Exploring Epitaxial Structures for Electrically Pumped Perovskite Lasers: A Study of CsPb(Br,I)3 Based on the Ab Initio Bethe–Salpeter Equation
Abstract
:1. Introduction
2. Calculation Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Chen, P.; Thongprong, N.; Young, M.; Kuttipillai, P.S.; Jiang, C.; Zhang, P.; Sun, K.; Duxbury, P.M.; Lunt, R.R. Unlocking the Single-Domain Epitaxy of Halide Perovskites. Adv. Mater. Interfaces 2017, 4, 1701003. [Google Scholar] [CrossRef]
- Wang, L.; King, I.; Chen, P.; Bates, M.; Lunt, R.R. Epitaxial and quasiepitaxial growth of halide perovskites: New routes to high end optoelectronics. Appl. Phys. Lett. Mater. 2020, 8, 100904. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Chen, Z.; Sun, Y.Y.; Zhang, S.; Lu, T.M.; Wertz, E.; Shi, J. High-Temperature Ionic Epitaxy of Halide Perovskite Thin Film and the Hidden Carrier Dynamics. Adv. Mater. 2017, 29, 1702643. [Google Scholar] [CrossRef]
- Chen, H.; Wei, Z.; Zheng, X.; Yang, S. A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy 2015, 15, 216–226. [Google Scholar] [CrossRef]
- Ji, L.; Hsu, H.Y.; Lee, J.C.; Bard, A.J.; Yu, E.T. High-Performance Photodetectors Based on Solution-Processed Epitaxial Grown Hybrid Halide Perovskites. Nano Lett. 2018, 18, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Efrati, A.; Aharon, S.; Wierzbowska, M.; Etgar, L. First evidence of macroscale single crystal ion exchange found in lead halide perovskites. EcoMat 2020, 2, e12016. [Google Scholar] [CrossRef]
- Oksenberg, E.; Sanders, E.; Popovitz-Biro, R.; Houben, L.; Joselevich, E. Surface-Guided CsPbBr3 Perovskite Nanowires on Flat and Faceted Sapphire with Size-Dependent Photoluminescence and Fast Photoconductive Response. Nano Lett. 2018, 18, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Gong, X.; Comin, R.; Walters, G.; Fan, F.; Voznyy, O.; Yassitepe, E.; Buin, A.; Hoogland, S.; Sargent, E.H. Quantum-dot-in-perovskite solids. Nature 2015, 523, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Gorczyca, I.; Teisseyre, H.; Suski, T.; Christensen, N.E. Comparison of wurtzite GaN/AlN and ZnO/MgO short-period superlattices: Calculation of band gaps and built-in electric field. Phys. Stat. Sol. B 2017, 254, 1600704. [Google Scholar] [CrossRef]
- Skierbiszewski, C.; Wasilewski, Z.R.; Siekacz, M.; Feduniewicz, A.; Perlin, P.; Wisniewski, P.; Borysiuk, J.; Grzegory, I.; Leszczynski, M.; Suski, T.; et al. Blue-violet InGaN laser diodes grown on bulk GaN substrates by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 2004, 86, 011114. [Google Scholar] [CrossRef]
- Kruszewski, P.; Prystawko, P.; Kasalynas, I.; Nowakowska-Siwinska, A.; Krysko, M.; Plesiewicz, J.; Smalc-Koziorowska, J.; Dwilinski, R.; Zajac, M.; Kucharski, R.; et al. AlGaN/GaN HEMT structures on ammono bulk GaN substrate. Semicond. Sci. Technol. 2014, 29, 075004. [Google Scholar] [CrossRef]
- Ehrentraut, D.; Meissner, E.; Bockoweki, M. (Eds.) Technology of Galliun Nitride Crystal Growth; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Chen, Y.; Lei, Y.; Li, Y.; Yu, Y.; Cai, J.; Chiu, M.H.; Rao, R.; Gu, Y.; Wang, C.; Choi, W.; et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 2020, 577, 209–215. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, M.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Yang, Y.; Hope, M.A.; Eickemeyer, F.T.; Kim, M.; et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Bati, A.S.R.; Zhong, Y.L.; Burn, P.L.; Nazeeruddin, M.K.; Shaw, P.E.; Batmunkh, M. Next-generation applications for integrated perovskite solar cells. Commun. Mater. 2023, 4, 2. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Y.; Liu, C.; Sun, Z.; Wang, Z.; Lin, Z.; Qiu, M.; Fu, D.; Wang, K. Recent Progress of Narrowband Perovskite Photodetectors: Fundamental Physics and Strategies. Adv. Devices Instrum. 2023, 4, 6. [Google Scholar] [CrossRef]
- Falsini, N.; Ubaldini, A.; Cicconi, F.; Rizzo, A.; Vinattieri, A.; Bruzzi, M. Halide Perovskites Films for Ionizing Radiation Detection: An Overview of Novel Solid-State Devices. Sensors 2023, 23, 4930. [Google Scholar] [CrossRef]
- Liao, C.H.; Mahmud, M.A.; Ho-Baillie, A.W.Y. Recent progress in layered metal halide perovskites for solar cells, photodetectors, and field-effect transistors. Nanoscale 2023, 15, 4219–4235. [Google Scholar] [CrossRef]
- Raifuku, I.; Chao, Y.P.; Chen, H.H.; Lin, C.F.; Lin, P.E.; Shih, L.C.; Chen, K.T.; Chen, J.Y.; Chen, J.S.; Chen, P. Halide perovskite for low-power consumption neuromorphic devices. EcoMat 2021, 3, e12142. [Google Scholar] [CrossRef]
- Deschler, F.; Price, M.; Pathak, S.; Klintberg, L.E.; Jarausch, D.D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S.D.; Snaith, H.J.; et al. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. J. Phys. Chem. Lett. 2014, 5, 1421–1426. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Lim, S.S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 2014, 13, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M.I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M.V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.K.; Moghaddam, R.S.; Lai, M.L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L.M.; Credgington, D.; et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Ran, C.; Gao, W.; Li, M.; Xia, Y.; Huang, W. Metal Halide Perovskite for next-generation optoelectronics: Progresses and prospects. eLight 2023, 3, 3. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Z.; Zhan, Z.; Shi, T.; Du, J.; Tang, X.; Leng, Y. Advances in metal halide perovskite lasers: Synthetic strategies, morphology control, and lasing emission. Adv. Photonics 2021, 3, 034002. [Google Scholar] [CrossRef]
- Liao, Q.; Jin, X.; Fu, H. Tunable Halide Perovskites for Miniaturized Solid-State Laser Applications. Adv. Opt. Mater. 2019, 7, 1900099. [Google Scholar] [CrossRef]
- Stylianakis, M.M.; Maksudov, T.; Panagiotopoulos, A.; Kakavelakis, G.; Petridis, K. Inorganic and Hybrid Perovskite Based Laser Devices: A Review. Materials 2019, 12, 859. [Google Scholar] [CrossRef]
- Wang, K.; Wang, S.; Xiao, S.; Song, Q. Recent Advances in Perovskite Micro- and Nanolasers. Adv. Opt. Mater. 2018, 6, 1800278. [Google Scholar] [CrossRef]
- Suárez Alvarez, I. Active photonic devices based on colloidal semiconductor nanocrystals and organometallic halide perovskites. Eur. Phys. J. Appl. Phys. 2016, 75, 30001. [Google Scholar] [CrossRef]
- Chen, Q.; De Marco, N.; Yang, Y.M.; Song, T.B.; Chen, C.C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355–396. [Google Scholar] [CrossRef]
- Sutherland, B.R.; Sargent, E.H. Perovskite photonic sources. Nat. Photonics 2016, 10, 295–302. [Google Scholar] [CrossRef]
- Lozano, G. The Role of Metal Halide Perovskites in Next-Generation Lighting Devices. J. Phys. Chem. Lett. 2018, 9, 3987–3997. [Google Scholar] [CrossRef] [PubMed]
- Saparov, B.; Mitzi, D.B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 2016, 116, 4558–4596. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Shang, Q.; Deng, X.; Liang, Y.; Li, C.; Liu, X.; Xiong, Q.; Zhang, Q. Continuous-Wave Pumped Perovskite Lasers with Device Area Below 1 μm2. Adv. Mater. 2023, 35, 2302170. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, T.; Li, M.; Liang, C.; Wang, K.; Hong, G.; Tang, Y.; Long, G.; Yu, S.F.; Lee, T.W.; et al. Ultrashort laser pulse doubling by metal-halide perovskite multiple quantum wells. Nat. Commun. 2020, 11, 3361. [Google Scholar] [CrossRef] [PubMed]
- Rechcińska, K.; Król, M.; Mazur, R.; Morawiak, P.; Mirek, R.; Łempicka, K.; Bardyszewski, W.; Matuszewski, M.; Kula, P.; Piecek, W.; et al. Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 2019, 366, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ha, S.T.; Liu, X.; Sum, T.C.; Xiong, Q. Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers. Nano Lett. 2014, 14, 5995–6001. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Sun, H.; Zeng, H. Amino-Mediated Anchoring Perovskite Quantum Dots for Stable and Low-Threshold Random Lasing. Adv. Mater. 2017, 29, 1701185. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.; Shi, J.; Fu, L.; Du, W.; Sui, X.; Mi, Y.; Jia, Z.; Liu, F.; Shi, J.; et al. Trapped Exciton–Polariton Condensate by Spatial Confinement in a Perovskite Microcavity. ACS Photonics 2020, 7, 327–337. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Nalla, V.; Zeng, H.; Sun, H. Solution-Processed Low Threshold Vertical Cavity Surface Emitting Lasers from All-Inorganic Perovskite Nanocrystals. Adv. Funct. Mater. 2017, 27, 1605088. [Google Scholar] [CrossRef]
- Lin, H.C.; Lee, Y.C.; Lin, C.C.; Ho, Y.L.; Xing, D.; Chen, M.H.; Lin, B.W.; Chen, L.Y.; Chen, C.W.; Delaunay, J.J. Integration of on-chip perovskite nanocrystal laser and long-range surface plasmon polariton waveguide with etching-free process. Nanoscale 2022, 14, 10075–10081. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Shang, Q.; Wei, Q.; Zhao, L.; Liu, Z.; Shi, J.; Zhong, Y.; Chen, J.; Gao, Y.; Li, M.; et al. Lasing from Mechanically Exfoliated 2D Homologous Ruddlesden–Popper Perovskite Engineered by Inorganic Layer Thickness. Adv. Mater. 2019, 31, 1903030. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, W.; Song, Y.; Long, H.; Wang, K.; Wang, B.; Lu, P. Two-photon-pumped high-quality, single-mode vertical cavity lasing based on perovskite monocrystalline films. Nano Energy 2020, 68, 104334. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, R.; Liu, X.; Xing, J.; Sum, T.C.; Xiong, Q. High-Quality Whispering-Gallery-Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets. Adv. Funct. Mater. 2016, 26, 6238–6245. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, C.; Hu, Z.; Du, J.; Yang, J.; Zhang, Z.; Shi, T.; Liu, W.; Tang, X.; Leng, Y. Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates. Photon. Res. 2020, 8, A31–A38. [Google Scholar] [CrossRef]
- Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson, M.V.; Trinh, M.T.; Jin, S.; Zhu, X.Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.; Li, M.; Zhao, L.; Chen, D.; Zhang, S.; Chen, S.; Gao, P.; Shen, C.; Xing, J.; Xing, G.; et al. Role of the Exciton–Polariton in a Continuous-Wave Optically Pumped CsPbBr3 Perovskite Laser. Nano Lett. 2020, 20, 6636–6643. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, Z.; Shi, T.; Du, J.; Yang, J.; Zhang, Z.; Tang, X.; Leng, Y. Stable and enhanced frequency up-converted lasing from CsPbBr3 quantum dots embedded in silica sphere. Opt. Express 2019, 27, 9459–9466. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, Z.; Zhang, Z.; Du, J.; Yang, J.; Tang, X.; Liu, W.; Leng, Y. Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Formamidinium Lead Bromine Nanocrystals. ACS Photonics 2019, 6, 3150–3158. [Google Scholar] [CrossRef]
- Lin, C.H.; Zeng, Q.; Lafalce, E.; Yu, S.; Smith, M.J.; Yoon, Y.J.; Chang, Y.; Jiang, Y.; Lin, Z.; Vardeny, Z.V.; et al. Large-Area Lasing and Multicolor Perovskite Quantum Dot Patterns. Adv. Opt. Mater. 2018, 6, 1800474. [Google Scholar] [CrossRef]
- Gunnarsson, W.B.; Rand, B.P. Electrically driven lasing in metal halide perovskites: Challenges and outlook. APL Mater. 2020, 8, 030902. [Google Scholar] [CrossRef]
- Cho, C.; Antrack, T.; Kroll, M.; An, Q.; Bärschneider, T.R.; Fischer, A.; Meister, S.; Vaynzof, Y.; Leo, K. Electrical Pumping of Perovskite Diodes: Toward Stimulated Emission. Adv. Sci. 2021, 8, 2101663. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Yu, S.F. Reality or fantasy—Perovskite semiconductor laser diodes. EcoMat 2021, 3, e12077. [Google Scholar] [CrossRef]
- Wu, S.; Chen, Z.; Yip, H.L.; Jen, A.K.Y. The evolution and future of metal halide perovskite-based optoelectronic devices. Matter 2021, 4, 3814–3834. [Google Scholar] [CrossRef]
- Qin, J.; Tang, Y.; Zhang, J.; Shen, T.; Karlsson, M.; Zhang, T.; Cai, W.; Shi, L.; Ni, W.X.; Gao, F. From optical pumping to electrical pumping: The threshold overestimation in metal halide perovskites. Mater. Horiz. 2023, 10, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Qin, C. Quasi-2D lead halide perovskite gain materials toward electrical pumping laser. Nanophotonics 2020, 10, 2167–2180. [Google Scholar] [CrossRef]
- Combescot, M.; Shiau, S.Y. Excitons and Cooper Pairs: Two Composite Bosons in Many-Body Physics; Oxford University Press: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Wierzbowska, M.; Meléndez, J.J. Role of inorganic cations in the excitonic properties of lead halide perovskites. Phys. Chem. Chem. Phys. 2023, 25, 2468–2476. [Google Scholar] [CrossRef]
- Wierzbowska, M.; Mikłas, A. Preserving Bond Ionicity under Illumination to Achieve Photostable Halide Perovskites. J. Phys. Chem. C 2023, 127, 3750–3759. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Xu, Y.; Pan, Y.; Zhu, C.; Zhu, D.; Wu, Y.; Li, G.; Zhang, Q.; Li, Q.; et al. Solution-Processed Halide Perovskite Single Crystals with Intrinsic Compositional Gradients for X-ray Detection. Chem. Mater. 2020, 32, 4973–4983. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Wang, J.; Wang, F.; Luo, Y.; Li, X.; Jia, Y. Improved the stability and enhanced luminescence of Er doped CsPbBr3 perovskite. Mater. Sci. Semicond. Process. 2022, 151, 107021. [Google Scholar] [CrossRef]
- Najim, A.; Hartiti, B.; Absike, H.; Tchognia Nkuissi, H.J.; Labrim, H.; Fadili, S.; Thevenin, P.; Ertugrul, M. Theoretical investigation of structural, electronic, and optical properties of halide cubic perovskite CsPbBr3-xIx. Mater. Sci. Semicond. Process. 2022, 141, 106442. [Google Scholar] [CrossRef]
- Joshi, H.; Thapa, R.; Laref, A.; Sukkabot, W.; Pachuau, L.; Vanchhawng, L.; Grima-Gallardo, P.; Musa Saad H-E, M.; Rai, D. Electronic and optical properties of cubic bulk and ultrathin surface [001] slab of CsPbBr3. Surf. Interfaces 2022, 30, 101829. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Pizzi, G.; Vitale, V.; Arita, R.; Blügel, S.; Freimuth, F.; Géranton, G.; Gibertini, M.; Gresch, D.; Johnson, C.; Koretsune, T.; et al. Wannier90 as a community code: New features and applications. J. Phys. Condens. Matter 2020, 32, 165902. [Google Scholar] [CrossRef]
- Marzari, N.; Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 1997, 56, 12847–12865. [Google Scholar] [CrossRef]
- Marzari, N.; Mostofi, A.A.; Yates, J.R.; Souza, I.; Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 2012, 84, 1419–1475. [Google Scholar] [CrossRef]
- Salpeter, E.E.; Bethe, H.A. A Relativistic Equation for Bound-State Problems. Phys. Rev. 1951, 84, 1232–1242. [Google Scholar] [CrossRef]
- Marini, A.; Hogan, C.; Grüning, M.; Varsano, D. Yambo: An ab initio tool for excited state calculations. Comput. Phys. Commun. 2009, 180, 1392–1403. [Google Scholar] [CrossRef]
- Sangalli, D.; Ferretti, A.; Miranda, H.; Attaccalite, C.; Marri, I.; Cannuccia, E.; Melo, P.; Marsili, M.; Paleari, F.; Marrazzo, A.; et al. Many-body perturbation theory calculations using the Yambo code. J. Phys. Condens. Matter 2019, 31, 325902. [Google Scholar] [CrossRef] [PubMed]
- Motta, C.; El-Mellouhi, F.; Kais, S.; Tabet, N.; Alharbi, F.; Sanvito, S. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat. Commun. 2015, 6, 7026. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Su, H.; Marcus, R.A.; Michel-Beyerle, M.E. Computed and Experimental Absorption Spectra of the Perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 2014, 5, 3061–3065. [Google Scholar] [CrossRef] [PubMed]
- Meléndez, J.J.; Cantarero, A. Polarization-dependent excitons and plasmon activity in nodal-line semimetal ZrSiS. Phys. Chem. Chem. Phys. 2022, 24, 1860–1868. [Google Scholar] [CrossRef] [PubMed]
- Aryasetiawan, F.; Gunnarsson, O. The GW method. Rep. Prog. Phys. 1998, 61, 237. [Google Scholar] [CrossRef]
- Das, T.; Di Liberto, G.; Pacchioni, G. Density Functional Theory Estimate of Halide Perovskite Band Gap: When Spin Orbit Coupling Helps. J. Phys. Chem. C 2022, 126, 2184–2198. [Google Scholar] [CrossRef]
- Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. B 1950, 45, 255–282. [Google Scholar] [CrossRef]
- Wierzbowska, M.; Meléndez, J.J.; Varsano, D. Breathing bands due to molecular order in CH3NH3PbI3. Comput. Mater. Sci. 2018, 142, 361–371. [Google Scholar] [CrossRef]
- D’Innocenzo, V.; Grancini, G.; Alcocer, M.J.P.; Kandada, A.R.S.; Stranks, S.D.; Lee, M.M.; Lanzani, G.; Snaith, H.J.; Petrozza, A. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 2014, 5, 3586. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wierzbowska, M.; Meléndez, J.J. Exploring Epitaxial Structures for Electrically Pumped Perovskite Lasers: A Study of CsPb(Br,I)3 Based on the Ab Initio Bethe–Salpeter Equation. Materials 2024, 17, 427. https://doi.org/10.3390/ma17020427
Wierzbowska M, Meléndez JJ. Exploring Epitaxial Structures for Electrically Pumped Perovskite Lasers: A Study of CsPb(Br,I)3 Based on the Ab Initio Bethe–Salpeter Equation. Materials. 2024; 17(2):427. https://doi.org/10.3390/ma17020427
Chicago/Turabian StyleWierzbowska, Małgorzata, and Juan J. Meléndez. 2024. "Exploring Epitaxial Structures for Electrically Pumped Perovskite Lasers: A Study of CsPb(Br,I)3 Based on the Ab Initio Bethe–Salpeter Equation" Materials 17, no. 2: 427. https://doi.org/10.3390/ma17020427
APA StyleWierzbowska, M., & Meléndez, J. J. (2024). Exploring Epitaxial Structures for Electrically Pumped Perovskite Lasers: A Study of CsPb(Br,I)3 Based on the Ab Initio Bethe–Salpeter Equation. Materials, 17(2), 427. https://doi.org/10.3390/ma17020427