Analysis of Mechanical Properties and Printing Orientation Influence of Composite Resin for 3D Printing Compared to Conventional Resin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Preparation of Test Specimens
2.3. Flexural Strength Test (σ)
- σ = flexural strength
- F = load (force) at the fracture point
- L = length of support span
- b = width of the sample
- d = sample thickness
2.4. Surface Roughness Test (Ra)
2.5. Microhardness Test
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duret, F.; Blouin, J.L.; Duret, B. CAD-CAM in dentistry. J. Am. Dent. Assoc. 1988, 117, 715–720. [Google Scholar] [CrossRef]
- van Noort, R. The future of dental devices is digital. Dent. Mater. 2012, 28, 3–12. [Google Scholar] [CrossRef]
- Myagmar, G.; Lee, J.H.; Ahn, J.S.; Yeo, I.L.; Yoon, H.I.; Han, J.S. Wear of 3D printed and CAD/CAM milled interim resin materials after chewing simulation. J. Adv. Prosthodont. 2021, 13, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Valenti, C.; Isabella Federici, M.; Masciotti, F.; Marinucci, L.; Xhimitiku, I.; Cianetti, S.; Pagano, S. Mechanical properties of 3D printed prosthetic materials compared with milled and conventional processing: A systematic review and meta-analysis of in vitro studies. J. Prosthet. Dent. 2024, 132, 381–391. [Google Scholar] [CrossRef]
- Kessler, A.; Hickel, R.; Reymus, M. 3D Printing in dentistry-state of the art. Oper. Dent. 2020, 45, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Nowacki, B.; Kowol, P.; Koziol, M.; Olesik, P.; Wieczorek, J.; Waclawiak, K. Effect of post-process curing and washing time on mechanical properties of mSLA printouts. Materials 2021, 14, 4856. [Google Scholar] [CrossRef] [PubMed]
- Jockusch, J.; Ozcan, M. Additive manufacturing of dental polymers: An overview on processes, materials and applications. Dent. Mater. J. 2020, 39, 345–354. [Google Scholar] [CrossRef]
- Tack, P.; Victor, J.; Gemmel, P.; Annemans, L. 3D-printing techniques in a medical setting: A systematic literature review. Biomed. Eng. Online 2016, 15, 115. [Google Scholar] [CrossRef] [PubMed]
- Revilla-Leon, M.; Ozcan, M. Additive manufacturing technologies used for processing polymers: Current status and potential application in prosthetic dentistry. J. Prosthodont. 2019, 28, 146–158. [Google Scholar] [CrossRef]
- Tahayeri, A.; Morgan, M.; Fugolin, A.P.; Bompolaki, D.; Athirasala, A.; Pfeifer, C.S.; Ferracane, J.L.; Bertassoni, L.E. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent. Mater. 2018, 34, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Ender, A.; Egli, G.; Ozcan, M.; Mehl, A. Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness. Clin. Oral Investig. 2019, 23, 2777–2784. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, L.; Dal Piva, A.M.O.; Tribst, J.P.M.; Cokic, S.M.; Zhang, F.; Werner, A.; Kleverlaan, C.J.; Feilzer, A.J. Effect of printing layer orientation and polishing on the fatigue strength of 3D-printed dental zirconia. Dent. Mater. 2024, 40, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Bora, P.V.; Sayed Ahmed, A.; Alford, A.; Pitttman, K.; Thomas, V.; Lawson, N.C. Characterization of materials used for 3D printing dental crowns and hybrid prostheses. J. Esthet. Restor. Dent. 2024, 36, 220–230. [Google Scholar] [CrossRef]
- ISO 4049:2019; Dentistry—Polymer-Based Restorative Materials. ISO: Geneva, Switzerland, 2019.
- Ribeiro, A.K.C.; de Freitas, R.; de Carvalho, I.H.G.; de Miranda, L.M.; da Silva, N.R.; de Fatima Dantas de Almeida, L.; Zhang, Y.; da Fonte Porto Carreiro, A.; de Assuncao, E.S.R.O. Flexural strength, surface roughness, micro-CT analysis, and microbiological adhesion of a 3D-printed temporary crown material. Clin. Oral Investig. 2023, 27, 2207–2220. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.S.; Kim, J.-E.; Jeong, S.H.; Choi, Y.J.; Ryu, J.J. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. J. Prosthet. Dent. 2020, 124, 468–475. [Google Scholar] [CrossRef]
- Scotti, C.K.; Velo, M.; Rizzante, F.A.P.; Nascimento, T.R.L.; Mondelli, R.F.L.; Bombonatti, J.F.S. Physical and surface properties of a 3D-printed composite resin for a digital workflow. J. Prosthet. Dent. 2020, 124, 614.e1–614.e5. [Google Scholar] [CrossRef]
- ISO 21920-2:2021; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. ISO: Geneva, Switzerland, 2021.
- Al-Dulaijan, Y.A.; Alsulaimi, L.; Alotaibi, R.; Alboainain, A.; Alalawi, H.; Alshehri, S.; Khan, S.Q.; Alsaloum, M.; AlRumaih, H.S.; Alhumaidan, A.A.; et al. Comparative evaluation of surface roughness and hardness of 3D printed resins. Materials 2022, 15, 6822. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Taylor & Francis: Abingdon, UK, 2013. [Google Scholar]
- Keßler, A.; Hickel, R.; Ilie, N. In vitro investigation of the influence of printing direction on the flexural strength, flexural modulus and fractographic analysis of 3D-printed temporary materials. Dent. Mater. J. 2021, 40, 641–649. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, D.H.; Huang, S.C.; Lin, Y.M. Comparison of flexural properties and cytotoxicity of interim materials printed from mono-LCD and DLP 3D printers. J. Prosthet. Dent. 2021, 126, 703–708. [Google Scholar] [CrossRef]
- Digholkar, S.; Madhav, V.N.; Palaskar, J. Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J. Indian Prosthodont. Soc. 2016, 16, 328–334. [Google Scholar] [CrossRef]
- Soto-Montero, J.; de Castro, E.F.; Romano, B.C.; Nima, G.; Shimokawa, C.A.K.; Giannini, M. Color alterations, flexural strength, and microhardness of 3D printed resins for fixed provisional restoration using different post-curing times. Dent. Mater. 2022, 38, 1271–1282. [Google Scholar] [CrossRef]
- Baytur, S.; Diken Turksayar, A.A. Effects of post-polymerization conditions on color properties, surface roughness, and flexural strength of 3D-printed permanent resin material after thermal aging. J. Prosthodont. 2023; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Miura, D.; Miyasaka, T.; Aoki, H.; Aoyagi, Y.; Ishida, Y. Correlations among bending test methods for dental hard resins. Dent. Mater. J. 2017, 36, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Al-Qahtani, A.S.; Tulbah, H.I.; Binhasan, M.; Abbasi, M.S.; Ahmed, N.; Shabib, S.; Farooq, I.; Aldahian, N.; Nisar, S.S.; Tanveer, S.A.; et al. Surface properties of polymer resins fabricated with subtractive and additive manufacturing techniques. Polymers 2021, 13, 4077. [Google Scholar] [CrossRef]
- Pereira, L.D.E.; Couto Neto, M.P.; Pereira, R.G.; Schneider, L.F.J. Influence of resin matrix on the rheology, translucency, and curing potential of experimental flowable composites for bulk-fill applications. Dent. Mater. 2021, 37, 1046–1053. [Google Scholar] [CrossRef]
- Lin, C.H.; Lin, Y.M.; Lai, Y.L.; Lee, S.Y. Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA. J. Prosthet. Dent. 2020, 123, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ni, X. The effect of the inorganic nanomaterials on the UV-absorption, rheological and mechanical properties of the rapid prototyping epoxy-based composites. Polym. Bull. 2017, 74, 2063–2079. [Google Scholar] [CrossRef]
- Devlukia, S.; Hammond, L.; Malik, K. Is surface roughness of direct resin composite restorations material and polisher-dependent? A systematic review. J. Esthet. Restor. Dent. 2023, 35, 947–967. [Google Scholar] [CrossRef]
- Alharbi, N.; Osman, R.; Wismeijer, D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J. Prosthet. Dent. 2016, 115, 760–767. [Google Scholar] [CrossRef]
- Unkovskiy, A.; Bui, P.H.; Schille, C.; Geis-Gerstorfer, J.; Huettig, F.; Spintzyk, S. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin. Dent. Mater. 2018, 34, e324–e333. [Google Scholar] [CrossRef]
- Vayrynen, V.O.; Tanner, J.; Vallittu, P.K. The anisotropicity of the flexural properties of an occlusal device material processed by stereolithography. J. Prosthet. Dent. 2016, 116, 811–817. [Google Scholar] [CrossRef]
- Alharethi, N.A. Evaluation of the influence of build orientation on the surface roughness and flexural strength of 3D-Printed denture base resin and its comparison with CAD-CAM milled denture base resin. Eur. J. Dent. 2024, 18, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Daher, R.; Ardu, S.; di Bella, E.; Krejci, I.; Duc, O. Efficiency of 3D printed composite resin restorations compared with subtractive materials: Evaluation of fatigue behavior, cost, and time of production. J. Prosthet. Dent. 2024, 131, 943–950. [Google Scholar] [CrossRef]
- Della Bona, A.; Cantelli, V.; Britto, V.T.; Collares, K.F.; Stansbury, J.W. 3D printing restorative materials using a stereolithographic technique: A systematic review. Dent. Mater. 2021, 37, 336–350. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, I.A.; Gizani, S.; Panayi, N.; Antonopoulos, G.; Tsolakis, A.I. Three-dimensional printing technology in orthodontics for dental models: A systematic review. Children 2022, 9, 1106. [Google Scholar] [CrossRef] [PubMed]
- Cetin, A.R.; Unlu, N.; Cobanoglu, N. A five-year clinical evaluation of direct nanofilled and indirect composite resin restorations in posterior teeth. Oper. Dent. 2013, 38, E1–E11. [Google Scholar] [CrossRef] [PubMed]
- Pallesen, U.; Qvist, V. Composite resin fillings and inlays. An 11-year evaluation. Clin. Oral Investig. 2003, 7, 71–79. [Google Scholar] [CrossRef]
- van Dijken, J.W. Direct resin composite inlays/onlays: An 11 year follow-up. J. Dent. 2000, 28, 299–306. [Google Scholar] [CrossRef]
Material | Composition | Batch |
---|---|---|
Forma Resin (Ultradent from Brazil) | Bis-GMA; Bis-EMA; TEGDMA; BHT; PEGDMA; UDMA; Ytterbium trifluoride; fillers based on silane-treated ceramics, silanized silica, silanized silica-zirconium oxide, and barium glass. | D0IEU |
Prizma 3D Biocrown (Makertech Labs) | UDMA > 40%; other methacrylated monomers > 20%; TPO < 3%; Mixed Silanized Zirconia Oxide < 10%; other filler particles (silanized silicas and barium nano- and microglass) < 25%; Pigments < 2%; blockers, stabilizers, and coactivators < 2%. | 209623 |
Mean (Standard Deviation) | 95% CI | ||||
---|---|---|---|---|---|
Lower Bound | Upper Bound | ƞ2 Parcial | |||
Flexural strength (Mpa) | CT | 103.26 (13.84) A | 93.35 | 113.16 | 0.386 |
BC0 | 91.46 (7.83) B | 85.86 | 97.06 | ||
BC45 | 87.83 (5.56) B | 83.85 | 91.81 | ||
BC90 | 86.03 (5.89) B | 81.81 | 90.24 | ||
Surface roughness (µm) | CT | 0.12 (0.02) A | 0.10 | 0.13 | |
BC0 | 0.13 (0.04) A | 0.10 | 0.17 | ||
BC45 | 0.10 (0.02) A | 0.09 | 0.12 | ||
BC90 | 0.12 (0.05) A | 0.08 | 0.16 | ||
Microhardness (HV) | CT | 71.93 (2.51) A | 70.13 | 73.73 | |
BC0 | 15.97 (1.68) B | 14.77 | 17.18 | 0.995 | |
BC45 | 16.15 (1.55) B | 15.04 | 17.26 | ||
BC90 | 18.89 (1.51) C | 17.80 | 19.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo, L.V.; de Siqueira, F.S.F.; de Macedo, R.F.C.; Gomes, F.S.; Castro, G.G.; Dibai, D.B.; Maia Filho, E.M.; Tavarez, R.R.J. Analysis of Mechanical Properties and Printing Orientation Influence of Composite Resin for 3D Printing Compared to Conventional Resin. Materials 2024, 17, 5626. https://doi.org/10.3390/ma17225626
Araújo LV, de Siqueira FSF, de Macedo RFC, Gomes FS, Castro GG, Dibai DB, Maia Filho EM, Tavarez RRJ. Analysis of Mechanical Properties and Printing Orientation Influence of Composite Resin for 3D Printing Compared to Conventional Resin. Materials. 2024; 17(22):5626. https://doi.org/10.3390/ma17225626
Chicago/Turabian StyleAraújo, Leonardo V., Fabiana S. Figuerêdo de Siqueira, Rayssa F. Cavaleiro de Macedo, Felipe S. Gomes, Gustavo G. Castro, Daniela B. Dibai, Etevaldo M. Maia Filho, and Rudys R. J. Tavarez. 2024. "Analysis of Mechanical Properties and Printing Orientation Influence of Composite Resin for 3D Printing Compared to Conventional Resin" Materials 17, no. 22: 5626. https://doi.org/10.3390/ma17225626
APA StyleAraújo, L. V., de Siqueira, F. S. F., de Macedo, R. F. C., Gomes, F. S., Castro, G. G., Dibai, D. B., Maia Filho, E. M., & Tavarez, R. R. J. (2024). Analysis of Mechanical Properties and Printing Orientation Influence of Composite Resin for 3D Printing Compared to Conventional Resin. Materials, 17(22), 5626. https://doi.org/10.3390/ma17225626