Failure Analyses on a Flexible Anode Cathodic Protection System in a Station
Abstract
:1. Introduction
2. Test Methods
2.1. Survey of the Station and Automatic Potential Control Rectifier
2.2. Measurement of Cathodic Protection on and off Potential and Corrosion Potential
2.3. Soil Resistivity
2.4. Feeding Test
2.5. Measurement and Calculation of Anode Grounding Resistance
2.6. Polarization Curve Testing
3. Field Tests and Experimental Results
3.1. Measurement Results of Cathodic Protection Potential in the Valve Group Area
3.1.1. Measurement Results of On and Off Potential
3.1.2. Results of Corrosion Potential Measurements
3.2. Feeding Test Results
4. Problem Analysis and Solutions
4.1. Troubleshooting the Possibility of Grounding Electrode Interference in the Valve Group Area
4.2. Numerical Simulation Calculation and Analysis
4.3. Troubleshooting the Possibility of Anode Electronic Shorting in the Valve Group Area
4.3.1. Excavation Tests for Electronic Shorting Exclusion
4.3.2. Measurement of Anode On-Potential, Off-Potential, and Grounding Resistance
4.3.3. The 3# Anode Cable Breaking Location Investigation
4.3.4. Anode and Pipeline Electronic Shorting Location Exclusion
- Test method for detecting the electronic shorting location between the flexible anode and pipeline.
- 2.
- Test method for the on-site inspection of broken flexible anode cables.
5. Conclusions
- The main reasons for the failure of the flexible anode protection system in the actual station were the electronic shorting between the local area of the flexible anode and the buried pipeline and the broken partial flexible anode.
- Based on potential measurements on the flexible anode and pipes, and on-site excavation, the test method for detecting the electronic shorting location between the flexible anode and pipe was proposed.
- Based on the anode grounding resistance measurements, on-site excavation, and calculation, a test method for the on-site inspection of broken flexible anode cables was proposed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oghli, H.M.; Akhbari, M.; Kalaki, A.; Eskandarzade, M. Design and analysis of the cathodic protection system of oil and gas pipelines, using distributed equivalent circuit model. J. Nat. Gas Sci. Eng. 2020, 84, 103701. [Google Scholar] [CrossRef]
- Parsa, M.; Allahkaram, S.; Ghobadi, A. Simulation of cathodic protection potential distributions on oil well casings. J. Pet. Sci. Eng. 2010, 72, 215–219. [Google Scholar] [CrossRef]
- Du, Y.X.; Wierzbinski, E.; Waldeck, D.H. Research on the difference of characteristics at Steel/electrolyte interface under cathodic protection and in High-pH alkaline solution. J. Electroanal. Chem. 2022, 925, 116878. [Google Scholar] [CrossRef]
- Quej-Aké, L.; Nava, N.; Espinosa-Medina, M.A.; Liu, H.B.; Alamilla, J.L.; Sosa, E. Characterisation of soil/pipe interface at a pipeline failure after 36 years of service under impressed current cathodic protection. Corros. Eng. Sci. Technol. 2014, 50, 311–319. [Google Scholar] [CrossRef]
- Yabo, H.; Feng, Z.; Jun, Z. Regional Cathodic Protection Design of a Natural Gas Distribution Station. Corros. Sci. Technol. 2017, 16, 235–240. [Google Scholar]
- Deng, W.; Deng, Y.; Ren, J.; Zhao, J.; Feng, Q.; Zhang, Y. Application of Numerical Simulation in Regional Cathodic Protection Design of an Oil and Gas Treatment Plant. Mater. Prot. 2019, 52, 148–152. [Google Scholar]
- Brenna, A.; Beretta, S.; Uglietti, R.; Lazzari, L.; Pedeferri, M.; Ormellese, M. Cathodic protection monitoring of buried carbon steel pipeline: Measurement and interpretation of instant-off potential. Corros. Eng. Sci. Technol. 2017, 52, 253–260. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Seok, S.; Lee, J.-S.; Lee, S.; Kim, J.-G. Optimizing anode location in impressed current cathodic protection system to minimize underwater electric field using multiple linear regression analysis and artificial neural network methods. Eng. Anal. Bound. Elements 2018, 96, 84–93. [Google Scholar] [CrossRef]
- Hong, M.S.; Kim, J.G. Optimization of Cathodic Protection System for River-Crossing District Heating Pipeline using Computational Analysis: Part II. The effective location of anodes. Int. J. Electrochem. Sci. 2020, 15, 7027–7038. [Google Scholar] [CrossRef]
- Attarchi, M.; Ormellese, M.; Brenna, A. Cathodic Protection Simulation of Linear Anode Alongside Coated and Uncoated Pipe. Corrosion 2020, 76, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Attarchi, M.; Ormellese, M.; Brenna, A. Simulation of Linear Anode-Pipe Cathodic Protection System: Primary and Secondary Current and Potential Distribution Analysis. Corrosion 2019, 75, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Attarchi, M.; Brenna, A.; Ormellese, M. Cathodic protection design optimization of a buried vessel by FEM simulation. Mater. Corros. 2020, 71, 1651–1659. [Google Scholar] [CrossRef]
- Safaeian, R.; Sharifi, R.; Dolati, A.; Medhat, S. Analyzing and design of mesh ribbon cathodic protection for aboveground storage tanks. South Afr. J. Chem. Eng. 2023, 45, 51–59. [Google Scholar] [CrossRef]
- Xin, Y. Graphene-Modified IrO2-Ta2O5 Coated Titanium Anodes for the Application of Impressed Current Cathodic Protection. Int. J. Electrochem. Sci. 2021, 16, 211056. [Google Scholar] [CrossRef]
- Lu, D.P.; Du, Y.X.; Tang, D.Z.; Duan, W. Research Status and Existing Problems of Regional Cathodic Protection Technology in Oil and Gas Transmission Stations. Corros. Sci. Prot. Technol. 2018, 30, 84–93. [Google Scholar]
- Liu, W.H.; Teng, Y.P.; Zhang, F.; Hu, Y.L.; Wen, Y.F.; Chen, Z.H.; Ding, B.J.; Zhang, L.J.; Wang, Y.Z.; Zhao, S. Research on the method of locating the breakpoint of flexible anode in station and its application. Pipeline Technol. Equip. 2020, 6, 55–57. [Google Scholar]
- ISO 15589-1; Petroleum, Petrochemical and Natural Gas Industries—Cathodic Protection of Pipeline Systems—Part 1: On-Land Pipelines. International Organization for Standardization: Geneva, Switzerland, 2017.
- GB/T 21246; Measurement Method for Cathodic Protection Parameters of Buried Steel Pipelines. Standards Press of China: Beijing, China, 2020.
- ASTM G57-12; Standard Test Method for Field Measurement of Soil Resistivity Using the Wenner Four-Electrode Method. ASTM International: West Conshohocken, PA, USA, 2012.
- Tang, Z.L.; Zhang, X.Y.; Liu, G. Simulated feeding test of impressed current catholic protection for a natural gas pipeline. Corros. Prot. 2013, 34, 161–163. [Google Scholar]
- Zhou, B.; Han, W.L.; Guo, J.Y. Application of feed test in cathodic protection system design of large scale station. Natl. Pipeline Corros. Control. Insp. Technol. Appl. Semin. 2018, 30, 84–93. [Google Scholar]
- Hu, S.X. Cathodic Protection Engineering Manual; Chemical Industry Press: Beijing, China, 1999. [Google Scholar]
- Fingas, D.; Segall, S.; Krissa, L.J. Monitoring Cathodic Protection Effectiveness at Trenchless Crossings. In Proceedings of the Complete Corrosion Experience 2019, Nashville, TN, USA, 24–28 March 2019. [Google Scholar]
- Liu, C.; Shankar, A.; Orazem, M.E.; Riemer, D.P. Numerical Simulations for Cathodic Protection of Pipelines. In Underground Pipeline Corrosion; Orazem, M.E., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 85–126. [Google Scholar]
- Zhuang, D.W.; Du, Y.X.; Chen, T.T.; Lu, D.P. Research on Boundary Condition Inversion Method for Numerical Simulation of Regional Cathodic Protection and Its Application. J. Chin. Soc. Corros. Prot. 2021, 41, 346–352. [Google Scholar]
Parameters | Circuit 1 | Circuit 2 | Circuit 3 | Circuit 4 | Circuit 5 |
---|---|---|---|---|---|
Anode length/m | 480 | 551 | 394 | 425 | 605 |
Number of power points | 5 | 6 | 4 | 5 | 7 |
Pipe length/m | 850 | 964 | 708 | 805 | 953 |
Pipe diameter/m | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
Pipe surface/m2 | 1601 | 1816 | 1334 | 1517 | 1795 |
Targeted on potential/mVCSE * | −2552 | −1476 | −1491 | −1453 | −1482 |
Measured on potential/mVCSE * | −2551 | −1474 | −1488 | −1453 | −1484 |
Measured off potential/mVCSE * | −516~−212 | −1200~−850 | −1200~−850 | −1200~−850 | −1200~−850 |
Output current/A | 16.52 | 2.21 | 1.75 | 1.18 | 0.82 |
Output voltage/V | 7.01 | 5.17 | 2.63 | 2.61 | 3.13 |
Circuit resistance/Ω | 0.42 | 2.34 | 1.50 | 2.21 | 3.82 |
West Test Site | On-Potential/mVCSE | Off-Potential/mVCSE | East Test Site | On-Potential/mVCSE | Off-Potential/mVCSE |
---|---|---|---|---|---|
1 | −974 | −516 | a | −1441 | −516 |
2 | −987 | −420 | b | −1420 | −383 |
3 | −972 | −325 | c | −1329 | −258 |
4 | −1051 | −274 | d | −1453 | −226 |
5 | −1030 | −338 | e | −1419 | −212 |
6 | −985 | −457 | f | −1175 | −639 |
West Test Site | Corrosion Potential/mVCSE | East Test Site | Corrosion Potential/mVCSE |
---|---|---|---|
1 | −403 | a | −427 |
2 | −334 | b | −324 |
3 | −273 | c | −238 |
4 | −235 | d | −173 |
5 | −302 | e | −171 |
6 | −411 | f | −568 |
Test Site | On-Potential/mVCSE | Off-Potential/mVCSE | |
---|---|---|---|
Feed input electricity currents 1.68 A | a | −1598 | −633 |
b | −1978 | −578 | |
c | −2421 | −403 | |
d | −1947 | −352 | |
e | −1570 | −293 | |
f | −1198 | −661 |
Test Site | On-Potential/mVCSE | Off-Potential/mVCSE | |
---|---|---|---|
Feed input electricity currents 2 A | 1 | −1228 | −468 |
2 | −1127 | −452 | |
3 | −1109 | −340 | |
4 | −1167 | −286 | |
5 | −1086 | −338 | |
6 | −1065 | −459 |
Test Site | Off Potential/mVCSE | ||
---|---|---|---|
Normal | 1 Position Electronic Shorting | 2 Position Electronic Shorting | |
1 | −865 | −542 | −614 |
2 | −868 | −559 | −636 |
3 | −871 | −561 | −709 |
4 | −874 | −576 | −801 |
5 | −877 | −580 | −813 |
6 | −878 | −592 | −813 |
Test Site | Anode-Corrosion Potential/mVCSE | Anode-On-Potential/mVCSE | Anode-Off-Potential/mVCSE |
---|---|---|---|
1# anode | 826 | 274 | −6 |
2# anode | 836 | 512 | −63 |
3# anode | 830 | 442 | 564 |
Test Site | Grounding Resistance/Ω |
---|---|
1# anode | 0.9 |
2# anode | 1.6 |
3# anode | 6.4 |
Test Site | Grounding Resistance/Ω |
---|---|
North of 3# anode cut-off point | 35 |
South of 3# anode cut-off point | 9 |
Test Site | Anode Corrosion Potential/mVCSE | |
---|---|---|
Before Cutting | After Cutting | |
1# anode | −180 | −450 |
2# anode | −180 | −100 |
Test Site | Pipeline Corrosion Potential/mVCSE | |
---|---|---|
Electronic Shorting Joint before Treatment | Electronic Shorting Joint after Treatment | |
1 | −403 | −487 |
2 | −334 | −534 |
3 | −273 | −574 |
4 | −235 | −514 |
5 | −302 | −503 |
6 | −411 | −546 |
Test Site | Pipeline Potential before Electronic Shorting Joint Treatment/mVCSE | Pipeline Potential after Electronic Shorting Joint Treatment/mVCSE | ||
---|---|---|---|---|
On-Potential | Off-Potential | On-Potential | Off-Potential | |
1 | −974 | −516 | −1050 | −940 |
2 | −987 | −420 | −950 | −879 |
3 | −972 | −325 | −1298 | −1015 |
4 | −1051 | −274 | −1324 | −1107 |
5 | −1030 | −338 | −1305 | −1004 |
6 | −985 | −457 | −1092 | −913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Chang, R.; Li, X.; Du, Y.; Liu, J. Failure Analyses on a Flexible Anode Cathodic Protection System in a Station. Materials 2024, 17, 291. https://doi.org/10.3390/ma17020291
Liu W, Chang R, Li X, Du Y, Liu J. Failure Analyses on a Flexible Anode Cathodic Protection System in a Station. Materials. 2024; 17(2):291. https://doi.org/10.3390/ma17020291
Chicago/Turabian StyleLiu, Wenhui, Runyao Chang, Xian Li, Yanxia Du, and Jianhua Liu. 2024. "Failure Analyses on a Flexible Anode Cathodic Protection System in a Station" Materials 17, no. 2: 291. https://doi.org/10.3390/ma17020291
APA StyleLiu, W., Chang, R., Li, X., Du, Y., & Liu, J. (2024). Failure Analyses on a Flexible Anode Cathodic Protection System in a Station. Materials, 17(2), 291. https://doi.org/10.3390/ma17020291