Early Stages of Metal Corrosion in Coastal Archaeological Sites: Effects of Chemical Composition in Silver and Copper Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ag-Based and Cu-Based Alloys
2.2. Experimental Conditions
2.3. Structural, Microchemical and Mineralogical Analysis
3. Results and Discussion
3.1. Silver-Based Alloys
3.2. Copper-Based Alloys
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scott, D.A. Metallography and Microstructure of Ancient and Historic Metals; Paul Getty Conservation Institute: Malibou, CA, USA, 1991. [Google Scholar]
- Scott, D.A. Copper and Bronze in Art; Paul Getty Conservation Institute: Malibou, CA, USA, 2002. [Google Scholar]
- Oudbashi, O.; Wanhill, R. Long-Term Embrittlement of Ancient Copper and Silver Alloys. Heritage 2021, 4, 2287–2319. [Google Scholar] [CrossRef]
- Fabrizi, L.; Di Turo, F.; Medeghini, L.; Di Fazio, M.; Catalli, F.; De Vito, C. The application of non-destructive techniques for the study of corrosion patinas of ten Roman silver coins: The case of the medieval Grosso Romanino. Microchem. J. 2019, 145, 419–427. [Google Scholar] [CrossRef]
- Marchand, G.; Guilminot, E.; Lemoine, S.; Rossetti, L.; Vieau, M.; Stephant, N. Degradation of Archaeological Horn Silver Artefacts in Burials. Herit. Sci. 2014, 2, 5. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Doménech-Carbó, M.T.; Martínez-Lázaro, I. Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchim. Acta 2008, 162, 351–359. [Google Scholar] [CrossRef]
- Cosano, D.; Esquivel, D.; Mateos, L.D.; Quesada, F.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Spectroscopic analysis of corrosion products in a bronze cauldron from the Late Iberian Iron Age. Spectrochim. Acta A Mol. BioMol. Spectrosc. 2018, 205, 489–496. [Google Scholar] [CrossRef]
- de Caro, T.; Susanna, F.; La Russa, M.F.; Macchia, A. The Fontanamare Discovery (Sardinia Coast, Italy), a Case of Underwater Corrosion of Bronze Coins. Minerals 2023, 13, 1085. [Google Scholar] [CrossRef]
- Bernabale, M.; Nigro, L.; Montanari, D.; De Vito, C. Exploring the Chemical Composition and Corrosion Patterns of Arrowheads Used in the Siege of Motya (397 BC) through a Multi-Analytical Approach. J. Cult. Herit. 2021, 52, 146–152. [Google Scholar] [CrossRef]
- Wadsak, M.; Constantinides, I.; Vittiglio, G.; Adriaens, A.; Janssens, K.; Schreiner, M.; Adams, F.C.; Brunella, P.; Wuttmann, M. Multianalytical Study of Patina Formed on Archaeological Metal Objects from Bliesbruck-Reinheim. Mikrochim. Acta 2000, 133, 159–164. [Google Scholar] [CrossRef]
- Keheyan, Y.; Lanterna, G. Micro-Stratigraphical Investigation on Corrosion Layers in Ancient Bronze Artefacts of Urartian Period by Scanning Electron Microscopy, Energy-Dispersive Spectrometry, and Optical Microscopy. Heritage 2021, 4, 2526–2543. [Google Scholar] [CrossRef]
- Marussi, G.; Crosera, M.; Prenesti, E.; Callegher, B.; Baracchini, E.; Turco, G.; Adami, G. From Collection or Archaeological Finds? A Non-Destructive Analytical Approach to Distinguish between Two Sets of Bronze Coins of the Roman Empire. Molecules 2023, 28, 2382. [Google Scholar] [CrossRef]
- Oudbashi, O. A methodological approach to estimate soil corrosivity for archaeological copper alloy artefacts. Herit. Sci. 2018, 6, 2. [Google Scholar] [CrossRef]
- Nord, A.G.; Mattsson, E.; Tronner, K. Factors Influencing the Long-term Corrosion of Bronze Artefacts in Soil. Prot. Met. 2005, 41, 309–316. [Google Scholar] [CrossRef]
- Robbiola, L.; Blengino, J.M.; Fiaud, C. Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corros. Sci. 1998, 40, 2083–2111. [Google Scholar] [CrossRef]
- Oudbashi, O. Multianalytical study of corrosion layers in some archaeological copper alloy artefacts. Surf. Interface Anal. 2015, 47, 1133–1147. [Google Scholar] [CrossRef]
- Abu-Baker, A.N. A Technical Examination of the Corrosion and Microstructural Features of Copper Alloy Artifacts from the Byzantine Period at Khirbet Yajuz, Jordan. Metallogr. Microstruct. Anal. 2023, 12, 276–288. [Google Scholar] [CrossRef]
- Quaranta, M.; Catelli, E.; Prati, S.; Sciutto, G.; Mazzeo, R. Chinese Archaeological Artefacts: Microstructure and Corrosion Behaviour of High-Leaded Bronzes. J. Cult. Herit. 2014, 15, 283–291. [Google Scholar] [CrossRef]
- Manti, P.; Watkinson, D. Corrosion Phenomena and Patina on Archaeological Low-Tin Wrought Bronzes: New Data. J. Cult. Herit. 2022, 55, 158–170. [Google Scholar] [CrossRef]
- Hu, Y.; Wei, Y.; Li, L.; Zhang, J.; Chen, J. Same site, different corrosion phenomena caused by chloride: The effect of the archaeological context on bronzes from Sujialong Cemetery, China. J. Cult. Herit. 2021, 52, 23–30. [Google Scholar] [CrossRef]
- Casaletto, M.P.; De Caro, T.; Ingo, G.M.; Riccucci, C. Production of Reference “Ancient” Cu-Based Alloys and Their Accelerated Degradation Methods. Appl. Phys. A Mater. Sci. Process. 2006, 83, 617–622. [Google Scholar] [CrossRef]
- Alberghina, M.F.; Barraco, R.; Brai, M.; Schillaci, T.; Tranchina, L. Integrated Analytical Methodologies for the Study of Corrosion Processes in Archaeological Bronzes. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 129–137. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Ramírez-Barat, B.; Petiti, C.; Goidanich, S.; Doménech-Carbó, M.T.; Cano, E. Characterization of traditional artificial patinas on copper using the voltammetry of immobilized particles. J. Electroanal. Chem. 2020, 877, 114494. [Google Scholar] [CrossRef]
- Guaragnone, T.; Rossi, M.; Chelazzi, D.; Mastrangelo, R.; Severi, M.; Fratini, E.; Baglioni, P. PH-Responsive Semi-Interpenetrated Polymer Networks of PHEMA/PAA for the Capture of Copper Ions and Corrosion Removal. ACS Appl. Mater. Interfaces 2022, 14, 7471–7485. [Google Scholar] [CrossRef]
- Rosciardi, V.; Chelazzi, D.; Baglioni, P. “Green” Biocomposite Poly (Vinyl Alcohol)/Starch Cryogels as New Advanced Tools for the Cleaning of Artifacts. J. Colloid Interface Sci. 2022, 613, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Letardi, P.; Yáñez-Casal, A. Coatings Testing New Coatings for Outdoor Bronze Monuments: A Methodological Overview. Coatings 2021, 11, 131. [Google Scholar] [CrossRef]
- Palomar, T.; Ramírez Barat, B.; García, E.; Cano, E. A comparative study of cleaning methods for tarnished silver. J. Cult. Herit. 2016, 17, 20–26. [Google Scholar] [CrossRef]
- Mezzi, A.; Angelini, E.; Riccucci, C.; Grassini, S.; De Caro, T.; Faraldi, F.; Bernardini, P. Micro-Structural and Micro-Chemical Composition of Bronze Artefacts from Tharros (Western Sardinia, Italy). Surf. Interface Anal. 2012, 44, 958–962. [Google Scholar] [CrossRef]
- Angelini, E.; Rosalbino, F.; Grassini, S.; Ingo, G.M.; De Caro, T. Simulation of Corrosion Processes of Buried Archaeological Bronze Artefacts. In Corrosion of Metallic Heritage Artefacts: Investigation, Conservation and Prediction of Long Term Behaviour; Elsevier Inc.: Amsterdam, The Netherlands, 2007; pp. 203–218. [Google Scholar] [CrossRef]
- Casaletto, M.P.; Ingo, G.M.; Riccucci, C.; Faraldi, F. Production of Reference Alloys for the Conservation of Archaeological Silver-Based Artifacts. Appl. Phys. A Mater. Sci. Process. 2010, 100, 937–944. [Google Scholar] [CrossRef]
- Boccaccini, F.; Riccucci, C.; Messina, E.; Pascucci, M.; Bosi, F.; Chelazzi, D.; Guaragnone, T.; Baglioni, P.; Ingo, G.M.; Di Carlo, G. Reproducing Bronze Archaeological Patinas through Intentional Burial: A Comparison between Short- and Long-Term Interactions with Soil. Heliyon 2023, 9, e19626. [Google Scholar] [CrossRef]
- ISPRA (In Press)—Note Illustrative Della Carta Geologica d’Italia Alla Scala 1:50000, Foglio 528—Oristano. Available online: https://www.isprambiente.gov.it/Media/carg/528_ORISTANO/Foglio.html (accessed on 5 December 2023).
- ISPRA (In Press)—Note Illustrative Della Carta Geologica d’Italia Alla Scala 1:50000, Foglio 564—Carbonia. Available online: https://www.isprambiente.gov.it/Media/carg/564_CARBONIA/Foglio.html (accessed on 5 December 2023).
- Aldega, L.; Cuadros, J.; Laurora, A.; Rossi, A. Weathering of Phlogopite to Beidellite in a Karstic Environment. Am. J. Sci. 2009, 309, 689–710. [Google Scholar] [CrossRef]
- Ingo, G.M.; Riccucci, C.; Pascucci, M.; Messina, E.; Giuliani, C.; Fierro, G.; Di Carlo, G. Integrated Analytical Methodologies for the Study of the Corrosion Products Naturally Grown on Roman Ag-Based Artefacts. Appl. Surf. Sci. 2018, 446, 279–286. [Google Scholar] [CrossRef]
- Abdel-Kareem, O.; Al-Zahrani, A.; Arbach, M. Authentication and conservation of corroded archaeological Qatabanian and Himyarite silver coins. J. Archaeol. Sci. Rep. 2016, 9, 565–576. [Google Scholar] [CrossRef]
- Mezzi, A.; De Caro, T.; Riccucci, C.; Angelini, E.; Faraldi, F.; Grassini, S. Micro-Chemical Surface Investigation of Brittle Carthaginian and Roman Silver Artefacts. Surf. Interface Anal. 2012, 44, 972–976. [Google Scholar] [CrossRef]
- Rémazeilles, C.; Langlet-Marzloff, V.; Creus, J.; Lotte, G.; Deshayes, C.; Baleux, F.; Robbiola, L. Remarkable corrosion resumption of archaeological bronzes, induced by the oxidation of ternary Cu-Sn-S phases in atmosphere, after long-term burial with sulfides. Corros. Sci. 2020, 175, 108865. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Q.; Wang, Y. Non-Destructive in Situ Raman Spectroscopic Investigation of Corrosion Products on the Bronze Dagger-Axes from Yujiaba Site in Chongqing, China. Archaeol. Anthropol. Sci. 2020, 12, 90. [Google Scholar] [CrossRef]
- Armetta, F.; Saladino, M.L.; Scherillo, A.; Caponetti, E. Microstructure and Phase Composition of Bronze Montefortino Helmets Discovered Mediterranean Seabed to Explain an Unusual Corrosion. Sci. Rep. 2021, 11, 23022. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, F. Bronze objects from lake sites: From patina to “biography”. In Ancient & Historic Metals: Conservation and Scientific Research; Scott, D.A., Podany, J., Considine, B.B., Eds.; Paul Getty Conservation Institute: Marina del Rey, CA, USA, 1994; pp. 1–20. [Google Scholar]
- Eggert, G.; Fischer, A. Curious Corrosion Compounds Caused by Contact: A Review of Glass-Induced Metal Corrosion on Museum Exhibits (GIMME). Corros. Mater. Degrad. 2022, 3, 553–565. [Google Scholar] [CrossRef]
- Fischer, A.; Eggert, G.; Kirchner, D.; Euler, H.; Barbier, B. When Glass and Metal Corrode Together. IV, Sodium Lead Carbonate Hydroxide. In Proceedings of the Metal 2013-Interim Meeting of the ICOM-CC Metal Working Group, Edinburgh, UK, 16–20 September 2013. [Google Scholar]
- Ibáñez-Insa, J.; Elvira, J.J.; Llovet, X.; Pérez-Cano, J.; Oriols, N.; Busquets-Masó, M.; Hernández, S. Abellaite, NaPb2(CO3)2(OH), a New Supergene Mineral from the Eureka Mine, Lleida Province, Catalonia, Spain. Eur. J. Mineral 2017, 29, 915–922. [Google Scholar] [CrossRef]
- Xi, S.; Zhang, X.; Luan, Z.; Du, Z.; Li, L.; Liang, Z.; Lian, C.; Yan, J. Micro-Raman Study of Thermal Transformations of Sulfide and Oxysalt Minerals Based on the Heat Induced by Laser. Minerals 2019, 9, 751. [Google Scholar] [CrossRef]
- Bouchard, M.; Smith, D.C. Catalogue of 45 Reference Raman Spectra of Minerals Concerning Research in Art History or Archaeology, Especially on Corroded Metals and Coloured Glass. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2003, 59, 2247–2266. [Google Scholar] [CrossRef]
- White, S.N. Laser Raman Spectroscopy as a Technique for Identification of Seafloor Hydrothermal and Cold Seep Minerals. Chem. Geol. 2009, 259, 240–252. [Google Scholar] [CrossRef]
- Smith, G.D.; Clark, R.J.H. The Role of H2S in Pigment Blackening. J. Cult. Herit. 2002, 3, 101–105. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Vigasina, M.F. Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Barchiche, C.E.; Rocca, E.; Hazan, J. Corrosion Behaviour of Sn-Containing Oxide Layer on AZ91D Alloy Formed by Plasma Electrolytic Oxidation. Surf. Coat Technol. 2008, 202, 4145–4152. [Google Scholar] [CrossRef]
- Basciano, L.C.; Peterson, R.C.; Roeder, P.L.; Swainson, I. Description of schoenfliesite, MgSn(OH)6, and roxbyite, Cu1.72S, from a 1375 BC shipwreck, Rietveld neutron-diffraction refinement of synthetic schoenfliesite, wickmanite, MnSn(OH)6, and burtite, CaSn(OH)6. Can. Mineral. 1998, 36, 1203–1210. [Google Scholar]
- Campanella, L.; Alessandri, O.C.; Ferretti, M.; Plattner, S.H. The Effect of Tin on Dezincification of Archaeological Copper Alloys. Corros. Sci. 2009, 51, 2183–2191. [Google Scholar] [CrossRef]
- Di Fazio, M.; Felici, A.C.; Catalli, F.; Medeghini, L.; De Vito, C. Micro and Nanoscale Structures and Corrosion Patterns in Brass: The Case Study of Ancient Roman Orichalcum Coins. Minerals 2022, 12, 827. [Google Scholar] [CrossRef]
- Papadopoulou, O.; Vassiliou, P.; Grassini, S.; Angelini, E.; Gouda, V. Soil-Induced Corrosion of Ancient Roman Brass—A Case Study. Mater. Corros. 2016, 67, 160–169. [Google Scholar] [CrossRef]
- Abu-Baker, A.N.; Khalil, L.A.; Al-Gonmeen, T. A Multi-Analytical Exploration of the Chemical Composition, Microstructural Properties and Corrosion Inhibiting Treatment for an Archaeological Brass Censer from Umm Zuwaytinah, Amman. Nucl. Instrum. Methods Phys. Res. B 2021, 502, 73–79. [Google Scholar] [CrossRef]
- Bernabale, M.; Nigro, L.; Montanari, D.; Niveau-de-Villedary, A.M.; De Vito, C. Microstructure and Chemical Composition of a Sardinian Bronze Axe of the Iron Age from Motya (Sicily, Italy). Mater. Charact. 2019, 158, 109957. [Google Scholar] [CrossRef]
- Oudbashi, O.; Hasanpour, A. Microscopic Study on Some Iron Age Bronze Objects from Western Iran. Herit. Sci. 2016, 4, 8. [Google Scholar] [CrossRef]
- Ingo, G.M.; Angelini, E.; De Caro, T.; Bultrini, G.; Calliari, I. Combined Use of GDOES, SEM + EDS, XRD and OM for the Microchemical Study of the Corrosion Products on Archaeological Bronzes. Appl. Phys. A Mater. Sci. Process. 2004, 79, 199–203. [Google Scholar] [CrossRef]
- Serghini-Idrissi, M.; Bernard, M.C.; Harrif, F.Z.; Joiret, S.; Rahmouni, K.; Srhiri, A.; Takenouti, H.; Vivier, V.; Ziani, M. Electrochemical and Spectroscopic Characterizations of Patinas Formed on an Archaeological Bronze Coin. Electrochim. Acta 2005, 50, 4699–4709. [Google Scholar] [CrossRef]
- He, L.; Liang, J.; Zhao, X.; Jiang, B. Corrosion Behavior and Morphological Features of Archeological Bronze Coins from Ancient China. Microchem. J. 2011, 99, 203–212. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Doménech-Carbó, M.T.; Peiró-Ronda, M.A. One-Touch Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis 2011, 23, 1391–1400. [Google Scholar] [CrossRef]
Ag | Cu | Pb | Sn | Zn | |
---|---|---|---|---|---|
Ag-Cu6.5 | 92.0 | 6.5 | 1.5 | - | - |
Ag-Cu7.5 (monetary use) | 92.5 | 7.5 | - | - | - |
Bronze (common use objects) | - | 92.3 | 0.2 | 7.5 | - |
Leaded bronze (statuary) | - | 88 | 8 | 4 | - |
Brass (orichalcum) | - | 82.5 | 0.5 | 3 | 14 |
C | O | Na | Mg | Al | Si | P | Cl | K | Ca | Ti | Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tharros | 14.6 | 46.8 | 2.3 | 1.0 | 4.4 | 14.7 | 0.5 | 2.0 | 1.7 | 8.4 | 0.3 | 3.3 |
Sant’Antioco | 14.5 | 48.0 | 1.3 | 0.5 | 6.0 | 17.6 | n.d. | n.d. | 3.6 | 6.2 | n.d. | 2.3 |
C | O | Si | Cl | Ca | Cu | Ag | |
---|---|---|---|---|---|---|---|
Squared crystals (A) | n.d. | n.d. | n.d. | 16.9 | n.d. | n.d. | 83.1 |
Fibrous crystals (B) | n.d. | n.d. | n.d. | 17.5 | n.d. | n.d. | 82.5 |
Needle-like crystals (C) | 12.0 | 36.9 | 0.7 | n.d. | n.d. | 50.4 | n.d. |
Granular crystals (D) | n.d. | 27.3 | 0.9 | 16.2 | 0.6 | 55.0 | n.d. |
C | O | Na | S | Cl | Cu | Pb | |
---|---|---|---|---|---|---|---|
Arborescent phases | 8.2 | 4.0 | n.d. | 13.2 | 4.4 | 70.2 | n.d. |
Hexagonal crystals | 8.6 | 16.7 | 3.1 | n.d. | n.d. | 6.0 | 65.6 |
C | O | Na | Si | Cl | Cu | Sn | Pb | |
---|---|---|---|---|---|---|---|---|
Outermost patina (A) | 22.7 | 21.8 | n.d. | 1.2 | 4.4 | 27.4 | 19.1 | 3.4 |
Internal patina (B) | 16.8 | 17.6 | 3.2 | n.d. | n.d. | n.d. | n.d. | 62.4 |
Internal patina (C) | 17.2 | n.d. | n.d. | n.d. | 19.9 | n.d. | n.d. | 62.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boccaccini, F.; Riccucci, C.; Messina, E.; Pascucci, M.; Bosi, F.; Aldega, L.; Ciccola, A.; Postorino, P.; Favero, G.; Ingo, G.M.; et al. Early Stages of Metal Corrosion in Coastal Archaeological Sites: Effects of Chemical Composition in Silver and Copper Alloys. Materials 2024, 17, 442. https://doi.org/10.3390/ma17020442
Boccaccini F, Riccucci C, Messina E, Pascucci M, Bosi F, Aldega L, Ciccola A, Postorino P, Favero G, Ingo GM, et al. Early Stages of Metal Corrosion in Coastal Archaeological Sites: Effects of Chemical Composition in Silver and Copper Alloys. Materials. 2024; 17(2):442. https://doi.org/10.3390/ma17020442
Chicago/Turabian StyleBoccaccini, Francesca, Cristina Riccucci, Elena Messina, Marianna Pascucci, Ferdinando Bosi, Luca Aldega, Alessandro Ciccola, Paolo Postorino, Gabriele Favero, Gabriel Maria Ingo, and et al. 2024. "Early Stages of Metal Corrosion in Coastal Archaeological Sites: Effects of Chemical Composition in Silver and Copper Alloys" Materials 17, no. 2: 442. https://doi.org/10.3390/ma17020442
APA StyleBoccaccini, F., Riccucci, C., Messina, E., Pascucci, M., Bosi, F., Aldega, L., Ciccola, A., Postorino, P., Favero, G., Ingo, G. M., & Di Carlo, G. (2024). Early Stages of Metal Corrosion in Coastal Archaeological Sites: Effects of Chemical Composition in Silver and Copper Alloys. Materials, 17(2), 442. https://doi.org/10.3390/ma17020442