Fractional Talbot Lithography for Predesigned Large-Area Liquid-Crystal Alignment
Abstract
:1. Introduction
2. Methods
2.1. Fractional Talbot Effect
2.2. Lithography Setup
3. Results and Discussion
3.1. Fractional Talbot Lithography for Large-Area Uniform Orientation of Liquid-Crystal Molecules
3.1.1. Atomic Force Microscope (AFM) Characterization
3.1.2. Polarization Optical Microscopic Images of Twisted Nematic Liquid-Cystal Cells
3.1.3. Anchoring Energy
3.2. Fractional Talbot Lithography for Large-Area Concentric Orientation of Liquid-Crystal Molecules
3.2.1. Polarization Optical Microscopic Images of the q-Plate
3.2.2. Electrical Tunability of Liquid-Crystal q-Plate
3.2.3. Generation of Special Optical Fields
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.-W.; Lee, J.-H.; Lin, B.-Y.; Chen, S.; Wu, S.-T. Liquid crystal display and organic light-emitting diode display: Present status and future perspectives. Light Sci. Appl. 2017, 7, 17168. [Google Scholar] [CrossRef]
- Lin, T.; Xie, J.; Zhou, Y.; Zhou, Y.; Yuan, Y.; Fan, F.; Wen, S. Recent Advances in Photoalignment Liquid Crystal Polarization Gratings and Their Applications. Crystals 2021, 11, 900. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, J.; Chen, J.; Asilehan, Z.; Tang, W.; Peng, C.; Zhang, R. Moiré effect enables versatile design of topological defects in nematic liquid crystals. Nat. Commun. 2024, 15, 1655. [Google Scholar] [CrossRef] [PubMed]
- Sandford O’Neill, J.J.; Salter, P.S.; Booth, M.J.; Elston, S.J.; Morris, S.M. Electrically-tunable positioning of topological defects in liquid crystals. Nat. Commun. 2020, 11, 2203. [Google Scholar] [CrossRef]
- Becker, M.; Kilian, R.; Kosmowski, B.; Mlynski, D. Alignment properties of rubbed polymer surfaces. Mol. Cryst. Liq. Cryst. 1986, 132, 167–180. [Google Scholar] [CrossRef]
- Ishihara, S.; Wakemoto, H.; Nakazima, K.; Matsuo, Y. The effect of rubbed polymer films on the liquid crystal alignment. Liq. Cryst. 1989, 4, 669–675. [Google Scholar] [CrossRef]
- Wu, H.; Hu, W.; Hu, H.C.; Lin, X.W.; Zhu, G.; Choi, J.W.; Chigrinov, V.; Lu, Y.Q. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system. Opt. Express 2012, 20, 16684–16689. [Google Scholar] [CrossRef]
- Serak, S.V.; Roberts, D.E.; Hwang, J.-Y.; Nersisyan, S.R.; Tabiryan, N.V.; Bunning, T.J.; Steeves, D.M.; Kimball, B.R. Diffractive waveplate arrays [Invited]. J. Opt. Soc. Am. B 2017, 34, B56–B63. [Google Scholar] [CrossRef]
- Zhang, B.; Lee, F.K.; Tsui, O.K.C.; Sheng, P. Liquid Crystal Orientation Transition on Microtextured Substrates. Phys. Rev. Lett. 2003, 91, 215501. [Google Scholar] [CrossRef]
- Varghese, S.; Narayanankutty, S.; Bastiaansen, C.; Crawford, G.; Broer, D. Patterned Alignment of Liquid Crystals by (micro)-Rubbing. Adv. Mater. 2004, 16, 1600–1604. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, D.W.; Oh, J.Y.; Won, J.; Seo, D.-S. Nanopatterning of Polymer/Gallium Oxide Thin Films by UV-Curing Nanoimprint Lithography for Liquid Crystal Alignment. ACS Appl. Nano Mater. 2022, 5, 1435–1445. [Google Scholar] [CrossRef]
- Jagodič, U.; Vellaichamy, M.; Škarabot, M.; Muševič, I. Surface alignment of nematic liquid crystals by direct laser writing of photopolymer alignment layers. Liq. Cryst. 2023, 50, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, H.; Migara, L.K.; Kwak, K.; Panov, V.P.; Song, J.-K. Widely Tunable Optical Vortex Array Generator Based on Grid Patterned Liquid Crystal Cell. Adv. Opt. Mater. 2021, 9, 2001604. [Google Scholar] [CrossRef]
- Berreman, D.W. Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal. Phys. Rev. Lett. 1972, 28, 1683–1686. [Google Scholar] [CrossRef]
- Berreman, D.W. Alignment of Liquid Crystals by Grooved Surfaces. Mol. Cryst. Liq. Cryst. 2007, 23, 215–231. [Google Scholar] [CrossRef]
- Shin, M.J.; Yoon, D.K. Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials. Materials 2020, 13, 5466. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Birr, T.; Zywietz, U.; Reinhardt, C.; Roth, B. Feature size below 100 nm realized by UV-LED-based microscope projection photolithography. Light. Adv. Manuf. 2023, 4, 33. [Google Scholar] [CrossRef]
- Nys, I. Patterned surface alignment to create complex three-dimensional nematic and chiral nematic liquid crystal structures. Liq. Cryst. Today 2020, 29, 65–83. [Google Scholar] [CrossRef]
- Wen, J.; Zhang, Y.; Xiao, M. The Talbot effect: Recent advances in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Photonics 2013, 5, 83–130. [Google Scholar] [CrossRef]
- Solak, H.H.; Dais, C.; Clube, F. Displacement Talbot lithography: A new method for high-resolution patterning of large areas. Opt. Express 2011, 19, 10686–10691. [Google Scholar] [CrossRef]
- Chausse, P.; Le Boulbar, E.; Coulon, P.-M.; Shields, P.A. Displacement Talbot lithography: Fast, wafer-scale, direct-writing of complex periodic nanopatterns. Opt. Express 2019, 27, 32037–32046. [Google Scholar] [CrossRef]
- Chausse, P.J.P.; Le Boulbar, E.D.; Lis, S.D.; Shields, P.A. Understanding resolution limit of displacement Talbot lithography. Opt. Express 2019, 27, 5918–5930. [Google Scholar] [CrossRef]
- Kim, H.-S.; Li, W.; Danylyuk, S.; Brocklesby, W.S.; Marconi, M.C.; Juschkin, L. Fractional Talbot lithography with extreme ultraviolet light. Opt. Lett. 2014, 39, 6969–6972. [Google Scholar] [CrossRef]
- Fallica, R. Beyond grayscale lithography: Inherently three-dimensional patterning by Talbot effect. Adv. Opt. Technol. 2019, 8, 233–240. [Google Scholar] [CrossRef]
- Ezaki, R.; Mizutani, Y.; Ura, N.; Uenohara, T.; Makiura, Y.; Takaya, Y. Fabrication of three-dimensional high-aspect-ratio structures by oblique-incidence Talbot lithography. Opt. Express 2020, 28, 36924–36935. [Google Scholar] [CrossRef]
- Liu, L.; Sun, L.; Qi, L.; Guo, R.; Li, K.; Yin, Z.; Wu, D.; Zou, H. A low-cost fabrication method of nanostructures by ultraviolet proximity exposing lithography. AIP Adv. 2020, 10, 045221. [Google Scholar] [CrossRef]
- Xia, Y.; Cedillo-Servin, G.; Kamien, R.D.; Yang, S. Guided Folding of Nematic Liquid Crystal Elastomer Sheets into 3D via Patterned 1D Microchannels. Adv. Mater. 2016, 28, 9637–9643. [Google Scholar] [CrossRef]
- Guo, Y.; Shahsavan, H.; Davidson, Z.S.; Sitti, M. Precise Control of Lyotropic Chromonic Liquid Crystal Alignment through Surface Topography. ACS Appl. Mater. Interfaces 2019, 11, 36110–36117. [Google Scholar] [CrossRef]
- Yuan, X.C.; Zhang, D.G.; Sun, Y.Y.; Bu, J.; Zhu, S.W. Fabrication of three-dimensional photonic crystals with the Talbot self-imaging effect. J. Opt. A Pure Appl. Opt. 2009, 11, 105104. [Google Scholar] [CrossRef]
- Liu, Y.J.; Dai, H.T.; Leong, E.S.P.; Teng, J.H.; Sun, X.W. Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect. Appl. Phys. B Lasers Opt. 2011, 104, 659–663. [Google Scholar] [CrossRef]
- Banaszek, K.; Wódkiewicz, K.; Schleich, W.P. Fractional Talbot effect in phase space: A compact summation formula. Opt. Express 1998, 2, 169–172. [Google Scholar] [CrossRef]
- Yin, S.; Li, X.; Ge, S.; Zhao, Y.; Ma, H.; Sun, Y. Low driving voltage reverse-mode polymer-stabilised cholesteric liquid crystal devices using small phenylacetylene molecule. Liq. Cryst. 2024, 51, 442–451. [Google Scholar] [CrossRef]
- Barbero, G.; Gliozzi, A.S.; Scalerandi, M.; Evangelista, L.R. Generalization of Berreman’s model to the case of large amplitude of the grooves. Phys. Rev. E 2008, 77, 051703. [Google Scholar] [CrossRef]
- Mehta, D.S.; Dubey, S.K.; Shakher, C.; Takeda, M. Two-wavelength Talbot effect and its application for three-dimensional step-height measurement. Appl. Opt. 2006, 45, 7602–7609. [Google Scholar] [CrossRef]
- Kim, H.-S.; Li, W.; Marconi, M.C.; Brocklesby, W.S.; Juschkin, L. Restorative Self-Image of Rough-Line Grids: Application to Coherent EUV Talbot Lithography. IEEE Photonics J. 2016, 8, 2600209. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, B.; Zhao, G.; Ban, Y.; Da, Z.; Wang, Y.; Ye, G.; Chen, J.; Liu, H. Distance and depth modulation of Talbot imaging via specified design of the grating structure. Opt. Express 2022, 30, 10239–10250. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, M.; Chen, Q. Low-stress ultra-thick SU-8 UV photolithography process for MEMS. J. Micro/Nanolithography MEMS MOEMS 2005, 4, 043008. [Google Scholar] [CrossRef]
- Denning, R.G.; Blanford, C.F.; Urban, H.; Bharaj, H.; Sharp, D.N.; Turberfield, A.J. The Control of Shrinkage and Thermal Instability in SU-8 Photoresists for Holographic Lithography. Adv. Funct. Mater. 2011, 21, 1593–1601. [Google Scholar] [CrossRef]
- Akahane, T.; Kaneko, H.; Kimura, M. Novel method of measuring surface torsional anchoring strength of nematic liquid crystals. Jpn. J. Appl. Phys. 1996, 35 Pt 1, 4434–4437. [Google Scholar] [CrossRef]
- Akiyama, H.; Kawara, T.; Takada, H.; Takatsu, H.; Chigrinov, V.; Prudnikova, E.; Kozenkov, V.; Kwok, H. Synthesis and properties of azo dye aligning layers for liquid crystal cells. Liq. Cryst. 2002, 29, 1321–1327. [Google Scholar] [CrossRef]
- Lu, X.; Lee, F.K.; Sheng, P.; Kwok, H.S.; Chigrinov, V.; Tsui, O.K.C. Substrate patterning for liquid crystal alignment by optical interference. Appl. Phys. Lett. 2006, 88, 243508. [Google Scholar] [CrossRef]
- He, Z.; Tan, G.; Chanda, D.; Wu, S. Novel liquid crystal photonic devices enabled by two-photon polymerization [Invited]. Opt. Express 2019, 27, 11472–11491. [Google Scholar] [CrossRef]
- Park, S.; Padeste, C.; Schift, H.; Gobrecht, J.; Scharf, T. Chemical Nanopatterns via Nanoimprint Lithography for Simultaneous Control over Azimuthal and Polar Alignment of Liquid Crystals. Adv. Mater. 2005, 17, 1398–1401. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Nie, Z.; Liang, Y.; Wang, J.; Li, T.; Jia, B. Recent advances on optical vortex generation. Nanophotonics 2018, 7, 1533–1556. [Google Scholar] [CrossRef]
- Han, W.; Yang, Y.; Cheng, W.; Zhan, Q. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express 2013, 21, 20692–20706. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, W.; Moitra, P.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation. Nano Lett. 2014, 14, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Zhang, X.; Zhang, Y.; Wang, Z.; Drevensek-Olenik, I.; Rupp, R.; Li, W.; Wu, Q.; Xu, J. Electrically tunable generation of vectorial vortex beams with micro-patterned liquid crystal structures. Chin. Opt. Lett. 2017, 15, 070501. [Google Scholar]
- Marrucci, L.; Manzo, C.; Paparo, D. Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media. Phys. Rev. Lett. 2006, 96, 163905. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zou, Y.; Li, J.; Huang, M.; Aya, S. Flexoelectricity-driven toroidal polar topology in liquid-matter helielectrics. Nat. Phys. 2024, 20, 991–1000. [Google Scholar] [CrossRef]
Cell | Cell Gap d (μm) | Actual Twist Angle φt (deg) | Anchoring Energy Wφ (J/m2) |
---|---|---|---|
TN90-Rubbing | 3.00 | 88.0 | 1.61 × 10−4 |
TN90-1.5 | 4.88 | 88.9 | 1.82 × 10−4 |
TN90-3.0 | 5.06 | 71.9 | 0.88 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Z.; Gan, Z.; Wang, Y.; Liu, Z.; Yang, D.; Fan, Y.; Li, W.; Drevensek-Olenik, I.; Li, Y.; Zhang, X. Fractional Talbot Lithography for Predesigned Large-Area Liquid-Crystal Alignment. Materials 2024, 17, 4810. https://doi.org/10.3390/ma17194810
Ji Z, Gan Z, Wang Y, Liu Z, Yang D, Fan Y, Li W, Drevensek-Olenik I, Li Y, Zhang X. Fractional Talbot Lithography for Predesigned Large-Area Liquid-Crystal Alignment. Materials. 2024; 17(19):4810. https://doi.org/10.3390/ma17194810
Chicago/Turabian StyleJi, Zhichao, Zenghua Gan, Yu Wang, Zhijian Liu, Donghao Yang, Yujie Fan, Wenhua Li, Irena Drevensek-Olenik, Yigang Li, and Xinzheng Zhang. 2024. "Fractional Talbot Lithography for Predesigned Large-Area Liquid-Crystal Alignment" Materials 17, no. 19: 4810. https://doi.org/10.3390/ma17194810
APA StyleJi, Z., Gan, Z., Wang, Y., Liu, Z., Yang, D., Fan, Y., Li, W., Drevensek-Olenik, I., Li, Y., & Zhang, X. (2024). Fractional Talbot Lithography for Predesigned Large-Area Liquid-Crystal Alignment. Materials, 17(19), 4810. https://doi.org/10.3390/ma17194810