screening of Fungi for potential Application of self-Healing Concrete. Sci. Rep. 2019, 9, 2075. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.; van Tittelboom, K.; Dubruel, P.; van Vlierberghe, S.; de Belie, N. Acrylate-endcapped polymer precursors: Effect of chemical composition on the healing efficiency of active concrete cracks. Smart Mater. Struct. 2017, 26, 055031. [Google Scholar] [CrossRef]
- Jonkers, H. Bacteria-based self-healing concrete. Heron 2011, 56, 1–12. [Google Scholar]
- Wang, J.; Soens, H.; Verstraete, W.; de Belie, N. Self-healing concrete by use of microencapsulated bacterial spores. Cem. Concr. Res. 2014, 56, 139–152. [Google Scholar] [CrossRef]
- Wang, J.; van Tittelboom, K.; de Belie, N.; Verstraete, W. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr. Build. Mater. 2012, 26, 532–540. [Google Scholar] [CrossRef]
- Pei, R.; Liu, J.; Wang, S.; Yang, M. Use of bacterial cell walls to improve the mechanical performance of concrete. Cem. Concr. Compos. 2013, 39, 122–130. [Google Scholar] [CrossRef]
- Luna-Finkler, C.L.; Finkler, L. Bacillus sphaericus and Bacillus thuringiensis to Insect Control: Process Development of Small Scale Production to Pilot-Plant-Fermenters; INTECH Open Access Publisher: London, UK, 2012. [Google Scholar]
- Jonkers, H.M.; Thijssen, A.; Muyzer, G.; Copuroglu, O.; Schlangen, E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 2010, 36, 230–235. [Google Scholar] [CrossRef]
- Wang, J.; de Belie, N.; Verstraete, W. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J. Ind. Microbiol. Biotechnol. 2012, 39, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Snoeck, D.; van Vlierberghe, S.; Verstraete, W.; de Belie, N. Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Constr. Build. Mater. 2014, 68, 110–119. [Google Scholar] [CrossRef]
- Hu, Z.-X.; Hu, X.; Cheng, W.; Zhao, Y.; Wu, M. Performance optimization of one-component polyurethane healing agent for self-healing concrete. Constr. Build. Mater. 2018, 179, 151–159. [Google Scholar] [CrossRef]
- Gilabert, F.A.; Van Tittelboom, K.; Van Stappen, J.; Cnudde, V.; De Belie, N.; Van Paepegem, W. Integral procedure to assess crack filling and mechanical contribution of polymer-based healing agent in encapsulation-based self-healing concrete. Cem. Concr. Compos. 2017, 77, 68–80. [Google Scholar] [CrossRef]
- Siddique, R.; Kaur, N. Effect of ureolytic bacteria on concrete properties. Constr. Build. Mater. 2011, 25, 3791–3801. [Google Scholar] [CrossRef]
- Erşan, Y.Ç.; Da Silva, F.B.; Boon, N.; Verstraete, W.; De Belie, N. Screening of bacteria and concrete compatible protection materials. Constr. Build. Mater. 2015, 88, 196–203. [Google Scholar] [CrossRef]
- van Tittelboom, K.; de Belie, N.; de Muynck, W.; Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 2010, 40, 157–166. [Google Scholar] [CrossRef]
- Kaur, N.; Reddy, M.S.; Mukherjee, A. Improvement in strength properties of ash bricks by bacterial calcite. Ecol. Eng. 2012, 39, 31–35. [Google Scholar]
- De Muynck, W.; de Belie, N.; Verstraete, W. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 2010, 36, 118–136. [Google Scholar] [CrossRef]
- Suleiman, A.R.; Nelson, A.J.; Nehdi, M.L. Visualization and quantification of crack self-healing in cement-based materials incorporating different minerals. Cem. Concr. Compos. 2019, 103, 49–58. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X. Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Appl. Biochem. Biotechnol. 2014, 174, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yao, W. Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent. Cem. Concr. Res. 2014, 64, 1–10. [Google Scholar] [CrossRef]
- Le Metayer-Levrel, G.; Castanier, S.; Orial, G.; Loubiere, J.F.; Perthuisot, J.P. Applications of bacterial carbonato genesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment. Geol. 1999, 126, 25–34. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Basu, P.C.; Reddy, M.S. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 2009, 36, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Sarada, D.; Choonia, H.S.; Sarode, D.D.; Lele, S.S. Biocalcification by Bacillus pasteurii urease: A novel application. J. Ind. Microbiol. Biotechnol. 2009, 36, 1111–1115. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.K.; Ramakrishnan, V.; Bang, S.S. Remediation of concrete using microorganisms. ACI Mater. J. 2001, 98, 3–9. [Google Scholar]
- Dhami, N.K.; Mukherjee, A.; Reddy, M.S. Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Appl. Biochem. Biotechnol. 2014, 172, 2552–2561. [Google Scholar] [CrossRef]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J. Microbiol. Biotechnol. 2013, 23, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, W.; Ehsan, M.B. Crack healing in concrete using various bio influenced self-healing techniques. Constr. Build. Mater. 2016, 102, 349–357. [Google Scholar] [CrossRef]
- Kang, C.H.; Han, S.H.; Shin, Y.J.; Oh, S.J.; So, J.S. Bioremediation of Cd by microbially induced calcite precipitation. Appl. Biochem. Biotechnol. 2014, 172, 1929–1937. [Google Scholar] [CrossRef]
- De Muynck, W.; Cox, K.; de Belie, N.; Verstraete, W. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr. Build. Mater. 2008, 22, 875–885. [Google Scholar] [CrossRef]
- De Muynck, W.; Debrouwer, D.; De Belie, N.; Verstraete, W. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 2008, 38, 1005–1014. [Google Scholar] [CrossRef]
- Dick, J.; De Windt, W.; De Graef, B.; Saveyn, H.; Van der Meeren, P.; De Belie, N.; Verstraete, W. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 2006, 17, 357–367. [Google Scholar] [CrossRef]
- De Belie, N.; De Muynck, W. Crack repair in concrete using biodeposition. In Concrete Repair, Rehabilitation and Retrofitting II; CRC Press: Boca Raton, FL, USA, 2009; pp. 291–292. [Google Scholar]
- Hammes, F.; Verstraete, W. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol. 2002, 1, 3–7. [Google Scholar] [CrossRef]
- Jonkers, H.M.; Schlangen, H.E.J.G. Development of a bacteria-based self healing concrete. In Tailor Made Concrete Structures; Walraven, S., Ed.; Taylor & Francis Group: London, UK, 2008; pp. 425–430. [Google Scholar]
- Jonkers, H.M.; Schlangen, H.E.J.G. Crack repair by concrete immobilized bacteria. In Proceedings of the First International Conference on Self Healing Materials, Noordwijk aan Zee, The Netherlands, 18–20 April 2007; Schmetz, A.J.M., van der Zwaag, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–7. [Google Scholar]
- Bang, S.S.; Galinat, J.K.; Ramakrishnan, V. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzym. Microb. Technol. 2001, 28, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Achal, V.; Pan, X.; Zhang, D. Remediation of copper-contaminated soil by Kocuriaflava CR1 based on microbially induced calcite precipitation. Ecol. Eng. 2011, 37, 1601–1605. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Zhang, D.; Fu, Q.L. Biomineralization based remediation of As(III) contaminated soil by Sporosarcinaginsengisoli. J. Hazard. Mater. 2012, 201–202, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Achal, V.; Pan, X.; Zhang, D.; Fu, Q.L. Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. J. Microbiol. Biotechnol. 2012, 22, 244–247. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Zhang, D. Bioremediation of Strontium (Sr) contaminated aquifer quartz sand based on calcite precipitation induced by Sr resistant Halomonas sp. Chemosphere 2012, 89, 764–768. [Google Scholar] [CrossRef]
- Tiano, P.; Biagiotti, L.; Mastromei, G. Bacterial bio-mediated calcite precipitation for monumental stones conservation: Methods of evaluation. J. Microbiol. Methods 1999, 36, 139–145. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Rodriguez-Gallego, M.; Ben Chekroun, K.; Gonzalez- Muñoz, M.T. Conservation of ornamental stone by Myxococcusxanthusinduced carbonate biomineralization. Appl. Environ. Microbiol. 2003, 69, 2182–2193. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Rodriguez-Navarro, C.; Piñar, G.; Carrillo-Rosúa, F.J.; Rodriguez-Gallego, M.; Gonzalez-Muñoz, M.T. Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere 2007, 68, 1929–1936. [Google Scholar] [CrossRef]
- Tiano, P. Stone reinforcement by calcite crystal precipitation induced by organic matrix macromolecules. Stud. Conserv. 1995, 40, 171–176. [Google Scholar] [CrossRef]
- Tiano, P.; Cantisani, E.; Sutherland, I.; Paget, J.M. Biomediated reinforcement of weathered calcareous stones. J. Cult. Herit. 2006, 7, 49–55. [Google Scholar] [CrossRef]
- de Belie, N.; Wang, J. Bacteria-based repair and self-healing of concrete. J. Sustain. Cem.-Based Mater. 2015, 5, 35–56. [Google Scholar] [CrossRef]
- de Belie, N. Application of bacteria in concrete: A critical review. RILEM Tech. Lett. 2016, 1, 56–61. [Google Scholar] [CrossRef]
- Achal, V.; Mukerjee, A.; Reddy, M.S. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr. Build. Mater. 2013, 48, 1–5. [Google Scholar] [CrossRef]
- DeJong, J.T.; Fritzges, M.B.; Nüsslein, K. Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenviron. Eng. 2006, 132, 1381–1392. [Google Scholar] [CrossRef]
- Hammes, F.; Seka, A.; de Knijf, S.; Verstraete, W. A novel approach to calcium removal from calcium-rich industrial wastewater. Water Res. 2003, 37, 699–704. [Google Scholar] [CrossRef]
- Wang, J.; Dewanckele, J.; Cnudde, V.; van Vlierberghe, S.; Verstraete, W.; de Belie, N. X-ray computed tomography proof of bacterial-based self-healing in concrete. Cem. Concr. Compos. 2014, 53, 289–304. [Google Scholar] [CrossRef]
- Kanellopoulos, A.; Qureshi, T.S.; Al-Tabbaa, A. Glass encapsulated minerals for self-healing in cement based composites. Constr. Build. Mater. 2015, 98, 780–791. [Google Scholar] [CrossRef]
- Souradeep, G.; Kua, H.W. Encapsulation Technology and Techniques in Self- Healing Concrete. J. Mater. Civ. Eng. 2007, 28, 04016165. [Google Scholar] [CrossRef]
- Bollinger, J.; Britton, J.; Gisin, N.; Knight, P.; Kwiat, P.; Percival, I.; White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; et al. Autonomic healing of polymer composites. Lett. Nat. 2001, 409, 794–817. [Google Scholar]
- Jonkers, H.M.; Schlangen, E. Self-healing of cracked concrete: A bacterial approach. In FRAMCOS6: Fracture Mechanics of Concrete and Concrete Structures, Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Catania, Italy, 17–22 June 2007; Taylor & Francis/Balkema: Leiden, The Netherlands, 2007. [Google Scholar]
- Wiktor, V.; Jonkers, H.M. Quantification of crack-healing in novel bacteriabased self-healing concrete. Cem. Concr. Compos. 2011, 33, 763–770. [Google Scholar] [CrossRef]
- Wang, J.; Mignon, A.; Snoeck, D.; Wiktor, V.; Van Vliergerghe, S.; Boon, N.; De Belie, N. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: A promising strategy for crack self-healing. Front. Microbiol. 2015, 6, 1088. [Google Scholar] [CrossRef]
- Al-Tabbaa, A.; Litina, C.; Giannaros, P.; Kanellopoulos, A.; Souza, L. First UK field application and performance of microcapsulebased self-healing concrete. Constr. Build. Mater. 2019, 208, 669–685. [Google Scholar] [CrossRef]
- Meng, H.; Gao, Y.; He, J.; Qi, Y.; Hang, L. Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests. Geoderma 2021, 383, 114723. [Google Scholar] [CrossRef]
- Esaker, M.; Hamza, O.; Souid, A.; Elliott, D. Self-healing of bio-cementitious mortar incubated within neutral and acidic soil. Mater. Struct. 2021, 54, 96. [Google Scholar] [CrossRef]
- Jensen, O.M. Use of superabsorbent polymers in concrete. Concr. Int. 2013, 35, 48–52. [Google Scholar]
- Reynolds, D. Lightweight Aggregates as an Internal Curing Agent for Low-Cracking High-Performance Concrete. Ph.D. Thesis, University of Kansas, Lawrence, KS, USA, 2009. [Google Scholar]
- Stuckrath, C.; Serpell, R.; Valenzuela, L.M.; Lopez, M. Quantification of chemical and biological calcium carbonate precipitation: Performance of self-healing in reinforced mortar containing chemical admixtures. Cem. Concr. Compos. 2014, 50, 10–15. [Google Scholar] [CrossRef]
- Zhan, Q.; Zhou, J.; Wang, S.; Su, Y.; Liu, B.; Yu, X.; Pan, Z.; Qian, C. Crack self-healing of cement-based materials by microorganisms immobilized in expanded vermiculite. Constr. Build. Mater. 2021, 272, 121610. [Google Scholar] [CrossRef]
- Khan, M.B.E.; Shen, L.M.; Dias-da-Costa, D. Crack healing performance of bacteria-based mortar under sustained tensile loading in marine environment. Cem. Concr. Compos. 2021, 120, 104055. [Google Scholar] [CrossRef]
- Zhang, L.V.; Suleiman, A.R.; Allaf, M.M.; Marani, A.; Tuyan, M.; Nehdi, M.L. Crack self-healing in alkali-activated slag composites incorporating immobilized bacteria. Constr. Build. Mater. 2022, 326, 126842. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.Z.; Zuo, J.Q.; Liu, X.Y. Self-healing of concrete cracks by ceramsite-loaded microorganisms. Adv. Mater. Sci. Eng. 2018, 2018, 5153041. [Google Scholar] [CrossRef]
- Dembovska, L.; Bajare, D.; Korjakins, A.; Toma, D.; Jakubovica, E. Preliminary research for long lasting self-healing effect of bacteria-based concrete with lightweight aggregates. IOP Conf. Ser. Mater. Sci. Eng. 2019, 660, 012034. [Google Scholar] [CrossRef]
- Tziviloglou, E.; Pan, Z.C.; Jonkers, H.M.; Schlangen, E. Bio-based self-healing mortar: An experimental and numerical study. J. Adv. Concr. Technol. 2017, 15, 536–543. [Google Scholar] [CrossRef]
- Han, S.; Choi, E.K.; Park, W.; Yi, C.; Chung, N. Effectiveness of expanded clay as a bacteria carrier for self-healing concrete. Appl. Biol. Chem. 2019, 62, 19. [Google Scholar] [CrossRef]
- Saridhe, S.P.; Selvaraj, T. Microbial precipitation of calcium carbonate in cementitious materials—A critical review. Mater. Today Proc. 2021, 43, 1232–1240. [Google Scholar] [CrossRef]
- Han, S.; Jang, I.; Choi, E.K.; Park, W.; Yi, C.; Chung, N. Bacterial self-healing performance of coated expanded clay in concrete. J. Environ. Eng. 2020, 146, 04020072. [Google Scholar] [CrossRef]
- Salehi, P.; Dabbagh, H.; Ashengroph, M. Effects of microbial strains on the mechanical and durability properties of lightweight concrete reinforced with polypropylene fiber. Constr. Build. Mater. 2022, 322, 126519. [Google Scholar] [CrossRef]
- Meng, H.N.; Lu, X.J.; Hussain, S.; Shaheen, A.; Liu, G. Self-healing behaviors of core-shell-structured microcapsules cement-based materials immobilized with microbes by expanded perlite. J. Nanoelectron. Optoelectron. 2022, 16, 1828–1833. [Google Scholar] [CrossRef]
- Wiktor, V.; Jonkers, H.M. Determination of the crack self-healing capacity of bacterial concrete. In Concrete Solutions; CRC Press: Boca Raton, FL, USA, 2012; pp. 331–334. [Google Scholar] [CrossRef]
- Huynh, N.N.T.; Phuong, N.M.; Toan, N.P.A.; Son, N.K. Bacillus subtilis HU58 immobilized in micropores of diatomite for using in self-healing concrete. Procedia Eng. 2017, 171, 598–605. [Google Scholar] [CrossRef]
- Yazici, S.; Ayekin, B.; Mardani-Aghabaglou, A.; Guller, C. Assessment of mechanical properties of steel fiber reinforced mortar mixtures containing lightweight aggregates improved by bacteria. J. Sustain. Cem.-Based Mater. 2022, 12, 97–115. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Feng, T.; Zhou, M.; Zhao, L.; Zhou, A.; Li, Z. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Constr. Build. Mater. 2017, 148, 610–617. [Google Scholar] [CrossRef]
- Chen, P.-Y.; McKittrick, J.; Meyers, M.A. Biological materials: Functional adaptations and bio inspired designs. Prog. Mater. Sci. 2012, 57, 1492–1704. [Google Scholar] [CrossRef]
- Bazylinski, D.A.; Frankel, R.B. Magnetic iron oxide and iron sulfide minerals within organisms. In Biomineralization: From Biology to Biotechnology and Medical Application; Bäuerlein, E., Ed.; Wiley-VCH: Weinheim, Germany, 2000; pp. 25–46. [Google Scholar]
- Bazylinski, D.A.; Frankel, R.B. Biologically controlled mineralization of magnetic iron minerals by magnetotactic bacteria. In Environmental Microbe–Mineral Interactions; Lovley, D.R., Ed.; ASM Press: Washington, DC, USA, 2000; pp. 109–144. [Google Scholar]
- Frankel, R.B.; Bazylinski, D.A. Biologically induced mineralization by bacteria. Rev. Mineral. Geochem. 2003, 54, 95–114. [Google Scholar] [CrossRef]
- Rong, H.; Qian, C.X. Characterization of microbe cementitious materials. Chin. Sci. Bull. 2012, 57, 1333–1338. [Google Scholar] [CrossRef]
- Whiffin, V.S.; Van Paassen, L.A.; Harkes, M.P. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- Castanier, S.; Levrel, G.L.M.; Perthuisot, J.P. Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view. Sediment. Geol. 1999, 126, 9–23. [Google Scholar] [CrossRef]
- Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 1999, 31, 1563–1571. [Google Scholar] [CrossRef]
- Hammes, F.; Boon, N.; Clement, G.; de Villiers, J.; Siciliano, S.D.; Verstraete, W. Molecular biochemical and ecological characterization of a bio-catalytic calcification reactor. Appl. Microbiol. Biotechnol. 2003, 62, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Achal, V.; Mukherjee, A.; Reddy, M.S. Microbial concrete—A way to enhance the durability of building structures. J. Mater. Civ. Eng. 2011, 23, 730–734. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A. A review of microbial precipitation for sustainable construction. Constr. Build. Mater. 2015, 93, 1224–1235. [Google Scholar] [CrossRef]
- Achal, V.; Li, M.; Zhang, Q. Biocement, recent research in construction engineering: Status of China against rest of world. Adv. Cem. Res. 2013, 26, 281–291. [Google Scholar] [CrossRef]
- Cheng, L.; Cord-Ruwisch, R. In-situ soil cementation with ureolytic bacteria by surface percolation. Ecol. Eng. 2012, 42, 64–72. [Google Scholar] [CrossRef]
- Cheng, L.; Cord-Ruwisch, R.; Shahin, M.A. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can. Geotech. J. 2013, 50, 81–90. [Google Scholar] [CrossRef]
- Mukherjee, A.; Dhami, N.K.; Reddy, B.V.V.; Reddy, M.S. Bacterial calcification for enhancing performance of low embodied energy soil-cement bricks. In Proceedings of the Third International Conference on Sustainable Construction Materials and Technologie, Kyoto, Japan, 18–21 August 2013; Kyoto Research Park: Kyoto, Japan, 2013. [Google Scholar]
- Tobler, D.J.; Maclachlan, E.; Phoenix, V.R. Microbially mediated plugging of porous media and the impact of differing injection strategies. Ecol. Eng. 2012, 42, 270–278. [Google Scholar] [CrossRef]
- Ariyanti, D.; Handayani, N.A.; Handayani; Hadiyanto, H. An overview of biocement production from microalgae. Int. J. Sci. Eng. 2011, 2, 30–33. [Google Scholar]
- Rong, H.; Qian, C.X.; Li, L.Z. Study on microstructure and properties of sandstone cemented by microbe cement. Constr. Build. Mater. 2012, 36, 687–694. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Reddy, M.S. Effect of calcifying bacteria on permeation properties of concrete structures. J. Ind. Microbiol. Biotechnol. 2011, 38, 1229–1234. [Google Scholar] [CrossRef]
- Ghosh, P.; Mandal, S.; Chattopadhyay, B.D.; Pal, S. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 2005, 35, 1980–1983. [Google Scholar] [CrossRef]
- Algaifi, H.A.; Bakar, S.A.; Alyousef, R.; Mohd Sam, A.R.; Ibrahim, M.H.W.; Shahidan, S.; Ibrahim, M.; Salami, B.A. Bio-inspired self-healing of concrete cracks using new B. pseudomycoides species. J. Mater. Res. Technol. 2021, 12, 967–981. [Google Scholar] [CrossRef]
- Kalhori, H.; Bagherpour, R. Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete. Constr. Build. Mater. 2017, 148, 249–260. [Google Scholar] [CrossRef]
- Jafarnia, M.S.; Khodadad Saryazdi, M.; Moshtaghioun, S.M. Use of bacteria for repairing cracks and improving properties of concrete containing limestone powder and natural zeolite. Constr. Build. Mater. 2020, 242, 118059. [Google Scholar] [CrossRef]
- Krishnapriya, S.; Babu, D.V. Isolation and identification of bacteria to improve the strength of concrete. Microbiol. Res. 2015, 174, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Khushnood, R.A.; Qureshi, Z.A.; Shaheen, N.; Ali, S. Bio-mineralized self-healing recycled aggregate concrete for sustainable infrastructure. Sci. Total Environ. 2020, 703, 135007. [Google Scholar] [CrossRef] [PubMed]
- Signorini, C.; Volpini, V. Mechanical performance of fiber reinforced cement composites including fully-recycled plastic fibers. Fibers 2021, 9, 16. [Google Scholar] [CrossRef]
- Jefferson, A.; Joseph, C.; Lark, R.; Isaacs, B.; Dunn, S.; Weager, B. A new system for crack closure of cementitious materials using shrinkable polymers. Cem. Concr. Res. 2010, 40, 795–801. [Google Scholar] [CrossRef]
- Chaerun, S.K.; Syarif, R.; Wattimena, R.K. Bacteria incorporated with calcium lactate pentahydrate to improve the mortar properties and self-healing occurrence. Sci. Rep. 2020, 10, 17873. [Google Scholar] [CrossRef]
- Liu, S.; Bundur, Z.B.; Zhu, J.; Ferron, R.D. Evaluation of self-healing of internal cracks in biomimetic mortar using coda wave interferometry. Cem. Concr. Res. 2016, 83, 70–78. [Google Scholar] [CrossRef]
- Wang, J.Y.; Van Tittelboom, K.; De Belie, N.; Verstraete, W. Potential of applying bacteria to heal cracks in concrete. In Proceedings of the 2nd International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, 28–30 June 2010; pp. 1807–1818. [Google Scholar]
- Phillips, A.J.; Lauchnor, E.; Eldring, J.; Esposito, R.; Mitchell, A.C.; Gerlach, R.; Cunningham, A.B.; Spangler, L.H. Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation. Environ. Sci. Technol. 2013, 47, 142–149. [Google Scholar] [CrossRef]
- De Muynck, W.; Leuridan, S.; Van Loo, D.; Verbeken, K.; Cnudde, V.; De Belie, N.; Verstraete, W. Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl. Environ. Microbiol. 2011, 77, 6808–6820. [Google Scholar] [CrossRef]
- De Muynck, W.; Verbeken, K.; De Belie, N.; Verstraete, W. Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecol. Eng. 2009, 36, 99–111. [Google Scholar] [CrossRef]
- Fattahi, S.M.; Soroush, A.; Huang, N.; Zhang, J.; Abbasi, S.J.; Yu, Y. Durability of biotechnologically induced crusts on sand against wind erosion. J. Arid Environ. 2021, 189, 104508. [Google Scholar] [CrossRef]
- De Muynck, W.; Verbeken, K.; De Belie, N.; Verstraete, W. Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl. Microbiol. Biotechnol. 2013, 97, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Atlas, R.M.; Chowdhury, A.N.; Gauri, K.L. Microbial calcification of gypsum-rock and sulfated marble. Stud. Conserv. 1988, 33, 149–153. [Google Scholar] [CrossRef]
- Moncrieff, A.; Hempel, K. Biological Pack. Conserv. Stone Wooden Objects 1970, 1, 103–114. [Google Scholar]
- Webster, A.; May, E. Bioremediation of weathered-building stone surfaces. Trends Biotechnol. 2006, 24, 255–260. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Reddy, M.S. Biocalcification by Sporosarcinapasteurii using Corn steep liquor as nutrient source. Ind. Biotechnol. 2010, 6, 170–174. [Google Scholar] [CrossRef]
- Ramakrishnan, V.; Deo, K.S.; Duke, E.F.; Bang, S.S. SEM investigation of microbial calcite precipitation in cement. In Proceedings of the 21st International Conference on Cement Microscopy, Las Vegas, NV, USA, 29 April 1999; pp. 406–414. [Google Scholar]
- Wiktor, V.; Jonkers, H.M. Field performance of bacteria-based repair system: Pilot study in a parking garage. Case Stud. Constr. Mater. 2015, 2, 11–17. [Google Scholar] [CrossRef]
- Luo, M.; Qian, C. Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength. Constr. Build. Mater. 2016, 121, 659–663. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, H.X.; Cheng, X.H.; Caco, C.À.; Ca, C.À. Role of calcium sources in the strength and microstructure of microbial mortar. Constr. Build. Mater. 2015, 77, 160–167. [Google Scholar] [CrossRef]
- Su, Y.L.; Feng, J.H.; Jin, P.; Qian, C.X. Influence of bacterial self-healing agent on early age performance of cement-based materials. Constr. Build. Mater. 2019, 218, 224–234. [Google Scholar] [CrossRef]
- Nosouhian, F.; Mostofinejad, D.; Hasheminejad, H. Concrete durability improvement in a sulfate environment using bacteria. J. Mater. Civ. Eng. 2016, 28, 04015064. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Özyurt, N. Improved strength and durability of fly ash amended concrete by microbial calcite precipitation. Ecol. Eng. 2011, 37, 554–559. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Basu, P.C.; Reddy, M.S. Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J. Ind. Microbiol. Biotechnol. 2009, 36, 433–438. [Google Scholar] [CrossRef]
- Ramakrishnan, V.; Bang, S.S.; Deo, K.S. A novel technique for repairing cracks in high performance concrete using bacteria. In Proceedings of the International Conference on High Performance High Strength Concrete, Perth, Australia, 10–12 August 1998; pp. 597–618. [Google Scholar]
- Achal, V.; Mukherjee, A.; Reddy, M.S. Isolation and characterization of urease producing and calcifying bacteria from cement. J. Microbiol. Biotechnol. 2010, 20, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Park, Y.; Chun, W.; Kim, W.; Ghim, S. Calcite forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 2010, 20, 782–788. [Google Scholar]
- Afifudin, H.; Hamidah, M.; Hana, H.; Kartini, K. Microorganism precipitation in enhancing concrete properties. Appl. Mech. Mater. 2011, 99–100, 1157. [Google Scholar] [CrossRef]
- Van Paassen, L.; Ghose, R.; van der Linden, T.; van der Star, W.; van Loosdrecht, M. Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. J. Geotech. Geoenviron. Eng. 2010, 136, 1721–1728. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material. Constr. Build. Mater. 2018, 167, 1–14. [Google Scholar] [CrossRef]
- Shaheen, N.; Khushnood, R.A.; Din, S.U. Bioimmobilized limestone powder for autonomous healing of cementitious systems: A feasibility study. Adv. Mater. Sci. Eng. 2018, 2018, 7049121. [Google Scholar] [CrossRef]
- Sierra-Beltran, M.G.; Jonkers, H.M.; Schlangen, E. Characterization of sustainable bio-based mortar for concrete repair. Constr. Build. Mater. 2014, 67 Pt C, 344–352. [Google Scholar] [CrossRef]
- Skevi, L.; Reeksting, B.J.; Hoffmann, T.D.; Gebhard, S.; Paine, K. Incorporation of bacteria in concrete: The case against MICP as a means for strength improvement. Cem. Concr. Compos. 2021, 120, 104056. [Google Scholar] [CrossRef]
- Phung, Q.T.; Maes, N.; Schutter, G.D.; Jacques, D.; Ye, G. Determination of water permeability of cementitious materials using a controlled constant flow method. Constr. Build. Mater. 2013, 47, 1488–1496. [Google Scholar] [CrossRef]
- Qiu, J.; Qin, D.; Tng, S.; Yang, E. Surface treatment of recycled concrete aggregates through microbial carbonate precipitation. Constr. Build. Mater. 2014, 57, 144–150. [Google Scholar] [CrossRef]
- Siddique, R.; Nanda, V.; Kadri, E.H.; Khan, M.I.; Singh, M.; Rajor, A. Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust. Constr. Build. Mater. 2016, 106, 461–469. [Google Scholar] [CrossRef]
- Grabiec, A.M.; Klama, J.; Zawal, D.; Krupa, D. Modification of recycled concrete aggregate by calcium carbonate biodeposition. Constr. Build. Mater. 2012, 34, 145–150. [Google Scholar] [CrossRef]
- Qian, C.X.; Wang, J.Y.; Wang, R.X.; Cheng, L. Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Mater. Sci. Eng. C 2009, 29, 1273–1280. [Google Scholar]
- Neville, A.M. Properties of concrete. In Pearson Higher Education, 4th ed.; Prentice Hall: Hoboken, NJ, USA, 1996. [Google Scholar]
- Xu, J.; Yao, W.; Jiang, Z. Non-ureolytic bacterial carbonate precipitation as a surface treatment strategy on cementitious materials. J. Mater. Civ. Eng. 2014, 26, 983–991. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Goyal, S.; Reddy, M.S. Corrosion prevention of reinforced concrete with microbial calcite precipitation. ACI Mater. J. 2012, 109, 157–164. [Google Scholar]
- Seifritz, W. CO2 disposal by means of silicates. Nature 1990, 345, 486. [Google Scholar] [CrossRef]
- Ramanan, R.; Kannan, K.; Sivanesan, S.D.; Mudliar, S.; Kaur, S.; Tripathi, A.K. Biosequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacterfreundii. World J. Microbiol. Biotechnol. 2009, 25, 981–987. [Google Scholar] [CrossRef]
- Wanjari, S.; Prabhu, C.; Yadav, R.; Satyanarayana, T.; Labhsetwar, N.; Rayalu, S. Immobilization of carbonic anhydrase on chitosan beads for enhanced carbonation reaction. Proc. Biochem. 2011, 46, 1010–1018. [Google Scholar] [CrossRef]
- Yadav, R.; Labhsetwar, N.; Kotwal, S.; Rayalu, S. Single enzyme nanoparticle for biomimetic CO2 sequestration. J. Nanopart. Res. 2011, 13, 263–271. [Google Scholar] [CrossRef]
- Shaffer, G. Long-term effectiveness and consequences of carbon dioxide sequestration. Nat. Geosci. 2010, 3, 464–467. [Google Scholar] [CrossRef]
- Sharma, A.; Bhattacharya, A. Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains. J. Mol. Catal. B Enzym. 2010, 67, 122–128. [Google Scholar] [CrossRef]
- Dilmore, R.; Griffith, C.; Liu, Z.; Soong, Y.; Hedges, S.W.; Koepsel, R.; Ataai, M. Carbonic anhydrase-facilitated CO2 absorption with polyacrylamide buffering bead capture. Int. J. Greenh. Gas Control 2009, 3, 401–410. [Google Scholar] [CrossRef]
- Favre, N.; Christ, M.L.; Pierre, A.C. Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate. J. Mol. Catal. B Enzym. 2009, 60, 163–170. [Google Scholar] [CrossRef]
- Lee, S.W.; Park, S.B.; Jeong, S.K.; Lim, K.S.; Lee, S.H.; Trachtenberg, M.C. On carbon dioxide storage based on biomineralization strategies. Micron 2010, 41, 273–282. [Google Scholar] [CrossRef]
- Mirjafari, P.; Asghari, K.; Mahinpey, N. Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind. Chem. Eng. Resour. 2007, 46, 921–926. [Google Scholar] [CrossRef]
- Vinoba, M.; Kim, D.H.; Lim, K.S.; Jeong, S.K.; Lee, S.W.; Alagar, M. Biomimetic sequestration of CO2 and reformation to CaCO3 using bovine carbonic anhydrase immobilized on SBA-15. Energy Fuels 2011, 25, 438–445. [Google Scholar] [CrossRef]
- Bond, G.M.; Stringer, J.; Brandvold, D.K.; Simsek, F.A.; Medina, M.G.; Egeland, G. Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase. Energy Fuels 2001, 15, 309–316. [Google Scholar] [CrossRef]
- Jansson, C.; Northen, T. Calcifying cyanobacteria-the potential of biomineralization for carbon capture and storage. Curr. Opin. Biotechnol. 2010, 21, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Kamennaya, N.A.; Ajo-Franklin, C.M.; Northern, T.; Jansson, C. Cyanobacteria as catalysts for carbonate mineralization. Minerals 2012, 2, 338–364. [Google Scholar] [CrossRef]
- Power, I.M.; Harrison, A.L.; Dipple, G.M.; Southam, G. Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitation. Int. J. Greenh. Gas Control 2013, 16, 145–155. [Google Scholar] [CrossRef]
- Ferrini, V.; De Vito, C.; Mignardi, S. Synthesis of nesquehonite by reaction of gaseous CO2 with Mg chloride solution: Its potential role in the sequestration of carbon dioxide. J. Hazard. Mater. 2009, 168, 832–837. [Google Scholar] [CrossRef]
- Mignardi, S.; De Vito, C.; Ferrini, V.; Martin, R.F. The efficiency of CO2 sequestration via carbonate mineralization with simulated wastewaters of high salinity. J. Hazard. Mater. 2011, 191, 49–55. [Google Scholar] [CrossRef]
- Ghosh, P.; Mandal, S.; Pal, S.; Bandyopadhyaya, G.; Chattopadhyay, B. Development of bioconcrete material using an enrichment culture of novel thermophilic anaerobic bacteria. Indian J. Exp. Biol. 2006, 44, 336. [Google Scholar]
- da Silva, F.B.; de Belie, N.; Boon, N.; Verstraete, W. Production of non-axenic ureolytic spores for self-healing concrete applications. Constr. Build. Mater. 2015, 93, 1034–1041. [Google Scholar] [CrossRef]
- Jones, M.; Zheng, L.; Newlands, M. Comparison of particle packing models for proportioning concrete constitutents for minimum voids ratio. Mater. Struct. 2002, 35, 301–309. [Google Scholar] [CrossRef]
- Lucas, S.; Senff, L.; Ferreira, V.; Aguiar, J.; Labrincha, J. Fresh state characterization of lime mortars with PCM additions. Appl. Rheol. 2010, 20, 63162. [Google Scholar] [CrossRef]
- Luo, M.; Qian, C.X. Performance of Two Bacteria-Based Additives Used for Self- Healing Concrete. J. Mater. Civ. Eng. 2016, 28, 04016151. [Google Scholar] [CrossRef]
- Li, V.C.; Herbert, E. Robust self-healing concrete for sustainable infrastructure. J. Adv. Concr. Technol. 2012, 10, 207–218. [Google Scholar] [CrossRef]
- Kim, H.K.; Park, S.J.; Han, J.I.; Lee, H.K. Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Constr. Build. Mater. 2013, 38, 1073–1082. [Google Scholar] [CrossRef]
- Hung, C.C.; Su, Y.F. Medium-term self-healing evaluation of engineered cementitious composites with varying amounts of fly ash and exposure durations. Constr. Build. Mater. 2016, 118, 194–203. [Google Scholar] [CrossRef]
- Huang, H.; Ye, G. Self-healing of cracks in cement paste affected by additional Ca2+ ions in the healing agent. J. Intell. Mater. Syst. Struct. 2014, 26, 309–320. [Google Scholar] [CrossRef]
- Bekas, D.G.; Tsirka, K.; Baltzis, D.; Paipetis, A.S. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Compos. Part B Eng. 2015, 87, 92–119. [Google Scholar] [CrossRef]
- Li, W.; Jiang, Z.; Yang, Z.; Zhao, N.; Yuan, W. Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: Mechanical restoration and healing process monitored by water absorption. PLoS ONE 2013, 8, e81616. [Google Scholar] [CrossRef]
- Luhar, S.; Nicolaides, D.; Luhar, I. Fire Resistance Behaviour of Geopolymer Concrete: An Overview. Buildings 2021, 11, 82. [Google Scholar] [CrossRef]
- Cao, Q.Y.; Hao, T.Y.; Su, B. Crack self-healing properties of concrete with adhesive. Adv. Mater. Res. 2014, 1880–1884, 919–921. [Google Scholar] [CrossRef]
- Dong, B.; Han, N.; Zhang, M.; Wang, X.; Cui, H.; Xing, F. A microcapsule technology based self-healing system for concrete structures. J. Earthq. Tsunami 2013, 7, 1350014. [Google Scholar] [CrossRef]
- Sarkar, M.; Chowdhury, T.; Chattopadhyay, B.; Gachhui, R.; Mandal, S. Autonomous bioremediation of a microbial protein (bioremediase) in Pozzolana cementitious composite. J. Mater. Sci. 2014, 49, 4461–4468. [Google Scholar] [CrossRef]
- Aldea, C.M.; Song, W.J.; Popovics, J.S.; Shah, S.P. Extent of healing of cracked normal strength concrete. J. Mater. Civ. Eng. 2000, 12, 92–96. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Beskopylny, N.; El’shaeva, D.; Kotenko, M. The Investigation of Compacting Cement Systems for Studying the Fundamental Process of Cement Gel Formation. Gels 2022, 8, 530. [Google Scholar] [CrossRef]
- Granger, S.; Loukili, A. Mechanical behavior of self-healed ultra high performance concrete: From experimental evidence to modeling. In Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications (ConMat’05), Vancouver, BC, Canada, 22–24 August 2005. [Google Scholar]
- Official Journal of the European Communities 17.10.2000 L 262/21. Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the Protection of Workers from Risks Related to Exposure to Biological Agents at Work (Seventh Individual Directive within the Meaning of Article 16(1) of Directive 89/391/EEC). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1375443992555&uri=CELEX%3A32000L0054&clckid=3faa81ef (accessed on 10 September 2024).
- FarhayuAriffin, N.; WaridHussin, M.; Sam, A.R.M.; Lee, H.S.; Hafizah, N.; Khalid, A.; Lim, N.H.A.S. Mostafa Samadi. J. Teknol. 2015, 12, 37–44. [Google Scholar]
- Snoeck, D.; van Tittelboom, K.; Steuperaert, S.; Dubruel, P.; de Belie, N. Selfhealing cementitious materials by the combination of microfibres and superabsorbent polymers. J. Intell. Mater. Syst. Struct. 2014, 25, 13–24. [Google Scholar] [CrossRef]
- Sumathi, A.; Murali, G.; Gowdhaman, D.; Amran, M.; Fediuk, R.; Vatin, N.I.; Gowsika, T.S. Development of Bacterium for Crack Healing and Improving Properties of Concrete under Wet–Dry and Full-Wet Curing. Sustainability 2020, 12, 10346. [Google Scholar] [CrossRef]
- Calvo, J.G.; Pérez, G.; Carballosa, P.; Erkizia, E.; Gaitero, J.J.; Guerrero, A. Development of ultra-high performance concretes with self-healing micro/nano-additions. Constr. Build. Mater. 2017, 138, 306–315. [Google Scholar] [CrossRef]
- Hooton, R.D.; Bickley, J.A. Design for durability: The key to improving concrete sustainability. Constr. Build. Mater. 2014, 67 Pt C, 422–430. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Eatmon, T.D. A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. J. Clean. Prod. 2009, 17, 668–675. [Google Scholar] [CrossRef]
- Van den Heede, P.; De Belie, N. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations. Cem. Concr. Compos. 2012, 34, 431–442. [Google Scholar] [CrossRef]
- Knoeri, C.; Sanyé-Mengual, E.; Althaus, H.-J. Comparative LCA of recycled and conventional concrete for structural applications. Int. J. Life Cycle Assess 2013, 18, 909–918. [Google Scholar] [CrossRef]
- Wang, J.Y.; Verstraete, W.; De, B.N. Enhanced self-healing capacity in cementitious materials by use of encapsulated carbonate precipitating bacteria: From proof-of-concept to reality. In Proceedings of the 8th International Symposium on Cement & Concrete Proceeding, Nanjing, China, 20–23 September 2013. [Google Scholar]
- Silva, M.G.; Saade, M.R.M.; Gomes, V. Influence of service life, strength and cement type on life cycle environmental performance of concrete. Rev. Ibracon Estrut. Mater. 2013, 6, 844–853. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Razveeva, I.; Kozhakin, A.; Beskopylny, N.; El’shaeva, D.; Artamonov, S. Method for Concrete Structure Analysis by Microscopy of Hardened Cement Paste and Crack Segmentation Using a Convolutional Neural Network. J. Compos. Sci. 2023, 7, 327. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Razveeva, I.; Kozhakin, A.; El’shaeva, D.; Beskopylny, N.; Onore, G. Discovery and Classification of Defects on Facing Brick Specimens Using a Convolutional Neural Network. Appl. Sci. 2023, 13, 5413. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Razveeva, I.; Kozhakin, A.; El’shaeva, D.; Beskopylny, N.; Onore, G. Detecting Cracks in Aerated Concrete Samples Using a Convolutional Neural Network. Appl. Sci. 2023, 13, 1904. [Google Scholar] [CrossRef]
- Van den Heede, P.; Maes, M.; Caspeele, R.; De Belie, N. Chloride diffusion tests as experimental basis for full probabilistic service life prediction and life-cycle assessment of concrete with fly ash in a submerged marine environment. In Proceedings of the Third International Symposium on Life-Cycle Civil Engineering, Vienna, Austria, 3–6 October 2012; pp. 913–920. [Google Scholar]
- Mailyan, L.R.; Beskopylny, A.N.; Meskhi, B.; Shilov, A.V.; Stel’makh, S.A.; Shcherban’, E.M.; Smolyanichenko, A.S.; El’shaeva, D. Improving the Structural Characteristics of Heavy Concrete by Combined Disperse Reinforcement. Appl. Sci. 2021, 11, 6031. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B.; Varavka, V. Nanomodification of Lightweight Fiber Reinforced Concrete with Micro Silica and Its Influence on the Constructive Quality Coefficient. Materials 2021, 14, 7347. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B.; Shuyskiy, A. Improvement of Strength and Strain Characteristics of Lightweight Fiber Concrete by Electromagnetic Activation in a Vortex Layer Apparatus. Appl. Sci. 2022, 12, 104. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B.; Varavka, V. Quantitative and Qualitative Aspects of Composite Action of Concrete and Dispersion-Reinforcing Fiber. Polymers 2022, 14, 682. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Beskopylny, N.; El’shaeva, D. Influence of the Chemical Activation of Aggregates on the Properties of Lightweight Vibro-Centrifuged Fiber-Reinforced Concrete. J. Compos. Sci. 2022, 6, 273. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Evtushenko, A.; El’shaeva, D.; Chernil’nik, A. Improving the Physical and Mechanical Characteristics of Modified Aerated Concrete by Reinforcing with Plant Fibers. Fibers 2023, 11, 33. [Google Scholar] [CrossRef]
- DeJong, J.T.; Soga, K.; Kavazanjian, E.; Burns, S.; Van Paassen, L.A.; Al Qabany, A.; Aydilek, A.; Bang, S.S.; Burbank, M.; Caslake, L.F.; et al. Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges. Géotechnique 2013, 63, 287–301. [Google Scholar] [CrossRef]
- van Breugel, K. Is there a market for self-healing cement-based materials. In Proceedings of the First International Conference on Self-Healing Materials, Noordwijk aan Zee, The Netherlands, 18–20 April 2007. [Google Scholar]
- Dong, B.; Wang, Y.; Fang, G.; Han, N.; Xing, F.; Lu, Y. Smart releasing behavior of a chemical self-healing microcapsule in the stimulated concrete pore solution. Cem. Concr. Compos. 2015, 56, 46–50. [Google Scholar] [CrossRef]
- Blaiszik, B.; Caruso, M.; McIlroy, D.; Moore, J.; White, S.; Sottos, N. Microcapsules filled with reactive solutions for self-healing materials. Polymer 2009, 50, 990–997. [Google Scholar] [CrossRef]
- Homma, D.; Mihashi, H.; Nishiwaki, T. Self-healing capability of fibre reinforced cementitious composites. J. Adv. Concr. Technol. 2009, 7, 217–228. [Google Scholar] [CrossRef]
- Gupta, S. Development of high strength self compacting mortar with hybrid blend of polypropylene and steel fibers. Int. J. Eng. Technol. 2014, 4, 571–576. [Google Scholar]
- Gunawansa, A.; Kua, H.W. A comparison of climate change mitigation and adaptation strategies for the construction industries of three coastal territories. Sustain. Dev. 2014, 22, 52–62. [Google Scholar] [CrossRef]
- Kua, H. Integrated policies to promote sustainable use of steel slag for construction—A consequential life cycle embodied energy and greenhouse gas emission perspective. Energy Build. 2015, 101, 133–143. [Google Scholar] [CrossRef]
- Kua, H.-W. Attributional and consequential life cycle inventory assessment of recycling copper slag as building material in Singapore. Trans. Inst. Meas. Control 2013, 35, 510–520. [Google Scholar] [CrossRef]
- Kua, H.W.; Kamath, S. An attributional and consequential life cycle assessment of substituting concrete with bricks. J. Clean. Prod. 2014, 81, 190–200. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W. Factors determining the potential of biochar as a carbon capturing and sequestering construction material: Critical review. J. Mater. Civ. Eng. 2017, 29, 04017086. [Google Scholar] [CrossRef]
- Folk, R. SEM imaging of bacteria and nanobacteria in carbonate sediments and rocks. J. Sediment. Res. 1993, 63, 990–999. [Google Scholar]
- Mitchell, A.C.; Dideriksen, K.; Spangler, L.H.; Cunningham, A.B.; Gerlach, R. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping. Environ. Sci. Technol. 2010, 44, 5270–5276. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, B.P.; Kirst, K.; Guard, H.E. Electrical and Electrocatalytic Reactions of Carbon Dioxide; Elsevier: New York, NY, USA, 1993; pp. 118–144. [Google Scholar]
- Bond, G.M.; Egeland, G.; Brandvold, D.K.; Medina, M.G.; Simsek, F.A.; Stringer, J. Enzymatic catalysis and CO2 sequestration. World Resour. Rev. 1999, 11, 603–619. [Google Scholar]
- Beier, M.; Anken, R. On the role of carbonic anhydrase in the early phase of fish otolith mineralization. Adv. Space Res. 2006, 38, 1119–1122. [Google Scholar] [CrossRef]
- Tambutté, S.; Tambutté, E.; Zoccola, D.; Caminiti, N.; Lotto, S.; Moya, A.; Allemand, D.; Adkins, J. Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar. Biol. 2007, 151, 71–83. [Google Scholar] [CrossRef]
- Chen, H.J.; Peng, C.F.; Tang, C.W.; Chen, Y.T. Self-healing concrete by biological substrate. Materials 2020, 12, 4099. [Google Scholar] [CrossRef]
- Xu, J.; Tang, Y.H.; Wang, X.Z.; Wang, Z.P.; Yao, W. Application of ureolysis-based microbial CaCO3 precipitation in self-healing of concrete and inhibition of reinforcement corrosion. Constr. Build. Mater. 2020, 265, 120364. [Google Scholar] [CrossRef]
- Su, Y.L.; Li, F.; He, Z.Q.; Qian, C.X. Artificial aggregates could be a potential way to realize microbial self-healing concrete: An example based on modified ceramsite. J. Build. Eng. 2021, 35, 102082. [Google Scholar] [CrossRef]
- Chen, H.C.; Qian, C.X.; Huang, H.L. Self-healing cementitious materials based on bacteria and nutrients immobilized respectively. Constr. Build. Mater. 2016, 126, 297–303. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; El’shaeva, D.; Varavka, V. Developing Environmentally Sustainable and Cost-Effective Geopolymer Concrete with Improved Characteristics. Sustainability 2021, 13, 13607. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; El’shaeva, D. The Influence of Composition and Recipe Dosage on the Strength Characteristics of New Geopolymer Concrete with the Use of Stone Flour. Appl. Sci. 2022, 12, 613. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B. Increasing the Corrosion Resistance and Durability of Geopolymer Concrete Structures of Agricultural Buildings Operating in Specific Conditions of Aggressive Environments of Livestock Buildings. Appl. Sci. 2022, 12, 1655. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Smolyanichenko, A.S.; Beskopylny, N. High-Performance Concrete Nanomodified with Recycled Rice Straw Biochar. Appl. Sci. 2022, 12, 5480. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Varavka, V.; Beskopylny, N.; El’shaeva, D. Enhanced Eco-Friendly Concrete Nano-Change with Eggshell Powder. Appl. Sci. 2022, 12, 6606. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Beskopylny, N.; Dotsenko, N.; Kotenko, M. Nanomodified Concrete with Enhanced Characteristics Based on River Snail Shell Powder. Appl. Sci. 2022, 12, 7839. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Smolyanichenko, A.S.; Varavka, V.; Beskopylny, N.; Dotsenko, N. Influence of Electromagnetic Activation of Cement Paste and Nano-Modification by Rice Straw Biochar on the Structure and Characteristics of Concrete. J. Compos. Sci. 2022, 6, 268. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Tashpulatov, S.S.; Chernil’nik, A.; Shcherban’, N.; Tyutina, A. Composition, Technological, and Microstructural Aspects of Concrete Modified with Finely Ground Mussel Shell Powder. Materials 2023, 16, 82. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Chernil’nik, A.; El’shaeva, D. Effect of Walnut-Shell Additive on the Structure and Characteristics of Concrete. Materials 2023, 16, 1752. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Beskopylny, A.N.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Pimenova, E.; El’shaeva, D. Combined Effect of Ceramic Waste Powder Additives and PVA on the Structure and Properties of Geopolymer Concrete Used for Finishing Facades of Buildings. Materials 2023, 16, 3259. [Google Scholar] [CrossRef]
- Meskhi, B.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Shilov, A.A.; El’shaeva, D.; Shilova, K.; Karalar, M.; Aksoylu, C.; et al. Analytical Review of Geopolymer Concrete: Retrospective and Current Issues. Materials 2023, 16, 3792. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Beskopylny, A.N.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; El’shaeva, D.; Chernil’nik, A.; Kurilova, S. Alteration of Structure and Characteristics of Concrete with Coconut Shell as a Substitution of a Part of Coarse Aggregate. Materials 2023, 16, 4422. [Google Scholar] [CrossRef] [PubMed]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Evtushenko, A.; Chernil’nik, A.; El’shaeva, D.; Karalar, M.; et al. Physical, Mechanical and Structural Characteristics of Sulfur Concrete with Bitumen Modified Sulfur and Fly Ash. J. Compos. Sci. 2023, 7, 356. [Google Scholar] [CrossRef]
- Kondratieva, T.N.; Chepurnenko, A.S. Prediction of Rheological Parameters of Polymers by Machine Learning Methods. Adv. Eng. Res. 2024, 24, 36–47. [Google Scholar] [CrossRef]
- Karnoub, A.; Nezhizhimov, D.B.; Shirinyan, K.S. Research and modeling of a multilayer composite material using basalt fabric. Vestn. Don State Tech. Univ. 2020, 20, 5–14. [Google Scholar] [CrossRef]
Reference | Type of Bacteria Used in the Study | Type of Lightweight Porous Aggregate |
---|---|---|
[83] | Bacillus pseudofirmus | Expanded clay |
[84] | Paenibacillus mucilaginosus | Expanded vermiculite |
[34] | Bacillus sphaericus | Diatomaceous earth, expanded clay, granular activated carbon, metakaolin, zeolite, and air entrainment |
[85] | Sporosarcina Halophila | Expanded perlite aggregates |
[86] | Sporosarcina pasteurii | Porous and superlight expanded glass |
[87,88,89] | Alkaliphilic bacteria of the genus Bacillus | Expanded clay granules |
[90] | Sporosarcina pasteurii | Expanded shale aggregate |
[91] | Bacillus psuedofirmus | Expanded perlite |
[91] | Lysinibacillus boronitolerans | Expanded clay |
[92] | Sporosarcina Pasteurii, Bacillus Megateterium, Sporosarcina Ureae and Bacillus Licheniformis | Leca coarse LWA and Leca fine LWA |
[93] | Bacillus mucilaginous | Expanded perlite |
[94] | Bacillus alkalinitrilicus | Expanded clay particles |
[76] | Bacillus subtilis | Diatomite pellet |
[95] | Bacillus subtilis | Pumice |
[96] | Sporosarcina pasteurii | Ceramsite particles |
[97] | Bacillus alcalophilus | Modified ceramsite particles |
[98] | Bacillus mucilaginous | Ceramsite |
Ref. | Type of Bacteria Used in the Study | Method for Adding Bacterial Spores to a Mixture | Type of Nutrient Medium | Opening Width of Healed Crack, mm | Restoring Strength | Improved Durability |
---|---|---|---|---|---|---|
[119] | B. subtilis | Diatomite lam dong | Urea, CaCl2 H2O | 1–1.8 | − | + |
[120] | B. pseudomycoides | Directly with 100 mL cell | Ureolytic activity | 0.15–0.3 | + | + |
[121] | B. subtilis | Directly with 2.2 × 106 cells/mL | Urea—2CaCl2 curing | 0.2 | − | + |
[29] | S. pasteurii | Directly with 107 cells/cm3 | Urea—CaCl2 curing | 0.28–0.34 | + | + |
[122] | B. sphaericus | Diatomaceous earth with 109 cell/mL | Urea, yeast extract, Ca(NO3)2, 4H2O | 0.15–0.17 | - | + |
[30] | B. megaterium | Directly with 2.2 × 106 cells/mL | Urea yeast extract, beef extract | 0.3 | + | + |
[123] | B. sphaericus | Hydrogelencapsulated spore | Urea, yeast extract, Ca(NO3)2, 4H2O | 0.5 | − | + |
[124] | B. subtilis | Steel bar, Hach dr 2400 portable | Urea CaCO3 crystals, yeast extracts, NaCl | 1.0 | + | + |
[24] | B. sphaericus | Silica gel, polyurethane | Urea, Ca(NO3)2, 4H2O | 0.35, 0.25 | + | + |
[125] | B. megaterium, B. licheniformi | Direct with 105 cell/mL of mixing water | Urea-broth culture | 0.3 | − | + |
[126] | B. sphaericus | Microcapsule | Urea, calciumnitrate, yeast extract | 0.97 | − | + |
[127] | B. sphaericus | Trinocular stereomicroscope | Urea Ca2+ ion, CaCl2 usage | 0.4 | + | + |
[128] | S. pasteurii | Direct with 2–6 × 107 cfu/mL | Mixing water was replaced by urea–yeast extract medium | − | + | − |
[129] | B. sphaericus | Glass tubes with PU foam | Urea, Ca(NO3)2 | 0.3 | + | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Shilov, A.A.; Chernil’nik, A.; El’shaeva, D.; Chistyakov, V.A. Analysis of the Current State of Research on Bio-Healing Concrete (Bioconcrete). Materials 2024, 17, 4508. https://doi.org/10.3390/ma17184508
Beskopylny AN, Shcherban’ EM, Stel’makh SA, Shilov AA, Chernil’nik A, El’shaeva D, Chistyakov VA. Analysis of the Current State of Research on Bio-Healing Concrete (Bioconcrete). Materials. 2024; 17(18):4508. https://doi.org/10.3390/ma17184508
Chicago/Turabian StyleBeskopylny, Alexey N., Evgenii M. Shcherban’, Sergey A. Stel’makh, Alexandr A. Shilov, Andrei Chernil’nik, Diana El’shaeva, and Vladimir A. Chistyakov. 2024. "Analysis of the Current State of Research on Bio-Healing Concrete (Bioconcrete)" Materials 17, no. 18: 4508. https://doi.org/10.3390/ma17184508
APA StyleBeskopylny, A. N., Shcherban’, E. M., Stel’makh, S. A., Shilov, A. A., Chernil’nik, A., El’shaeva, D., & Chistyakov, V. A. (2024). Analysis of the Current State of Research on Bio-Healing Concrete (Bioconcrete). Materials, 17(18), 4508. https://doi.org/10.3390/ma17184508