Advances in Gas Detection of Pattern Recognition Algorithms for Chemiresistive Gas Sensor
Abstract
:1. Introduction
2. Performance Evaluation
3. Data Pre-Process Methods
3.1. Drift Compensation
3.2. Denoising Processing
3.3. Original Response Curves
3.4. Curve Fitting Parameters
3.5. Transform Domain
4. Traditional Recognition Algorithms
4.1. Principal Component Analysis
4.2. Linear Discriminant Analysis
4.3. Support Vector Machines
4.4. Random Forest
4.5. K-Nearest Neighbor
5. Neural Network Algorithm
5.1. Artificial Neural Network (ANN)
5.2. Recurrent Neural Network (RNN)
5.3. Back Propagation Neural Network (BPNN)
5.4. Radial Basis Function Neural Networks (RBFNN)
5.5. Convolutional Neural Network (CNN)
5.6. Summary of Gas Recognition Technology Based on Neural Networks
5.7. Comparison of Characteristics of Pattern Recognition Algorithms
6. Summary and Outlook
- (1)
- The selectivity and stability of the sensor can be further studied and optimized by designing the structure of the gas sensor and testing models to meet actual needs in complex environments. For example, the FET type and the impedance type gas sensor can acquire more features than traditional resistive type gas sensors. Moreover, the pulse testing method can be an effective way to significantly enhance their sensing performance, such as pulse heat and pulse light modulation methods, which can acquire transient response characteristics and enhance real-time detection efficiency.
- (2)
- Developing new pattern recognition algorithms is a feasible way to promote the application of rapid gas sensing technology, such as the fuzzy logic and hidden Markov model. Fuzzy logic can deal with the uncertainty of sensor signals by defining fuzzy sets and rules to reduce cross-sensitivity, and it can flexibly use small sample data to determine parameters to ease the dependence on a large number of samples. It is expected that through the effective use of fuzzy sets and rules, the selectivity of target gases can be significantly improved and their dependence on large-scale data sets can be reduced. The hidden Markov model regards gas detection as a time series process and uses a probabilistic model to describe state changes, which is helpful to distinguish signals affected by cross-sensitivity and can also effectively estimate model parameters for training and verification under limited samples. The application of a hidden Markov model indicates that even in the case of limited samples, it can enhance the accuracy and robustness of gas detection through time series analysis and effectively solve the challenges brought by cross-sensitivity.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
E-nose | Electronic-nose |
MOS | Metal Oxide Semiconductor |
ANN | Artificial Neural Network |
CNN | Convolutional Neural Network |
MLP | Multilayer Perceptron |
SMO | Sequential Minimal Optimization |
VOCs | Volatile Organic Compounds |
DNN | Deep Neural Network |
DCNN | Deep Convolutional Neural Network |
DWT | Discrete Wavelet Transform |
FFT | Fast Fourier Transform |
R-T curve | Resistance-Temperature curve |
PCF | Polynomial Curve Fitting |
STFT | Short-Time Fourier Transform |
SVM | Support Vector Machine |
SAD | Semi-supervised Adversary-Domain Adaptive Convolutional neural network |
ML | Machine Learning |
PCA | Principal Component Analysis |
LDA | Linear Discriminant Analysis |
K-NN | K-Nearest Neighbors |
SVR | Support Vector Regression |
LR | Logistic Regression |
RF | Random Forest |
NB | Naive Bayes |
ICA | Independent Component Analysis |
GBDT | Gradient Boosting Decision Tree |
XGBoost | Extreme Gradient Boosting |
R2 | Coefficient of Determination |
RNN | Recurrent Neural Network |
BPNN | Back-Propagation Neural Network |
RBFNN | Radial Basis Function Neural Network |
MCNA | Multi-scale Convolutional Neural Network with Attention |
References
- Khan, A.; Rashid, M.; Hossain, G. Industrially Scalable Piezoresistive Smart-Textile Sensor for Flexible Electronics Application. ACS Sens. 2023, 8, 4801–4809. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Pombeiro, A.J.L.; Garazade, I.M.; Sun, Q.; Mohan, B. Plasmon-enhanced fluorescence sensors for food and environmental samples monitoring. Microchem. J. 2024, 197, 109888. [Google Scholar] [CrossRef]
- Marlar, T.; Harb, J.N. MOF-Enabled Electrochemical Sensor for Rapid and Robust Sensing of V-Series Nerve Agents at Low Concentrations. ACS Appl. Mater. Interfaces 2024, 16, 9569–9580. [Google Scholar] [CrossRef]
- Javaid, S.; Zeadally, S.; Fahim, H.; He, B. Medical sensors and their integration in wireless body area networks for pervasive healthcare delivery: A review. IEEE Sens. J. 2022, 22, 3860–3877. [Google Scholar] [CrossRef]
- Verma, G.; Gokarna, A.; Kadiri, H.; Nomenyo, K.; Lerondel, G.; Gupta, A. Multiplexed gas sensor: Fabrication strategies, recent progress, and challenges. ACS Sens. 2023, 8, 3320–3337. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Kim, S.Y.; Song, J.; Jang, H.; Kim, M.; Kim, H.; Choi, S.O.; Kim, S.; Park, P.; Ingber, D.E.; et al. Micrometer-thick and porous nanocomposite coating for electrochemical sensors with exceptional antifouling and electroconducting properties. Nat. Commun. 2024, 15, 711. [Google Scholar] [CrossRef]
- Praveena, U.; Raja, V.; Ragavan, K.V.; Anandharamakrishnan, C. Optical detection probes and sensors for micro-/nano-plastics. Rev. Environ. Sci. Bio/Technol. 2024, 23, 569–599. [Google Scholar] [CrossRef]
- Wang, P.; Li, X.; Sun, G.; Wang, G.; Han, Q.; Meng, C.; Wei, C.; Li, Y. Natural Human Skin-Inspired Wearable and Breathable Nanofiber-based Sensors with Excellent Thermal Management Functionality. Adv. Fiber Mater. 2024, 1–14. [Google Scholar] [CrossRef]
- Heng, Y.; Zhou, Y.; Nguyen, D.H.; Jiao, M. An Electronic Nose Drift Compensation Algorithm Based on Semi-Supervised Adversarial Domain Adaptive Convolutional Neural Network. Sens. Actuators B Chem. 2024, 422, 136642. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, H.; Diao, W.; Sun, Z.; Qi, Z.; Wang, X. Prototype-Optimized unsupervised domain adaptation via dynamic Transformer encoder for sensor drift compensation in electronic nose systems. Expert Syst. Appl. 2024, 260, 125444. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Dong, D.; Yao, G.; Wei, G.; He, A.; Wu, H.; Zhu, H.; Huang, Z.; Tang, Z. E-nose based on a high-integrated and low-power metal oxide gas sensor array. Sens. Actuators B Chem. 2023, 380, 133289. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, Y.; Sun, Q.; Zhang, T.; Chen, Y.; Yu, W.; Xiong, Y.; Wei, X.; Yu, G.; Wan, H.; et al. A miniaturized electronic nose with artificial neural network for anti-interference detection of mixed indoor hazardous gases. Sens. Actuators B Chem. 2021, 326, 128822. [Google Scholar] [CrossRef]
- Rath, R.J.; Farajikhah, S.; Oveissi, F.; Dehghani, F.; Naficy, S. Chemiresistive Sensor Arrays for Gas/Volatile Organic Compounds Monitoring: A Review. Adv. Eng. Mater. 2023, 25, 2200830. [Google Scholar] [CrossRef]
- Park, K.M.; Kim, T.W.; Park, J.H.; Park, C.O. Applicability of superposition for responses of resistive sensors in a diluted mixed gas environment. Sens. Actuators B Chem. 2017, 239, 841–847. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Jian, M.; Jiang, Q.; Li, X. MXene Key Composites: A New Arena for Gas Sensors. Nano-Micro Lett. 2024, 16, 1–42. [Google Scholar] [CrossRef]
- Fu, L.; You, S.; Li, G.; Li, X.; Fan, Z. Application of semiconductor metal oxide in chemiresistive methane gas sensor: Recent developments and future perspectives. Molecules 2023, 28, 6710. [Google Scholar] [CrossRef] [PubMed]
- Baharuddin, A.A.; Ang, B.C.; Haseeb, A.; Wong, Y.C.; Wong, Y.H. Advances in chemiresistive sensors for acetone gas detection. Mater. Sci. Semicond. Process. 2019, 103, 104616. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Kim, J.S.; Lee, J.H. Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 2020, 32, 2002075. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Thomson, B.; Debnath, R.; Motayed, A.; Rao, M.V. Nanowire-based sensor array for detection of cross-sensitive gases using PCA and machine learning algorithms. IEEE Sens. J. 2020, 20, 6020–6028. [Google Scholar] [CrossRef]
- Aurora, A. Algorithmic correction of MOS gas sensor for ambient temperature and relative humidity fluctuations. IEEE Sens. J. 2022, 22, 15054–15061. [Google Scholar] [CrossRef]
- Kang, X.; Deng, N.; Yan, Z.; Pan, Y.; Sun, W.; Zhang, Y. Resistive-type VOCs and pollution gases sensor based on SnO2: A review. Mater. Sci. Semicond. Process. 2022, 138, 106246. [Google Scholar] [CrossRef]
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S.; Kim, T.W. Recent advances in energy-saving chemiresistive gas sensors: A review. Nano Energy 2021, 79, 105369. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on smart gas sensing technology. Sensors 2019, 19, 3760. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Tan, R.; Shen, W.; Lv, D.; Yin, J.; Chen, W.; Fu, H.; Song, W. Inkjet-printed ZnO-based MEMS sensor array combined with feature selection algorithm for VOCs gas analysis. Sens. Actuators B Chem. 2023, 382, 133555. [Google Scholar] [CrossRef]
- Acharyya, S.; Nag, S.; Guha, P.K. Selective detection of VOCs with WO 3 nanoplates-based single chemiresistive sensor device using machine learning algorithms. IEEE Sens. J. 2020, 21, 5771–5778. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, S.; Hu, J. An ultrasonically catalyzed conductometric metal oxide gas sensor system with machine learning-based ambient temperature compensation. Sens. Actuators B Chem. 2023, 385, 133721. [Google Scholar] [CrossRef]
- Acharyya, S.; Nag, S.; Guha, P.K. Ultra-selective tin oxide-based chemiresistive gas sensor employing signal transform and machine learning techniques. Anal. Chim. Acta 2022, 1217, 339996. [Google Scholar] [CrossRef]
- Acharyya, S.; Jana, B.; Nag, S.; Saha, G.; Guha, P.K. Single resistive sensor for selective detection of multiple VOCs employing SnO2 hollowspheres and machine learning algorithm: A proof of concept. Sens. Actuators B Chem. 2020, 321, 128484. [Google Scholar] [CrossRef]
- Osowski, S.; Linh, T.H.; Brudzewski, K. Neuro-fuzzy TSK network for calibration of semiconductor sensor array for gas measurements. IEEE Trans. Instrum. Meas. 2004, 53, 630–637. [Google Scholar] [CrossRef]
- Peng, P.; Zhao, X.; Pan, X.; Ye, W. Gas classification using deep convolutional neural networks. Sensors 2018, 18, 157. [Google Scholar] [CrossRef]
- Acharyya, S.; Nag, S.; Guha, P.K. Discrimination of VOCs along with concentration change detection applying a combination of DWT and Machine Learning tools. In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October–3 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Oh, J.; Kim, S.H.; Lee, M.J.; Hwang, H.; Ku, W.; Lim, J.; Hwang, I.S.; Lee, J.H.; Hwang, J.H. Machine learning-based discrimination of indoor pollutants using an oxide gas sensor array: High endurance against ambient humidity and temperature. Sens. Actuators B Chem. 2022, 364, 131894. [Google Scholar] [CrossRef]
- Radogna, A.V.; D’Amico, S.; Capone, S.; Francioso, L. A simulation study of an optimized impedance spectroscopy approach for gas sensors. In Proceedings of the 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), Otranto, Italy, 13–14 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 142–147. [Google Scholar]
- Wang, D.; Pan, J.; Huang, X.; Chu, J.; Yuan, H.; Yang, A.; Koratkar, A.; Wang, X.; Rong, M. Virtual alternating current measurements advance semiconductor gas sensors’ performance in the internet of things. IEEE Internet Things J. 2021, 9, 5502–5510. [Google Scholar] [CrossRef]
- Gutierrez-Osuna, R. Pattern analysis for machine olfaction: A review. IEEE Sens. J. 2002, 2, 189–202. [Google Scholar] [CrossRef]
- Marco, S.; Gutierrez-Galvez, A. Signal and data processing for machine olfaction and chemical sensing: A review. IEEE Sens. J. 2012, 12, 3189–3214. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Yuan, Z.; Ji, H.; Meng, F. Precursor Chemical Mixtures Analysis Using Joint VMD Adversarial Autoencoder and Multi-Task CNN Algorithm via Gas Sensor. IEEE Trans. Instrum. Meas. 2023, 72, 2526211. [Google Scholar]
- Kroutil, J.; Laposa, A.; Ahmad, A.; Voves, J.; Povolny, V.; Klimsa, L.; Davydova, M.; Husak, M. A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification. Beilstein J. Nanotechnol. 2022, 13, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Ziyatdinov, A.; Marco, S.; Chaudry, A.; Persaud, K.; Caminal, P.; Perera, A. Drift compensation of gas sensor array data by common principal component analysis. Sens. Actuators B Chem. 2010, 146, 460–465. [Google Scholar] [CrossRef]
- Liu, H.; Meng, G.; Deng, Z.; Voves, J.; Povolny, V.; Klimsa, L.; Davydova, M.; Husak, M. Progress in research on VOC molecule recognition by semiconductor sensors. Acta Phys.-Chim. Sin. 2020, 38, 2008018. [Google Scholar] [CrossRef]
- Yaqoob, U.; Younis, M.I. Chemical gas sensors: Recent developments, challenges, and the potential of machine learning—A review. Sensors 2021, 21, 2877. [Google Scholar] [CrossRef]
- Wawrzyniak, J. Advancements in improving selectivity of metal oxide semiconductor gas sensors opening new perspectives for their application in food industry. Sensors 2023, 23, 9548. [Google Scholar] [CrossRef]
- Soora, N.R.; Deshpande, P.S. Review of feature extraction techniques for character recognition. IETE J. Res. 2018, 64, 280–295. [Google Scholar] [CrossRef]
- Yang, X.; Li, M.; Ji, X.; Chang, J.; Deng, Z.; Meng, G. Recognition algorithms in E-nose: A Review. IEEE Sens. J. 2023, 23, 20460–20472. [Google Scholar] [CrossRef]
- Krivetskiy, V.V.; Andreev, M.D.; Efitorov, A.O.; Gaskov, A.M. Statistical shape analysis pre-processing of temperature modulated metal oxide gas sensor response for machine learning improved selectivity of gases detection in real atmospheric conditions. Sens. Actuators B Chem. 2021, 329, 129187. [Google Scholar] [CrossRef]
- Acharyya, S.; Bhowmick, P.K.; Guha, P.K. Selective identification and quantification of VOCs using metal nanoparticles decorated SnO2 hollow-spheres based sensor array and machine learning. J. Alloys Compd. 2023, 968, 171891. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Lin, J.; Xiao, R.; Chen, J.; Jin, P. Sensor fusion noise suppression method based on finite impulse response complementary filters. Measurement 2024, 232, 114680. [Google Scholar] [CrossRef]
- Golmohammadi, A.; Hasheminejad, N.; Hernando, D.; Vanlanduit, S. Performance assessment of discrete wavelet transform for de-noising of FBG sensors signals embedded in asphalt pavement. Opt. Fiber Technol. 2024, 82, 103596. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Z.; Zhang, T.; Zhao, X.; Li, C.; Yin, L.; Song, F.; Yan, J.; Sun, P.; Mi, W.; et al. Low-frequency noise suppression method based on rotational modulation for vectorized magnetic sensor. Sens. Actuators A Phys. 2024, 372, 115323. [Google Scholar] [CrossRef]
- Harindranath, A.; Arora, M. Effect of Sensor Noise Characteristics and Calibration Errors on the Choice of IMU-Sensor Fusion Algorithms. Sens. Actuators A Phys. 2024, 379, 115850. [Google Scholar] [CrossRef]
- Wang, L.; Lv, H.; Zhao, Y.; Wang, C.; Luo, H.; Lin, H.; Xie, J.; Zhu, w.; Zhong, W.; Liu, B.; et al. Sub-ppb level HCN photoacoustic sensor employing dual-tube resonator enhanced clamp-type tuning fork and U-net neural network noise filter. Photoacoustics 2024, 38, 100629. [Google Scholar] [CrossRef]
- Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic nose feature extraction methods: A review. Sensors 2015, 15, 27804–27831. [Google Scholar] [CrossRef]
- Deng, Q.; Gao, S.; Lei, T.; Ling, Y.; Zhang, S.; Xie, C. Temperature & light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sens. Actuators B Chem. 2017, 247, 903–915. [Google Scholar]
- Chu, J.; Li, W.; Yang, X.; Wu, Y.; Wang, D.; Yang, A.; Yuan, H.; Wang, X.; Li, Y.; Rong, M. Identification of gas mixtures via sensor array combining with neural networks. Sens. Actuators B Chem. 2021, 329, 129090. [Google Scholar] [CrossRef]
- Shaposhnik, A.; Moskalev, P.; Sizask, E.; Ryabtsev, S.; Vasiliev, A. Selective detection of hydrogen sulfide and methane by a single MOX-sensor. Sensors 2019, 19, 1135. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Zhuang, Y.; Hu, Y.; Liu, Z.; Wu, B.; Wang, F. Selective discrimination of VOCs gases at ppb-level using MOS gas sensor in temperature-pulsed operation mode with modified Hill equation. Surf. Interfaces 2024, 44, 103761. [Google Scholar] [CrossRef]
- Meng, F.; Ji, H.; Yuan, Z.; Chen, Y.; Zhang, H.; Qin, W.; Gao, H. Dynamic measurement and recognition methods of SnO2 sensor to VOCs under zigzag-rectangular wave temperature modulation. IEEE Sens. J. 2021, 21, 10915–10922. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y.; Zhao, Z.; Feng, X.; Wang, Z.; Jiao, M. Advanced algorithms for low dimensional metal oxides-based electronic nose application: A review. Crystals 2023, 13, 615. [Google Scholar] [CrossRef]
- Meng, F.; Luan, X.; Mi, C.; Ji, H.; Zhu, H.; Yuan, Z. Recognition Algorithm for Detection of Precursor Chemicals by Semiconductor Gas Sensor Array Under Dynamic Measurement. IEEE Sens. J. 2023, 23, 1818–1826. [Google Scholar] [CrossRef]
- Ji, H.; Qin, W.; Yuan, Z.; Meng, F. Qualitative and quantitative recognition method of drug-producing chemicals based on SnO2 gas sensor with dynamic measurement and PCA weak separation. Sens. Actuators B Chem. 2021, 348, 130698. [Google Scholar] [CrossRef]
- Ji, H.; Zhu, H.; Zhang, R.; Gao, H.; Yuan, Z.; Meng, F. Suppress ambient temperature interference strategy based on SnO2 gas semiconductor sensor using dynamic temperature modulation mode and principal component analysis algorithm. Sens. Actuators B Chem. 2023, 395, 134543. [Google Scholar] [CrossRef]
- Meng, F.; Mi, C.; Luan, X.; Ji, H.; Zhu, H.; Yuan, Z. Detection of Drug-Producing Chemicals Based on Gas Sensor Array with Dynamic Temperature Modulation. IEEE Sens. J. 2023, 23, 8109–8119. [Google Scholar] [CrossRef]
- Ji, H.; Yuan, Z.; Zhu, H.; Qin, W.; Wang, H.; Meng, F. Dynamic temperature modulation measurement of VOC gases based on SnO2 gas sensor. IEEE Sens. J. 2022, 22, 14708–14716. [Google Scholar] [CrossRef]
- Yang, I.H.; Jin, J.H.; Min, N.K. A micromachined metal oxide composite dual gas sensor system for principal component analysis-based multi-monitoring of noxious gas mixtures. Micromachines 2019, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Potyrailo, R.A.; Surman, C. A passive radio-frequency identification (RFID) gas sensor with self-correction against fluctuations of ambient temperature. Sens. Actuators B Chem. 2013, 185, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Swarga, L.A.; Rivai, M.; Kusuma, H. Tobacco Aroma Classification using EHTS, Gas Sensor Array, and LDA Algorithm. In Proceedings of the 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 20–21 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 103–107. [Google Scholar]
- Phuoc, P.H.; Viet, N.N.; Chien, N.V.; Van Hoang, N.; Hung, C.M.; Hoa, N.D.; Duy, N.V.; Hong, H.S.; Trung, D.D.; Hieu, N.V. Comparative study of CuO/Co3O4 external and CuO-Co3O4 internal heterojunctions: Do these factors always enhance gas-sensing performance? Sens. Actuators B Chem. 2023, 384, 133620. [Google Scholar] [CrossRef]
- Souissi, R.; Bouricha, B.; Bouguila, N.; El Mir, L.; Labidi, A.; Abderrabba, M. Chemical VOC sensing mechanism of sol–gel ZnO pellets and linear discriminant analysis for instantaneous selectivity. RSC Adv. 2023, 13, 20651–20662. [Google Scholar] [CrossRef]
- Mu, F.; Gu, Y.; Zhang, J.; Zhang, L. Milk source identification and milk quality estimation using an electronic nose and machine learning techniques. Sensors 2020, 20, 4238. [Google Scholar] [CrossRef]
- Kanaparthi, S.; Singh, S.G. Discrimination of gases with a single chemiresistive multi-gas sensor using temperature sweeping and machine learning. Sens. Actuators B Chem. 2021, 348, 130725. [Google Scholar] [CrossRef]
- Meng, F.; He, L.; Ji, H.; Yuan, Z. Sawtooth wave temperature modulation measurement method for recognizing five kinds of VOCs based on ZnO gas sensor. Measurement 2024, 228, 114342. [Google Scholar] [CrossRef]
- Thai, N.X.; Tonezzer, M.; Masera, L.; Nguyen, H.; Van Duy, N.; Hoa, N.D. Multi gas sensors using one nanomaterial, temperature gradient, and machine learning algorithms for discrimination of gases and their concentration. Anal. Chim. Acta 2020, 1124, 85–93. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Sun, W.; Wu, Z.; Yang, B.; Fan, S.; Hua, Z. Discriminative Detection of Different Cigarette Brands Using a Fast-Response Electronic Nose. ACS Omega 2023, 8, 46034–46042. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhao, X.; Chen, Y.; Zhao, W. Research on a mixed gas recognition and concentration detection algorithm based on a metal oxide semiconductor olfactory system sensor array. Sensors 2018, 18, 3264. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hu, Y.; Wang, F.; Wong, M. A “Smart” Gas Sensing System Composed of Micro-Hotplates and Artificial Neural Network. J. Microelectromechanical Syst. 2024, 33, 227–235. [Google Scholar] [CrossRef]
- Wawrzyniak, J. Methodology for quantifying volatile compounds in a liquid mixture using an algorithm combining b-splines and artificial neural networks to process responses of a thermally modulated metal-oxide semiconductor gas sensor. Sensors 2022, 22, 8959. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zhang, Z.; Zhang, H.; Wen, Z.; Ye, W.; Yang, Y.; Ma, J.; Zhao, X. A fast and robust mixture gases identification and concentration detection algorithm based on attention mechanism equipped recurrent neural network with double loss function. Sens. Actuators B Chem. 2021, 342, 129982. [Google Scholar] [CrossRef]
- Schober, S.A.; Carbonelli, C.; Wille, R. Gas Discrimination Analysis of Neural Network Algorithms for a Graphene-Based Electronic Nose. In Proceedings of the 2022 IEEE 9th International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), Chemnitz, Germany, 15–17 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar]
- Liu, H.; Li, Q.; Yan, B.; Zhang, L.; Gu, Y. Bionic electronic nose based on MOS sensors array and machine learning algorithms used for wine properties detection. Sensors 2018, 19, 45. [Google Scholar] [CrossRef]
- Cao, L.; Gong, S.G.; Tao, Y.R.; Duan, S.Y. A RBFNN based active learning surrogate model for evaluating low failure probability in reliability analysis. Probabilistic Eng. Mech. 2023, 74, 103496. [Google Scholar] [CrossRef]
- Jiang, X.; Jia, P.; Luo, R.; Deng, B.; Duan, S.; Yan, J. A novel electronic nose learning technique based on active learning: EQBC-RBFNN. Sens. Actuators B Chem. 2017, 249, 533–541. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Ji, H.; Yuan, Z.; Kong, L.; Meng, F. EEMD and GUCNN-XGBoost joint recognition algorithm for detection of precursor chemicals based on semiconductor gas sensor. IEEE Trans. Instrum. Meas. 2022, 71, 2516412. [Google Scholar] [CrossRef]
- Pan, J.; Yang, A.; Wang, D.; Chu, J.; Lei, F.; Wang, X.; Rong, M. Lightweight neural network for gas identification based on semiconductor sensor. IEEE Trans. Instrum. Meas. 2021, 71, 2500908. [Google Scholar] [CrossRef]
- Oh, J.; Hwang, H.; Nam, Y.; Lee, M.I.; Lee, M.J.; Ku, W.; Song, H.W.; Pouri, S.S.; Lee, J.O.; An, K.S.; et al. Machine Learning-Assisted Gas-Specific Fingerprint Detection/Classification Strategy Based on Mutually Interactive Features of Semiconductor Gas Sensor Arrays. Electronics 2022, 11, 3884. [Google Scholar] [CrossRef]
- Mahdavi, H.; Rahbarpour, S.; Hosseini-Golgoo, S.M.; Jamaati, H. Reducing the destructive effect of ambient humidity variations on gas detection capability of a temperature modulated gas sensor by calcium chloride. Sens. Actuators B Chem. 2021, 331, 129091. [Google Scholar] [CrossRef]
- Kumar, J.R.R.; Pandey, R.K.; Sarkar, B.K. Pollutant gases detection using the machine learning on benchmark research datasets. Procedia Comput. Sci. 2019, 152, 360–366. [Google Scholar] [CrossRef]
Sensing Material | Analyte | Model | Concentration (ppm) | Operating Temperature (°C) | Train and Verify Sample Size | Accuracy | Application | Ref. |
---|---|---|---|---|---|---|---|---|
SnO2 | C2H5OH, HCHO, C7H8, C3H6O | PCA | 0.5 | 300 | - | Successfully distinguish | Environmental monitoring | [56] |
In2O3 | C3H6O, C7H8, C4H10O, C4H8O | PCA | 300 | 300 | 8288; 3552 | 88.6% | Public security | [62] |
SnO2 | C4H10O | PCA | 25–150 | 0, 10, 20, 30, 40 | - | 100% | Environmental monitoring | [60] |
SnO2 | C3H6O, C4H8O, CH3CH2CH2OH, (CH3)2CHOH | PCA, K-NN | 100 | 290, 250, 270, 280 | - | 100% | Environmental monitoring | [63] |
Al2O3 | NO2, CO | PCA | 0–50 | - | 132, 33 | 94.55% | Environmental monitoring | [54] |
SnO2 | C4H10O, C3H6O, HCl, C7H8 | PCA | 0–300 | 230, 270, 250, 270 | - | 100% | Public security | [59] |
Au, Pd, SnO2 | CH4, C3H8, CO | PCA | 40–200 | 150–500 | 19,975, 4994 | 73.6% | Environmental monitoring | [45] |
SnO2, In2O3, WO3, SnO2, ZnO | CO, NO2, NH3, HCHO | PCA | 20–60, 0.3–0.6, 1–5, 0–1.6 | 225 | - | Successfully distinguish | Environmental monitoring | [64] |
SnO2 | CH4, C2H5OH, H2S | PCA | 100, 100, 50 | 299.85 | - | 99.3% | Environmental monitoring | [55] |
ZnO | C2H5OH, CH3CO, C3H6O, HCOOH, C2H6O | PCA | 100 | 150–400 | - | 100% | Environmental monitoring | [53] |
Polyether polyurethane | Different organic vapors and water vapors | PCA | 0–8500 | 25–40 | - | 99% | Environmental monitoring | [65] |
Sensing Material | Analyte | Model | Concentration (ppm) | Operating Temperature (°C) | Train and Verify Sam-ple Size | Accuracy | Application | Ref. |
---|---|---|---|---|---|---|---|---|
SnO2 | C3H6O, CH3CHO | ANN | 5–100 | 300 | 30; - | 100% | Environmental monitoring | [76] |
SnO2 | C3H6O, C4H8O, C7H8, C4H10O | K-NN | 50–300 | 250 | 96; 26 | 100% | Public security | [61] |
SnO2 | C3H6O, C6H6, C2H5OH, HCHO, CH3OH, C3H7OH, C7H8 | DNN_DWT, DNN_TS | 200 | 150–225 | 160; 40 280; 70 | 98.67%, 98.33% | Environmental monitoring | [46] |
SnO2 | C2H5OH, C3H6O, CH3OH, CH3CH2CH2CH3, H2, NO2 | CNN | ≤1, 1–100 | 205,213 | - | Relative Error: 12.3% (<1 ppm), 5.7% (>1 ppm) | Environmental monitoring | [26] |
Pd-SnO2, Pd-WO3 | H2, NH3, C2H5OH, C3H6O, C7H8, HCHO | pN-BPNN, K-NN | 3–30 | 400 | - | 99.86% | Environmental monitoring | [11] |
SnO2 | C7H8, C4H8O, C4H10O | GUCNN-XGBoost | 50–300 | 150–350 | 600; - | 97.54% | Public security | [83] |
MOX GSBT11, GSET21, GSDT11, GSNT11 | CO, C2H5OH | ANN, DNN, 1D CNN, and 2D CNN | 0–100 | - | 2400; 600 | 1D CNN > 2D CNN > DNN > ANN | Environmental monitoring | [85] |
Al2O3, RuO2 | C2H5OH, C3H6O | ANN | 78–5000 | - | 59,268; 12,700 | 99.99% | Environmental monitoring | [77] |
SnO2, In2O3 | CO, CH4, H2, HCHO | BP-ANN | 10–1000, 500–10,000 | 33–40 | 166; - | 93.35%, 93.22% | Environmental monitoring | [12] |
Al2O3 | Distinguish among 11 mixtures of NO2 and CO | 1DCNN, 2DCNN | 0–50 | - | 106; 26 | 98.75%, 98.61% | Environmental monitoring | [54] |
Al2O3, SnO2 | C3H6O, C2H5OH, C3H7OH, C4H9OH | K-NN | ≤3.5 | 350 | - | 91% | Environmental monitoring | [86] |
E-nose | Air quality dataset | ANN | Various levels of concentra-tion | - | 16,288; - | 89.22% | Environmental monitoring | [87] |
Eight (MOS) sensors | 11 gas mixtures consisting of NO2 and CO gases | DCNN | 20 different concentrations | - | 588; - | 95.2% | Environmental monitoring | [30] |
E-nose (MOS sensors) | Wines with different characteristics | BPNN | - | 25 ± 1 | 140; - | 94%, 92.5% | Food industry | [80] |
E-nose | C7H8, HCHO, C6H6 | EQBC-RBFNN | 0.1721–0.7056, 0.0668–0.1425, 0.0565–1.2856 | 25 | 396; - | 96.88% | Environmental monitoring | [82] |
Categories | Algorithm | Property | Training Speed | Demand for Data | Robustness for Noise | Sensitive to Missing Data | Interpretability |
---|---|---|---|---|---|---|---|
Traditional Algorithm | PCA | Unsupervised | Fast | Low | Moderate | Low | Moderate |
LDA | Supervised | Fast | Low | Moderate | Low | Moderate | |
SVM | Supervised | Moderate | Low | Low | Moderate | High | |
RF | Supervised | Moderate | High | High | Moderate | High | |
K-NN | Supervised | Moderate | High | High | Low | High | |
Neural Network Algorithm | ANN | Supervised | Moderate | Moderate | Moderate | Moderate | Low |
RNN | Supervised | Moderate | Low | High | Low | Moderate | |
BPNN | Unsupervised | Slow | Moderate | Moderate | Low | High | |
RBFNN | Supervised | Fast | Moderate | Moderate | Low | Moderate | |
CNN | Supervised | Fast | High | High | Low | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, G.; Du, B.; Zhong, J.; Chen, L.; Sun, Y.; Yue, J.; Zhang, M.; Long, Z.; Song, T.; Peng, B.; et al. Advances in Gas Detection of Pattern Recognition Algorithms for Chemiresistive Gas Sensor. Materials 2024, 17, 5190. https://doi.org/10.3390/ma17215190
Zhou G, Du B, Zhong J, Chen L, Sun Y, Yue J, Zhang M, Long Z, Song T, Peng B, et al. Advances in Gas Detection of Pattern Recognition Algorithms for Chemiresistive Gas Sensor. Materials. 2024; 17(21):5190. https://doi.org/10.3390/ma17215190
Chicago/Turabian StyleZhou, Guangying, Bingsheng Du, Jie Zhong, Le Chen, Yuyu Sun, Jia Yue, Minglang Zhang, Zourong Long, Tao Song, Bo Peng, and et al. 2024. "Advances in Gas Detection of Pattern Recognition Algorithms for Chemiresistive Gas Sensor" Materials 17, no. 21: 5190. https://doi.org/10.3390/ma17215190
APA StyleZhou, G., Du, B., Zhong, J., Chen, L., Sun, Y., Yue, J., Zhang, M., Long, Z., Song, T., Peng, B., Tang, B., & He, Y. (2024). Advances in Gas Detection of Pattern Recognition Algorithms for Chemiresistive Gas Sensor. Materials, 17(21), 5190. https://doi.org/10.3390/ma17215190