Iron-Based Superconductors for High-Field Applications: Realization of High Engineering Critical Current Density
Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pallecchi, I.; Eisterer, M.; Malagoli, A.; Putti, M. Application potential of Fe-based superconductors. Supercond. Sci. Technol. 2015, 28, 114005. [Google Scholar] [CrossRef]
- Gurevich, A. Iron-based superconductors at high magnetic fields. Rep. Prog. Phys. 2011, 74, 124501. [Google Scholar] [CrossRef]
- Haindl, S.; Kidszun, M.; Kauffmann, A.; Nenkov, K.; Kozlova, N.; Freudenberger, J.; Thersleff, T.; Haenisch, J.; Werner, J.; Reich, E.; et al. High Upper Critical Fields and Evidence of Weak-Link Behavior in Superconducting LaFeAsO1−xFx Thin Films. Phys. Rev. Lett. 2010, 104, 077001. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Ghorbani, S.R.; Lee, S.I.; Dou, S.X.; Sun, D.L. Very strong intrinsic flux pinning and vortex avalanches in (Ba, K)Fe2As2 superconducting single crystals. Phys. Rev. B 2010, 82, 5626. [Google Scholar]
- Rotter, M.; Tegel, M.; Johrendt, D. Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2. Phys. Rev. Lett. 2008, 101, 107006. [Google Scholar] [CrossRef]
- Yang, H.; Luo, H.Q.; Wang, Z.S.; Wen, H.H. Fishtail effect and the vortex phase diagram of single crystal Ba0.6K0.4Fe2As2. Appl. Phys. Lett. 2008, 93, 3. [Google Scholar] [CrossRef]
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-based layered superconductor LaO1−xFx FeAs (x = 0.05 − 0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296. [Google Scholar] [CrossRef]
- Tamegai, T. Iron-based superconductors have joined the practical high-field magnet family. Supercond. Sci. Technol. 2024, 37, 010501. [Google Scholar] [CrossRef]
- Ren, Z.-A.; Lu, W.; Yang, J.; Yi, W.; Shen, X.-L.; Zheng, C.; Che, G.-C.; Dong, X.-L.; Sun, L.-L.; Zhou, F.; et al. Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx] FeAs. Chin. Phys. Lett. 2008, 25, 2215–2216. [Google Scholar]
- Sasmal, K.; Lv, B.; Lorenz, B.; Guloy, A.M.; Chen, F.; Xue, Y.-Y.; Chu, C.-W. Superconducting Fe-Based Compounds (A1−xSrx)Fe2As2 with A = K and Cs with Transition Temperatures up to 37 K. Phys. Rev. Lett. 2008, 101, 107007. [Google Scholar] [CrossRef]
- Yuan, H.Q.; Singleton, J.; Balakirev, F.F.; Baily, S.A.; Chen, G.F.; Luo, J.L.; Wang, N.L. Nearly isotropic superconductivity in (Ba,K)Fe2As2. Nature 2009, 457, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Pyon, S.; Miyawaki, D.; Veshchunov, I.; Tamegai, T.; Takano, K.; Kajitani, H.; Koizumi, N.; Awaji, S. Fabrication and characterization of CaKFe4As4 round wires sintered at high pressure. Appl. Phys. Express 2018, 11, 123101. [Google Scholar] [CrossRef]
- Togano, K.; Gao, Z.; Matsumoto, A.; Kikuchi, A.; Kumakura, H. Fabrication of (Ba,K)Fe2As2 tapes by ex situ PIT process using Ag-Sn alloy single sheath. Supercond. Sci. Technol. 2017, 30, 015012. [Google Scholar] [CrossRef]
- Pyon, S.; Yamasaki, Y.; Kajitani, H.; Koizumi, N.; Tsuchiya, Y.; Awaji, S.; Watanabe, K.; Tamegai, T. Effects of drawing and high-pressure sintering on the superconducting properties of (Ba,K)Fe2As2 powder-in-tube wires. Supercon. Sci. Technol. 2015, 28, 125014. [Google Scholar] [CrossRef]
- Togano, K.; Matsumoto, A.; Kumakura, H. Large Transport Critical Current Densities of Ag Sheathed (Ba,K)Fe2As2+Ag Superconducting Wires Fabricated by an Ex-situ Powder-in-Tube Process. Appl. Phys. Express 2011, 4, 257–261. [Google Scholar] [CrossRef]
- Pyon, S.; Suwa, T.; Tamegai, T.; Takano, K.; Kajitani, H.; Koizumi, N.; Awaji, S.; Zhou, N.; Shi, Z. Improvements of fabrication processes and enhancement of critical current densities in (Ba,K)Fe2As2 HIP wires and tapes. Supercond. Sci. Technol. 2018, 31, 055016. [Google Scholar] [CrossRef]
- Lin, H.; Yao, C.; Zhang, H.T.; Zhang, X.P.; Zhang, Q.J.; Dong, C.H.; Wang, D.L.; Ma, Y.W. Large transport Jc in Cu-sheathed Sr0.6K0.4Fe2As2 superconducting tape conductors. Sci. Rep. 2015, 5, 11506. [Google Scholar] [CrossRef]
- Huang, H.; Yao, C.; Dong, C.H.; Zhang, X.P.; Wang, D.L.; Cheng, Z.; Li, J.Q.; Awaji, S.; Wen, H.H.; Ma, Y.W. High transport current superconductivity in powder-in-tube Ba0.6K0.4Fe2As2 tapes at 27T. Supercond. Sci. Technol. 2018, 31, 015017. [Google Scholar] [CrossRef]
- Gao, Z.S.; Togano, K.; Zhang, Y.C.; Matsumoto, A.; Kikuchi, A.; Kumakura, H. High transport Jc in stainless steel/Ag-Sn double sheathed Ba122 tapes. Supercond. Sci. Technol. 2017, 30, 095012. [Google Scholar] [CrossRef]
- Xiong, H.; Yao, C.; Guo, W.; Yang, P.; Ren, Z.; Wang, D.; Zhang, X.; Ma, Y. Development of high superconductor fraction (Ba,K)Fe2As2 wires with improved uniformity by two-axial rolling. Phys. C 2024, 622, 1354520. [Google Scholar] [CrossRef]
- Pyon, S.; Ito, T.; Sasaki, T.; Sakagami, R.; Tamegai, T.; Awaji, S.; Kajitani, H. Record-high critical current density in (Ba,Na)Fe2As2 round wire suitable for high-field applications. Phys. C 2023, 615, 1354354. [Google Scholar] [CrossRef]
- Zhang, X.P.; Yao, C.; Lin, H.; Cai, Y.; Chen, Z.; Li, J.Q.; Dong, C.H.; Zhang, Q.J.; Wang, D.L.; Ma, Y.W.; et al. Realization of practical level current densities in Sr0.6K0.4Fe2As2 tape conductors for high-field applications. Appl. Phys. Lett. 2014, 104, 202601. [Google Scholar] [CrossRef]
- Liu, S.; Yao, C.; Huang, H.; Dong, C.; Guo, W.; Cheng, Z.; Zhu, Y.; Awaji, S.; Ma, Y. Enhancing transport performance in 7-filamentary Ba0.6K0.4Fe2As2 wires and tapes via hot isostatic pressing. Phys. C 2021, 585, 1353870. [Google Scholar] [CrossRef]
- Yao, C.; Guo, W.W.; Zhu, Y.C.; Liu, X.Y.; Han, M.; Liu, F.; Liu, H.J.; Qin, J.G.; Zheng, J.X.; Ma, Y.W. Interface effects on the current transport properties of multi-layered (Ba,K)Fe2As2 superconducting wires. J. Mater. Chem. C 2023, 11, 1470–1482. [Google Scholar] [CrossRef]
- Togano, K.; Gao, Z.; Matsumoto, A.; Kumakura, H. Enhancement in transport critical current density of ex situ PIT Ag/(Ba,K)Fe2As2 tapes achieved by applying a combined process of flat rolling and uniaxial pressing. Supercond. Sci. Technol. 2013, 26, 115007. [Google Scholar] [CrossRef]
- Gao, Z.S.; Togano, K.; Matsumoto, A.; Kumakura, H. Achievement of practical level critical current densities in Ba1−xKxFe2As2/Ag tapes by conventional cold mechanical deformation. Sci. Rep. 2014, 4, 4065. [Google Scholar] [CrossRef]
- Weiss, J.D.; Tarantini, C.; Jiang, J.; Kametani, F.; Polyanskii, A.A.; Larbalestier, D.C.; Hellstrom, E.E. High intergrain critical current density in fine-grain (Ba0.6K0.4)Fe2As2 wires and bulks. Nat. Mater. 2012, 11, 682–685. [Google Scholar] [CrossRef]
- Durrell, J.H.; Eom, C.B.; Gurevich, A.; Hellstrom, E.E.; Tarantini, C.; Yamamoto, A.; Larbalestier, D.C. The behavior of grain boundaries in the Fe-based superconductors. Rep. Prog. Phys. 2011, 74, 124511. [Google Scholar] [CrossRef]
- Ding, Q.-P.; Prombood, T.; Tsuchiya, Y.; Nakajima, Y.; Tamegai, T. Superconducting properties and magneto-optical imaging of Ba0.6K0.4Fe2As2 PIT wires with Ag addition. Supercon. Sci. Technol. 2012, 25, 035019. [Google Scholar] [CrossRef]
- Tamegai, T.; Miyawaki, D.; Pyon, S.; Wu, W.; Kajitani, H.; Koizumi, N.; Awaji, S. Fabrication and Characterization of (Ba,Na)Fe2As2 Wires and Tapes. IEEE Trans. Appl. Supercond. 2021, 31, 7300505. [Google Scholar] [CrossRef]
- Gao, Z.S.; Togano, K.; Matsumoto, A.; Kumakura, H. High transport Jc in magnetic fields up to 28T of stainless steel/Ag double sheathed Ba122 tapes fabricated by scalable rolling process. Supercond. Sci. Technol. 2015, 28, 6. [Google Scholar] [CrossRef]
- Han, Z.; SkovHansen, P.; Freltoft, T. The mechanical deformation of superconducting BiSrCaCuO/Ag composites. Supercond. Sci. Technol. 1997, 10, 371–387. [Google Scholar] [CrossRef]
- Lotgering, F.K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J. Inorg. Nucl. Chem. 1959, 9, 113. [Google Scholar] [CrossRef]
- Huang, H.; Yao, C.; Dong, C.; Zhang, X.; Wang, D.; Liu, S.; Cheng, Z.; Zhu, Y.; Ma, Y. Visualization of the grain structure in high-performance Ba1−xKxFe2As2 superconducting tapes. Supercond. Sci. Technol. 2021, 34, 045017. [Google Scholar] [CrossRef]
- Malagoli, A.; Braccini, V.; Bernini, C.; Romano, G.; Vignolo, M.; Putti, M.; Ferdeghini, C. Study of the MgB2 grain size role in ex situ multifilamentary wires with thin filaments. Supercon. Sci. Technol. 2010, 23, 025032. [Google Scholar] [CrossRef]
- Hecher, J.; Baumgartner, T.; Weiss, J.D.; Tarantini, C.; Yamamoto, A.; Jiang, J.; Hellstrom, E.E.; Larbalestier, D.C.; Eisterer, M. Small grains: A key to high-field applications of granular Ba-122 superconductors? Supercond. Sci. Technol. 2016, 29, 10. [Google Scholar] [CrossRef]
Architecture | Sheath | Thermal Treatment | Transport Jc (A/cm2) 4.2 K, 10 T | Transport Je (A/cm2) 4.2 K, 10 T | |
---|---|---|---|---|---|
Mono-filamentary | (Sr, K)Fe2As2 Tape [17] | Cu | HP | 3.1 × 104 | 1.0 × 104 |
(Ba, K)Fe2As2 Tape [18] | Ag | HP | 1.5 × 105 | 3.0 × 104 | |
(Ba, K)Fe2As2 Tape [19] | SS/AgSn | CP | 1.4 × 105 | 4.6 × 103 | |
(Ba, K)Fe2As2 Wire [20] | Cu/Ag | HIP | 3.0 × 104 | 7.2 × 103 | |
(Ba, Na)Fe2As2 Wire [21] | Cu/Ag | HIP | 7.1 × 104 | \ | |
Multi-filamentary | (Sr, K)Fe2As2 Tape [22] | Ag | HP | 6.1 × 104 | \ |
(Ba, K)Fe2As2 Tape [23] | Cu/Ag | HIP | 4.8 × 104 | 7.6 × 103 | |
(Ba, K)Fe2As2 Wire [24] | Cu/Ag | HIP | 2.8 × 104 | 1.1 × 103 |
Sample | Thickness (mm) | Width (mm) | STotal (mm2) | SSC/STotal | Transport Jc (A/cm2) 4.2 K, 10 T | Transport Je (A/cm2) 4.2 K, 10 T |
---|---|---|---|---|---|---|
HP-0 | 0.31 | 3.12 | 0.92 | 40.0% | 6.7 × 103 | 2.7 × 103 |
HP-7.0 MPa | 0.27 | 3.48 | 0.97 | 37.1% | 3.5 × 104 | 1.3 × 104 |
HP-10.3 MPa | 0.25 | 3.56 | 0.81 | 41.0% | 3.9 × 104 | 1.6 × 104 |
HP-12.4 MPa | 0.21 | 3.95 | 0.82 | 39.8% | 8.8 × 104 | 3.5 × 104 |
HP-15.4 MPa | 0.20 | 3.96 | 0.90 | 37.0% | 4.6 × 104 | 1.7 × 104 |
HP-18.3 MPa | 0.19 | 4.02 | 0.82 | 39.0% | 4.1 × 104 | 1.6 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Huang, H.; Han, M.; Liu, C.; Yao, C.; Ma, Y.; Wang, D. Iron-Based Superconductors for High-Field Applications: Realization of High Engineering Critical Current Density. Materials 2024, 17, 5306. https://doi.org/10.3390/ma17215306
Yang P, Huang H, Han M, Liu C, Yao C, Ma Y, Wang D. Iron-Based Superconductors for High-Field Applications: Realization of High Engineering Critical Current Density. Materials. 2024; 17(21):5306. https://doi.org/10.3390/ma17215306
Chicago/Turabian StyleYang, Peng, He Huang, Meng Han, Cong Liu, Chao Yao, Yanwei Ma, and Dongliang Wang. 2024. "Iron-Based Superconductors for High-Field Applications: Realization of High Engineering Critical Current Density" Materials 17, no. 21: 5306. https://doi.org/10.3390/ma17215306
APA StyleYang, P., Huang, H., Han, M., Liu, C., Yao, C., Ma, Y., & Wang, D. (2024). Iron-Based Superconductors for High-Field Applications: Realization of High Engineering Critical Current Density. Materials, 17(21), 5306. https://doi.org/10.3390/ma17215306