Effects of High-Temperature Treatments in Inert Atmosphere on 4H-SiC Substrates and Epitaxial Layers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Physical Properties of Silicon Carbide. In Fundamentals of Silicon Carbide Technology; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2014; Chapter 2; pp. 11–38. [CrossRef]
- Bulk Growth of Silicon Carbide. In Fundamentals of Silicon Carbide Technology; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2014; Chapter 3; pp. 39–74. [CrossRef]
- Rost, H.J.; Schulz, D.; Siche, D. High Nitrogen Doping During Bulk Growth of SiC. In Silicon Carbide: Recent Major Advances; Choyke, W.J., Matsunami, H., Pensl, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 163–178. [Google Scholar] [CrossRef]
- Starke, U. Atomic Structure of SiC Surfaces. In Silicon Carbide: Recent Major Advances; Choyke, W.J., Matsunami, H., Pensl, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 281–316. [Google Scholar] [CrossRef]
- La Via, F.; Alquier, D.; Giannazzo, F.; Kimoto, T.; Neudeck, P.; Ou, H.; Roncaglia, A.; Saddow, S.E.; Tudisco, S. Emerging SiC Applications beyond Power Electronic Devices. Micromachines 2023, 14, 1200. [Google Scholar] [CrossRef] [PubMed]
- Shakir, M.; Hou, S.; Hedayati, R.; Malm, B.G.; Östling, M.; Zetterling, C.M. Towards Silicon Carbide VLSI Circuits for Extreme Environment Applications. Electronics 2019, 8, 496. [Google Scholar] [CrossRef]
- Neudeck, P.G.; Spry, D.J.; Chen, L.; Prokop, N.F.; Krasowski, M.J. Demonstration of 4H-SiC digital integrated circuits above 800 °C. IEEE Electron Device Lett. 2017, 38, 1082–1085. [Google Scholar]
- Zetterling, C.M.; Hallén, A.; Hedayati, R.; Kargarrazi, S.; Lanni, L.; Malm, B.G.; Mardani, S.; Norström, H.; Rusu, A.; Suvanam, S.S.; et al. Bipolar integrated circuits in SiC for extreme environment operation. Semicond. Sci. Technol. 2017, 32, 034002. [Google Scholar] [CrossRef]
- Altana, C.; Calcagno, L.; Ciampi, C.; La Via, F.; Lanzalone, G.; Muoio, A.; Pasquali, G.; Pellegrino, D.; Puglia, S.; Rapisarda, G.; et al. Radiation Damage by Heavy Ions in Silicon and Silicon Carbide Detectors. Sensors 2023, 23, 6522. [Google Scholar] [CrossRef]
- Ciampi, C.; Pasquali, G.; Altana, C.; Bini, M.; Boscardin, M.; Calcagno, L.; Casini, G.; Cirrone, G.; Fazzi, A.; Giove, D.; et al. Nuclear fragment identification with ΔE-E telescopes exploiting silicon carbide detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 925, 60–69. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, X. Investigating the advanced characteristics of SiC based piezoresistive pressure sensors. Mater. Today Commun. 2020, 25, 101493. [Google Scholar] [CrossRef]
- Kalinina, E.V.; Lebedev, A.; Kozlovski, V.V.; Zabrodski, V.; Strel’chuk, A.M.; Nikitina, I.P. Electrophysical and Optical Properties of 4H-SiC UV Detectors Irradiated with Electrons. Mater. Sci. Forum 2019, 963, 722–725. [Google Scholar] [CrossRef]
- Tudisco, S.; La Via, F.; Agodi, C.; Altana, C.; Borghi, G.; Boscardin, M.; Bussolino, G.; Calcagno, L.; Camarda, M.; Cappuzzello, F.; et al. SiCILIA—Silicon Carbide Detectors for Intense Luminosity Investigations and Applications. Sensors 2018, 18, 2289. [Google Scholar] [CrossRef]
- Chaudhuri, S.K.; Zavalla, K.J.; Mandal, K.C. High resolution alpha particle detection using 4H–SiC epitaxial layers: Fabrication, characterization, and noise analysis. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 728, 97–101. [Google Scholar] [CrossRef]
- Mandal, K.C.; Muzykov, P.G.; Russell Terry, J. Highly sensitive x-ray detectors in the low-energy range on n-type 4H-SiC epitaxial layers. Appl. Phys. Lett. 2012, 101, 051111. [Google Scholar] [CrossRef]
- Nava, F.; Bertuccio, G.; Cavallini, A.; Vittone, E. Silicon carbide and its use as a radiation detector material. Meas. Sci. Technol. 2008, 19, 102001. [Google Scholar] [CrossRef]
- Kalinina, E. The effect of irradiation on the properties of SiC and devices based on this compound. Semiconductors 2007, 41, 745–783. [Google Scholar] [CrossRef]
- Moscatelli, F. Silicon carbide for UV, alpha, beta and X-ray detectors: Results and perspectives. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 583, 157–161. [Google Scholar] [CrossRef]
- Le Donne, A.; Binetti, S.; Acciarri, M.; Pizzini, S. Electrical characterization of electron irradiated X-rays detectors based on 4H-SiC epitaxial layers. Diam. Relat. Mater. 2004, 13, 414–418. [Google Scholar] [CrossRef]
- Ohtani, N.; Katsuno, M.; Fujimoto, T.; Yashiro, H. Defect Formation and Reduction During Bulk SiC Growth. In Silicon Carbide: Recent Major Advances; Choyke, W.J., Matsunami, H., Pensl, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 137–162. [Google Scholar] [CrossRef]
- Burton, J.C.; Sun, L.; Pophristic, M.; Lukacs, S.J.; Long, F.H.; Feng, Z.C.; Ferguson, I.T. Spatial characterization of doped SiC wafers by Raman spectroscopy. J. Appl. Phys. 1998, 84, 6268–6273. [Google Scholar] [CrossRef]
- Zebardastan, N.; Bradford, J.; Lipton-Duffin, J.; MacLeod, J.; Ostrikov, K.K.; Tomellini, M.; Motta, N. High quality epitaxial graphene on 4H-SiC by face-to-face growth in ultra-high vacuum. Nanotechnology 2022, 34, 105601. [Google Scholar] [CrossRef]
- Mishra, N.; Boeckl, J.; Motta, N.; Iacopi, F. Graphene growth on silicon carbide: A review. Phys. Status Solidi (A) 2016, 213, 2277–2289. [Google Scholar] [CrossRef]
- Emtsev, K.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G.L.; Ley, L.; McChesney, J.L.; Ohta, T.; Reshanov, S.A.; Röhrl, J.; et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207. [Google Scholar] [CrossRef]
- Hass, J.; de Heer, W.D.; Conrad, E.H. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 2008, 20, 32. [Google Scholar] [CrossRef]
- Tedesco, J.; Jernigan, G.; Culbertson, J.; Hite, J.; Yang, Y.; Daniels, K.; Myers-Ward, R.; Eddy, C.; Robinson, J.; Trumbull, K.; et al. Morphology characterization of argon-mediated epitaxial graphene on C-face SiC. Appl. Phys. Lett. 2010, 96, 222103. [Google Scholar] [CrossRef]
- Nakashima, S.; Kitamura, T.; Mitani, T.; Okumura, H.; Katsuno, M.; Ohtani, N. Raman scattering study of carrier-transport and phonon properties of 4H-SiC crystals with graded doping. Phys. Rev. B 2007, 76, 245208. [Google Scholar] [CrossRef]
- Nakashima, S.; Kitamura, T.; Kato, T.; Kojima, K.; Kosugi, R.; Okumura, H.; Tsuchida, H.; Ito, M. Determination of free carrier density in the low doping regime of 4H-SiC by Raman scattering. Appl. Phys. Lett. 2008, 93, 121913. [Google Scholar] [CrossRef]
- Faugeras, C.; Nerrière, A.; Potemski, M.; Mahmood, A.; Dujardin, E.; Berger, C.; Heer, W. Few-layer graphene on SiC, pyrolitic graphene: A Raman scattering study. Appl. Phys. Lett. 2007, 92, 011914. [Google Scholar] [CrossRef]
- Nakashima, S.; Harima, H. Raman Investigation of SiC Polytypes. Phys. Status Solidi (A) 1997, 162, 39–64. [Google Scholar] [CrossRef]
- Zolyomi, V.; Koltai, J.; Kurti, J. Resonance Raman spectroscopy of graphite and graphene. Phys. Status Solidi B 2011, 248, 2435–2444. [Google Scholar] [CrossRef]
- Klar, P.; Lidorikis, E.; Eckmann, A.; Verzhbitskiy, I.A.; Ferrari, A.C.; Casiraghi, C. Raman scattering efficiency of graphene. Phys. Rev. B 2013, 87, 205435. [Google Scholar] [CrossRef]
- Rouchon, D.; Becerra, L.; Renault, O.; Kaja, K.; Mariolle, D.; Chevalier, N. Raman Spectra and Imaging of Graphene Layers Grown by SiC Sublimation. AIP Conf. Proc. 2010, 1267, 445–446. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, P.; Li, Y.; Li, R.; Zhang, K.; Tian, H.; Yu, K.; Bian, B.; Hao, L.; Xiao, X.; et al. Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide. Nature 2024, 625, 60–65. [Google Scholar] [CrossRef]
- Migliore, F.; Cannas, M.; Gelardi, F.M.; Vecchio, D.; Brischetto, A.; Agnello, S. Defects in epitaxial 4H-SiC revealed by exciton recombination. J. Phys. Condens. Matter 2024, 36, 185601. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliore, F.; Cannas, M.; Gelardi, F.M.; Pasquali, F.; Brischetto, A.; Vecchio, D.; Pirnaci, M.D.; Agnello, S. Effects of High-Temperature Treatments in Inert Atmosphere on 4H-SiC Substrates and Epitaxial Layers. Materials 2024, 17, 5761. https://doi.org/10.3390/ma17235761
Migliore F, Cannas M, Gelardi FM, Pasquali F, Brischetto A, Vecchio D, Pirnaci MD, Agnello S. Effects of High-Temperature Treatments in Inert Atmosphere on 4H-SiC Substrates and Epitaxial Layers. Materials. 2024; 17(23):5761. https://doi.org/10.3390/ma17235761
Chicago/Turabian StyleMigliore, Francesca, Marco Cannas, Franco Mario Gelardi, Filippo Pasquali, Andrea Brischetto, Daniele Vecchio, Massimo Davide Pirnaci, and Simonpietro Agnello. 2024. "Effects of High-Temperature Treatments in Inert Atmosphere on 4H-SiC Substrates and Epitaxial Layers" Materials 17, no. 23: 5761. https://doi.org/10.3390/ma17235761
APA StyleMigliore, F., Cannas, M., Gelardi, F. M., Pasquali, F., Brischetto, A., Vecchio, D., Pirnaci, M. D., & Agnello, S. (2024). Effects of High-Temperature Treatments in Inert Atmosphere on 4H-SiC Substrates and Epitaxial Layers. Materials, 17(23), 5761. https://doi.org/10.3390/ma17235761