Topology Optimization of Periodic Structures Subject to Self-Weight Loading Using a Heuristic Method
Abstract
:1. Introduction
2. Straightforward Method of Cellular Automata Addressed to the Topology Optimization of Periodic Structures
2.1. Cellular Automata Basis
2.2. Periodic Topology Optimization Using Local Rules of Cellular Automata
Algorithm 1. Caption |
GET input data SELECT N1 and N2 values SET initial values of design variables SELECT neighborhood type ASSIGN neighbors to each element SELECT move limit m DO UNTIL stopping criteria are met PERFORM structural analysis IMPORT data from structural analysis FOR all elements IMPOSE periodicity constraints CALCULATE local compliances U(di) END FOR SORT compliances in ascending order BUILD C(i) function FOR all elements UPDATE design variables di END FOR IMPOSE volume constraint END DO DISPLAY results |
3. Numerical Examples of the Topology Optimization of Periodic Structures Considering Self-Weight Loading
3.1. Topology Optimization of the Two-Dimensional Example Considering Self-Weight Loading
3.2. Topology Optimization Considering Periodicity Without Self-Weight Load
3.3. Topology Optimization Considering Periodicity and Self-Weight Loading
3.4. Engineering Example of Topology Design Including Self-Weight and Periodicity Scheme
4. Discussion of the Results
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Inou, N.; Shimotai, N.; Uesugi, T. A cellular automaton generating topological structures. In Proceedings of the 2nd European Conference on Smart Structures and Materials, Glasgow, Scotland, 12–14 October 1994. [Google Scholar]
- Cortes, H.; Tovar, A.; Munoz, J.D.; Patel, N.M.; Renaud, J.E. Topology Optimization of Truss Structures using Cellular Automata with Accelerated Simultaneous Analysis and Design. In Proceedings of the 6th World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, 30 May–3 June 2005. [Google Scholar]
- Afshar, M.H.; Faramarzi, A. Size Optimization of Truss Structures by Cellular Automata. Comput. Syst. Sci. Eng. 2010, 3, 1–9. [Google Scholar]
- Tovar, A. Bone Remodeling as a Hybrid Cellular Automaton Process. Ph.D. Thesis, University of Notre Dame, Notre Dame, IN, USA, 2004. [Google Scholar]
- Tovar, A.; Patel, N.M.; Niebur, G.L.; Sen, M.; Renaud, J.E. Topology optimization using a hybrid cellular automaton method with local control rules. J. Mech. Des. 2006, 128, 1205–1216. [Google Scholar] [CrossRef]
- Penninger, C.L.; Tovar, A.; Watson, L.T.; Renaud, J.E. KKT conditions satisfied using adaptive neighboring in hybrid cellular automata for topology optimization. Int. J. Pure Appl. Math. 2011, 66, 245–262. [Google Scholar]
- Bochenek, B.; Tajs-Zielińska, K. GHOST—Gate to Hybrid Optimization of Structural Topologies. Materials 2019, 12, 1152. [Google Scholar] [CrossRef]
- Motasoares, C.A.; Martins, J.A.C.; Rodrigues, H.C.; Ambrósio, J.A.C.; Pina, C.A.B.; Motasoares, C.M.; Pereira, E.B.R.; Folgado, J. Topology Optimization with Stress and Displacement Constraints Using the Hybrid Cellular Automaton Method. In Proceedings of the III European Conference on Computational Mechanics, Lisbon, Portugal, 5–8 June 2006; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Patel, N.; Renaud, J.; Agarwal, H.; Tovar, A. Reliability Based Topology Optimization Using the Hybrid Cellular Automaton Method. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, TX, USA, 18–21 April 2005. [Google Scholar]
- Tajs-Zielińska, K.; Bochenek, B. Multi-Domain and Multi-Material Topology Optimization in Design and Strengthening of Innovative Sustainable Structures. Sustainability 2021, 13, 3435. [Google Scholar] [CrossRef]
- Deng, X.; Chen, H.; Xu, Q.; Feng, F.; Chen, X.; Lv, X.; Lin, X.; Fu, T. Topology optimization design of three-dimensional multi-material and multi-body structure based on irregular cellular hybrid cellular automata method. Sci. Rep. 2022, 12, 5602. [Google Scholar] [CrossRef]
- Zeng, D.; Duddeck, F. Improved hybrid cellular automata for crashworthiness optimization of thin-walled structures. Struct. Multidiscip. Optim. 2017, 56, 101–115. [Google Scholar] [CrossRef]
- Sigmund, O.; Maute, K. Topology optimization approaches. Struct. Multidiscip. Optim. 2013, 48, 10311055. [Google Scholar] [CrossRef]
- Deaton, J.D.; Grandhi, R.V. A survey of structural and multidisciplinary continuum topology optimization: Post 2000. Struct. Multidiscip. Optim. 2014, 49, 1–38. [Google Scholar] [CrossRef]
- Caloz, C. Perspectives on EM metamaterials. Mater. Today 2009, 12, 12–20. [Google Scholar] [CrossRef]
- Pang, H.; Duan, Y.; Huang, L.; Song, L.; Liu, J.; Zhang, T.; Yang, X.; Liu, J.; Ma, X.; Di, J.; et al. Research advances in composition, structure and mechanisms of microwave absorbing materials. Compos. B. Eng. 2012, 224, 109173. [Google Scholar] [CrossRef]
- Li, Q.; Xu, R.; Wu, Q.; Liu, S. Topology optimization design of quasi-periodic cellular structures based on erode–dilate operators. Comput. Methods Appl. Mech. Eng. 2021, 377, 113720. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Chen, J.; Liu, T.; Peng, J.; Zhang, D.; Yin, S. Topology optimization of periodic mechanical structures with orthotropic materials based on the element-free Galerkin method. Eng Anal. Bound. Elem. 2022, 143, 383–396. [Google Scholar] [CrossRef]
- Huang, X.; Radman, A.; Xie, Y.M. Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput. Mater. Sci. 2011, 50, 1861–1870. [Google Scholar] [CrossRef]
- Sigmund, O. Materials with prescribed constitutive parameters—An inverse homogenization problem. Int. J. Solids Struct. 1994, 31, 2313–2329. [Google Scholar] [CrossRef]
- Radman, A.; Huang, X.; Xie, Y.M. Topological optimization for the design of microstructures of isotropic cellular materials. Eng. Opt. 2011, 45, 1331–1348. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, S.W.; Wie, Y.M.; Li, Q. Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput. Mater. Sci. 2013, 67, 397–407. [Google Scholar] [CrossRef]
- Liu, P.; Yan, Y.; Zhang, X.; Luo, Y.; Kang, Z. Topological design of microstructures using periodic material-field series-expansion and gradient-free optimization algorithm. Mater. Des. 2021, 199, 109437. [Google Scholar] [CrossRef]
- Yun, K.S.; Youn, S.K. Topology optimization of periodic microstructures for prescribed relaxation moduli of viscoelastic composites. Int. J. Solids Struct. 2022, 257, 111630. [Google Scholar] [CrossRef]
- Moses, E.; Fuchs, M.B.; Ryvkin, M. Topological design of modular structures under arbitrary loading. Struct. Multidiscip. Optim. 2003, 24, 407–417. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, S. Scale-related topology optimization of cellular materials and structures. Int. J. Numer. Meth. Eng. 2006, 68, 993–1011. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Rong, J.H.; Wang, X.H.; Zhang, Q. A Topological Optimization Method of Similar Periodic Structures Based on Variable Displacement Limits. In Proceedings of the Name of the 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA), Changsha, China, 20–22 October 2008. [Google Scholar]
- Xie, Y.M.; Zuo, Z.H.; Huang, X.; Rong, J.H. Convergence of topological patterns of optimal periodic structures under multiple scales. Struct. Multidiscip. Optim. 2012, 46, 41–50. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, S.; Li, Q. Multiobjective topology optimization for finite periodic structures. Comput. Struct. 2010, 88, 806–811. [Google Scholar] [CrossRef]
- Zheng, Y.; Xiao, M.; Gao, L.; Li, H. Robust topology optimization for periodic structures by combining sensitivity averaging with a semianalytical method. Int. J. Numer. Methods Eng. 2019, 117, 475–497. [Google Scholar] [CrossRef]
- Andreassen, E.; Jensen, J.S. Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials. Struct. Multidiscip. Optim. 2014, 49, 695–705. [Google Scholar] [CrossRef]
- Huang, H.M.; Raponi, E.; Duddeck, F.; Menzel, S.; Bujny, M. Topology optimization of periodic structures for crash and static load cases using the evolutionary level set method. Optim. Eng. 2024, 25, 1597–1630. [Google Scholar] [CrossRef]
- Thomas, S.; Li, Q.; Steven, G. Topology optimization for periodic multi-component structures with stiffness and frequency criteria. Struct. Multidiscip. Optim. 2020, 61, 2271–2289. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, L.; Yarlagadda, T.; Zheng, Y.; Usmani, A. A novel multi-pattern control for topology optimization to balance form and performance needs. Eng. Struct. 2024, 303, 117581. [Google Scholar] [CrossRef]
- Beghini, L.; Beghini, A.; Baker, W.; Paulino, G. Application of layout and topology optimization using pattern gradation for the conceptual design of buildings. Struct. Multidiscip. Optim. 2011, 43, 165–180. [Google Scholar]
- Liu, Y.; Li, Z.; Wei, P.; Wang, P. Parameterized level-set based topology optimization method considering symmetry and pattern repetition constraints. Comput. Methods Appl. Mech. Eng. 2018, 340, 1079–1101. [Google Scholar] [CrossRef]
- He, G.; Huang, X.; Wang, H.; Li, G. Topology optimization of periodic structures using BESO based on unstructured design points. Struct. Multidiscip. Optim. 2016, 53, 271–275. [Google Scholar] [CrossRef]
- Fukada, Y. Formation of periodic ribbed or lattice structures in topology optimization assisted by biological pattern formation. Struct. Multidiscip. Optim. 2020, 61, 1171–1185. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X. Quantum Computing Intelligence Algorithm for Structural Topology Optimization. Appl. Math. Model. 2024, 137, 115692. [Google Scholar] [CrossRef]
- Bochenek, B.; Tajs-Zielinska, K. Cellular Automaton Mimicking Colliding Bodies for Topology Optimization. Materials 2022, 15, 8057. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y.M. Optimal design of periodic structures using evolutionary topology optimization. Struct. Multidiscip. Optim. 2008, 36, 597–606. [Google Scholar] [CrossRef]
- Kari, J. Theory of cellular automata: A survey. Theor. Comput. Sci. 2005, 334, 3–33. [Google Scholar] [CrossRef]
- Tajs-Zielińska, K.; Bochenek, B. CARMA—Cellular Automata with Refined Mesh Adaptation—The Easy Way of Generation of Structural Topologies. Appl. Sci. 2020, 10, 3691. [Google Scholar] [CrossRef]
- Zaitsev, D.A. A generalized neighborhood for cellular automata. Theor. Comput. Sci. 2017, 666, 21–35. [Google Scholar] [CrossRef]
- Qu, D.; Huang, Y.; Song, J. The periodic structure topology optimization using improved genetic algorithm. In Proceedings of the 2015 International Conference on Materials Engineering and Information Technology Applications, Guilin, China, 30–31 August 2015. [Google Scholar]
- Bendsoe, M.P. Optimal shape design as a material distribution problem. Struct. Multidiscip. Optim. 1989, 1, 193–202. [Google Scholar] [CrossRef]
- Bruyneel, M.; Duysinx, P. Note on topology optimization of continuum structures including self-weight. Struct. Multidiscip. Optim. 2004, 29, 245–256. [Google Scholar] [CrossRef]
- Kumar, P. Topology optimization of stiff structures under self-weight for given volume using a smooth Heaviside function. Struct. Multidiscip. Optim. 2022, 65, 128. [Google Scholar] [CrossRef]
- Jain, N.; Saxena, R. Effect of self-weight on topological optimization of static loading structures. Alex. Eng. J. 2018, 55, 527–535. [Google Scholar] [CrossRef]
- Masarczyk, D.; Kuhl, D. Topology optimization considering self-weight. PAMM 2023, 23, 9. [Google Scholar] [CrossRef]
- Tajs-Zielińska, K.; Bochenek, B. Topology algorithm built as an automaton with flexible rules. Bull. Pol. Acad. Sci. 2021, 69, e138813. [Google Scholar] [CrossRef]
- Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B.S.; Sigmund, O. Efficient topology optimization in Matlab using 88 lines of code. Struct. Multidiscip. Optim. 2011, 4, 1–16. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajs-Zielińska, K. Topology Optimization of Periodic Structures Subject to Self-Weight Loading Using a Heuristic Method. Materials 2024, 17, 5652. https://doi.org/10.3390/ma17225652
Tajs-Zielińska K. Topology Optimization of Periodic Structures Subject to Self-Weight Loading Using a Heuristic Method. Materials. 2024; 17(22):5652. https://doi.org/10.3390/ma17225652
Chicago/Turabian StyleTajs-Zielińska, Katarzyna. 2024. "Topology Optimization of Periodic Structures Subject to Self-Weight Loading Using a Heuristic Method" Materials 17, no. 22: 5652. https://doi.org/10.3390/ma17225652
APA StyleTajs-Zielińska, K. (2024). Topology Optimization of Periodic Structures Subject to Self-Weight Loading Using a Heuristic Method. Materials, 17(22), 5652. https://doi.org/10.3390/ma17225652