An Assessment of the Environmental Impact of Construction Materials of Monocrystalline and Perovskite Photovoltaic Power Plants Toward Their Sustainable Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Object and Plan of Analysis
2.2. Determination of Goals and Scope
2.3. Life Cycle Inventory (LCI)
2.4. Life Cycle Impact Assessment (LCIA)
2.5. Interpretation
3. Results
3.1. IMPACT World+
3.1.1. Impact Categories
3.1.2. Areas of Influence
3.1.3. Total Impact
3.2. IPCC 2021
3.3. Cumulative Energy Demand (CED)
3.4. Comparison of the Total Impact on the Environment
4. Summary and Conclusions
- −
- From the perspective of the life cycle of materials and elements of both analyzed photovoltaic power plants, the categories of impact with the highest level of harmful impact on human health include water availability, human health, and climate change, human health, long term. In terms of impact on ecosystem quality, these are the categories of freshwater ecotoxicity, long term, and climate change, ecosystem quality, long-term (Table 1 and Table 2, Figure 11, Figure 12, Figure 13 and Figure 14).
- −
- Among the processes related to the reduction in water availability in the life cycles of both power plants (impact category: water availability, human health), one can distinguish, first, the consumption of water from various sources (lakes, rivers, wells, etc.) and its use for cooling turbines (during electricity generation).
- −
- The chemical compounds affecting climate change (impact category: climate change, human health, long term, and climate change, ecosystem quality, long term) in the life cycles of both power plants, characterized by the highest harmful impact values include emissions of carbon dioxide, methane, dinitrogen monoxide, sulfur hexafluoride, tetrafluoromethane (CFC-14), hexafluoroethane (HFC-116) and trifluoromethane (HFC-23).
- −
- Among the construction materials of the analyzed power plants, the life cycle of which has the greatest impact on the increase in freshwater ecotoxicity (impact category: freshwater ecotoxicity, long term), the following can be distinguished: copper, aluminum, iron, strontium, nickel, zinc, manganese, cadmium and vanadium.
- −
- −
- The life cycle of a sc-Si power plant is associated with higher environmental costs incurred due to the deterioration of human health and the reduction in the quality of the ecosystem compared to the life cycle of a PSC power plant (Table 4).
- −
- Both post-consumer management processes in the form of storage and recycling cause higher environmental costs in the area of human health than in the area of ecosystem quality (Table 4).
- −
- The element of both assessed power plants with the highest environmental life cycle cost are photovoltaic panels (Figure 16).
- −
- For all elements, the environmental cost of their life cycle is lower in the case of a photovoltaic power plant based on the use of perovskite panels and for the form of post-consumer management using recycling processes (Figure 16).
- −
- The total environmental cost of the life cycle of a sc-Si power plant is higher than that of a PSC power plant (Figure 17).
- −
- The highest level of greenhouse gas emissions in the life cycles of both power plants is due to the use of fossil sources (fuels and mineral raw materials, impact category: GWP100—fossil) (Table 5).
- −
- The highest GHG emissions in the life cycles of both power plants are characteristic of photovoltaic panels (Figure 18).
- −
- For all assessed electoral elements, the use of recycling processes is associated with lower greenhouse gas emissions compared to landfill management (Figure 18).
- −
- The life cycle of a power plant using monocrystalline silicon panels is characterized by higher GHG emissions than a power plant using perovskite panels (Figure 19).
- −
- The majority of energy in the life cycles of both examined photovoltaic power plants comes from non-renewable sources (impact category: non-renewable, fossil), mainly from crude oil, coal and gas (Table 6).
- −
- Photovoltaic panels are the element of the power plant that stands out with the highest cumulative demand for energy (Figure 20).
- −
- The life cycle of a sc-Si photovoltaic power plant is characterized by a higher total cumulative energy demand compared to a PSC power plant (Figure 21).
- −
- The use of recycling processes enables a significant reduction in the energy demand in the life cycles of both tested technical facilities (Figure 21).
- −
- Photovoltaic power plants based on perovskite modules fit better into the main assumptions of sustainable development than power plants using monocrystalline silicon panels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Chen, L.; Jiang, F.; Song, Z.; Wang, X.; Balvanz, A.; Ugur, E.; Liu, Y.; Liu, C.; Maxwell, A.; et al. Diamine chelates for increased stability in mixed Sn–Pb and all-perovskite tandem solar cells. Nat. Energy 2024, 7, 4577–4586. [Google Scholar] [CrossRef]
- Demirel, Y. Energy: Production, Conversion, Storage, Conservation and Coupling; Springer: Cham, Switzerland, 2016; pp. 441–484. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, S. Green Technologies and Environmental Sustainability; Springer: Cham, Switzerland, 2017; pp. 157–178. [Google Scholar] [CrossRef]
- Monge, J. Global Solar PV Installed Capacity Will More Than Triple in the Next Ten Years. Available online: https://www.woodmac.com/news/opinion/global-solar-PV-installed-more-than-triple-in-the-next-ten-years/ (accessed on 5 September 2024).
- Andersen, O. Unintended Consequences of Renewable Energy; Springer: London, UK, 2013; pp. 81–89. [Google Scholar] [CrossRef]
- Dincer, I.; Midilli, A.; Kucuk, H. Progress in Sustainable Energy Technologies: Generating Renewable Energy; Springer: Cham, Switzerland, 2014; pp. 339–353. [Google Scholar] [CrossRef]
- Leda, P.; Idzikowski, A.; Piasecka, I.; Baldowska-Witos, P.; Cierlicki, T.; Zawada, M. Management of Environmental Life Cycle Impact Assessment of a Photovoltaic Power Plant on the Atmosphere, Water, and Soil Environment. Energies 2023, 16, 4230. [Google Scholar] [CrossRef]
- Wang, X.; Tian, X.; Chen, X.; Ren, L.; Geng, C. A Review of End-of-Life Crystalline Silicon Solar Photovoltaic Panel Recycling Technology. Sol. Energy Mater. Sol. Cells 2022, 248, 111976. [Google Scholar] [CrossRef]
- Kato, K.; Murata, A.; Sakuta, K. An evaluation on the life cycle of photovoltaic energy system considering production energy of off-grade silicon. Sol. Energy Mat. Sol. Cells 2017, 47, 95–100. [Google Scholar] [CrossRef]
- Golroudbary, S.R.; Lundström, M.; Wilson, B.P. Analogical Environmental Cost Assessment of Silicon Flows Used in Solar Panels by the US and China. Sci. Rep. 2024, 14, 9538. [Google Scholar] [CrossRef]
- Dones, R.; Frischknecht, R. Life cycle assessment of photovoltaic systems: Results of Swiss studies on energy chains. Prog. Photovolt. Res. Appl. 2018, 6, 117–125. [Google Scholar] [CrossRef]
- Heath, G.A.; Silverman, T.J.; Kempe, M.; Deceglie, M.; Ravikumar, D.; Remo, T.; Cui, H.; Sinha, P.; Libby, C.; Shaw, S.; et al. Research and Development Priorities for Silicon Photovoltaic Module Recycling to Support a Circular Economy. Nat. Energy 2020, 5, 502–510. [Google Scholar] [CrossRef]
- Fthenakis, V.M.; Kim, H.C. Greenhouse-gas emissions from solar electric and nuclear power: A life-cycle study. Energy Policy 2007, 35, 2549–2557. [Google Scholar] [CrossRef]
- Reich, N.H.; Alsema, E.A.; van Sark, W.G.J.H.M.; Turkenburg, W.C.; Sinke, W.C. Greenhouse Gas Emissions Associated with Photovoltaic Electricity from Crystalline Silicon Modules under Various Energy Supply Options. Prog. Photovolt. Res. Appl. 2011, 19, 603–613. [Google Scholar] [CrossRef]
- Frankl, P.; Masini, A.; Gamberale, M.; Toccaceli, D. Simplified life-cycle analysis of PV systems in buildings: Present situation and future trends. Prog. Photovolt. Res. Appl. 2018, 6, 137–146. [Google Scholar] [CrossRef]
- Alsema, E.A. Energy pay-back time and CO2 emissions of PV systems. Prog. Photovolt. Res. Appl. 2000, 8, 17–25. [Google Scholar] [CrossRef]
- Oliver, M.; Jackson, T. The evolution of economic and environmental cost for crystalline silicon photovoltaics. Energy Policy 2000, 28, 1011–1021. [Google Scholar] [CrossRef]
- Nomura, N.; Inaba, A.; Tonooka, Y.; Akai, M. Life-cycle emission of oxidic gases from power-generation systems. Appl. Energy 2001, 68, 215–227. [Google Scholar] [CrossRef]
- Kato, K.; Murata, A.; Sakuta, K. Energy pay-back time and lifecycle CO2 emission of residential PV power system with silicon PV module. Prog. Photovolt. Res. Appl. 2018, 6, 105–115. [Google Scholar] [CrossRef]
- Ito, M.; Kato, K.; Komoto, K.; Kichimi, T.; Kurokawa, K. A comparative study on cost and life-cycle analysis for 100 MW very large-scale PV (VLS-PV) systems in deserts using m-Si, a-Si, CdTe, and CIS modules. Prog. Photovolt. Res. Appl. 2008, 16, 17–30. [Google Scholar] [CrossRef]
- Ito, M.; Kato, K.; Sugihara, H.; Kichimi, T.; Song, J.; Kurokawa, K. A preliminary study on potential for very large scale photovoltaic power generation (VLS-PV) system in the Gobi desert from economic and environmental viewpoints. Sol. Energy Mat. Sol. Cells 2003, 75, 507–517. [Google Scholar] [CrossRef]
- Fthenakis, V.M.; Alsema, E. Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004—Early 2005 status. Prog. Photovolt. Res. Appl. 2006, 14, 275–280. [Google Scholar] [CrossRef]
- Bravi, M.; Parisi, M.L.; Tiezzi, E.; Basosi, R. Life cycle assessment of a micro morph photovoltaic system. Energy 2011, 36, 4297–4306. [Google Scholar] [CrossRef]
- Greijer, H.; Karlson, L.; Lindquist, S.E.; Hagfeldt, A. Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system. Renew. Energy 2001, 23, 27–39. [Google Scholar] [CrossRef]
- Kato, K.; Hibino, T.; Komoto, K.; Ihara, S.; Yamamoto, S.; Fujihara, H. A life-cycle analysis on thin-film CdS/CdTe PV modules. Sol. Energy Mat. Sol. Cells 2001, 67, 279–287. [Google Scholar] [CrossRef]
- Schaefer, H.; Hagedorn, G. Hidden energy and correlated environmental characteristics of PV power generation. Renew. Energy 2002, 2, 159–166. [Google Scholar] [CrossRef]
- Manser, J.S.; Christians, J.A.; Kamat, V.P. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956–13008. [Google Scholar] [CrossRef] [PubMed]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Wang, Y.; Xu, H.; Zhang, J.; Zhu, Y.; Hu, Z. Short-Term Stability of Perovskite Solar Cells Affected by In Situ Interface Modification. Sol. RRL 2019, 3, 1989–1996. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework (Edition 2). International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental management—Life Cycle Assessment—Requirements and Guidelines (Edition 1). International Organization for Standardization: Geneva, Switzerland, 2006.
- Piotrowska, K.; Piasecka, I.; Gola, A.; Kosicka, E. Assessment of the Impact of Selected Segments of Road Transport on the Natural Environment Using LCA Analysis. In Advances in Manufacturing IV. MANUFACTURING 2024. Lecture Notes in Mechanical Engineering; Hamrol, A., Grabowska, M., Eds.; Springer: Cham, Switzerland, 2024; pp. 223–236. [Google Scholar] [CrossRef]
- Muthu, S.S. Life Cycle Sustainability Assessment (LCSA); Springer: Singapore, 2021; pp. 1–14. [Google Scholar] [CrossRef]
- Schmidt, W.P. Solutions for Sustainability Challenges. Technical Sustainability Management and Life Cycle Thinking; Springer: Cham, Switzerland, 2024; pp. 27–96. [Google Scholar] [CrossRef]
- Nakamura, S. A Practical Guide to Industrial Ecology by Input-Output Analysis; Springer: Cham, Switzerland, 2023; pp. 1–56. [Google Scholar] [CrossRef]
- Mroziński, A.; Piasecka, I. Selected Aspects of Building, Operation and Environmental Impact of Offshore Wind Power Electric Plants. Pol. Marit. Res. 2015, 22, 86–92. [Google Scholar] [CrossRef]
- Hesser, F.; Kral, I.; Obersteiner, G.; Hörtenhuber, S.; Kühmaier, M.; Zeller, V.; Schebek, L. Progress in Life Cycle Assessment 2021; Springer: Cham, Switzerland, 2023; pp. 7–40. [Google Scholar] [CrossRef]
- Siwiec, D.; Pacana, A. Decision-Making Model Supporting Eco-Innovation in Energy Production Based on Quality, Cost and Life Cycle Assessment (LCA). Energies 2024, 17, 4318. [Google Scholar] [CrossRef]
- Stoffels, P.; Kaspar, J.; Baehre, D.; Vielhaber, M. Holistic Material Selection Approach for More Sustainable Products. Procedia Manuf. 2017, 8, 401–408. [Google Scholar] [CrossRef]
- Reap, J.; Roman, F.; Duncan, S.; Bras, B. A survey of unresolved problems in life cycle assessment. Int. J. Life Cycle Assess. 2008, 13, 290–300. [Google Scholar] [CrossRef]
- Sobocińska, M.; Mazurek-Łopacińska, K.; Graczyk, A.; Kociszewski, K.; Krupowicz, J. Decision-Making Processes of Renewable Energy Consumers Compared to Other Categories of Ecological Products. Energies 2022, 15, 6272. [Google Scholar] [CrossRef]
- Majid, S.; Zhang, X.; Khaskheli, M.B.; Hong, F.; King, P.J.H.; Shamsi, I.H. Eco-Efficiency, Environmental and Sustainable Innovation in Recycling Energy and Their Effect on Business Performance: Evidence from European SMEs. Sustainability 2023, 15, 9465. [Google Scholar] [CrossRef]
- Kłos, Z. Ecobalancial assessment of chosen packaging processes in food industry. Int. J. Life Cycle Assess. 2002, 7, 309. [Google Scholar] [CrossRef]
- Klemeš, J.J.; Varbanov, P.S.; Ocłoń, P.; Chin, H.H. Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies. Energies 2019, 12, 4092. [Google Scholar] [CrossRef]
- Varun; Bhat, I.K.; Prakash, R. LCA of Renewable Energy for Electricity Generation Systems—A Review. Renew. Sustain. Energy Rev. 2009, 13, 1067–1073. [Google Scholar] [CrossRef]
- Kjaer, L.L.; Pigosso, D.C.A.; McAloone, T.C.; Birkved, M. Guidelines for evaluating the environmental performance of Product/Service-Systems through life cycle assessment. J. Clean. Prod. 2018, 190, 666–678. [Google Scholar] [CrossRef]
- Suppipat, S.; Chotiratanapinun, T.; Teachavorasinskun, K.; Hu, A.H. Design for Enhancing Eco-Efficiency of Energy-Related Products. The Integration of Simplified LCA Tools in Industrial Design Education; Springer: Cham, Switzerland, 2023; pp. 15–43. [Google Scholar] [CrossRef]
- Piotrowska, K.; Piasecka, I.; Kasner, R. Assessment of the Life Cycle of a Wind and Photovoltaic Power Plant in the Context of Sustainable Development of Energy Systems. Materials 2022, 15, 7778. [Google Scholar] [CrossRef]
- Wang, S.; Su, D. Sustainable Product Innovation and Consumer Communication. Sustainability 2022, 14, 8395. [Google Scholar] [CrossRef]
- Proske, M.; Finkbeiner, M. Obsolescence in LCA–Methodological Challenges and Solution Approaches. Int. J. Life Cycle Assess. 2020, 25, 495–507. [Google Scholar] [CrossRef]
- Palousis, N.; Luong, L.; Abhary, K. An Integrated LCA/LCC Framework for Assessing Product Sustainability Risk; WIT Press: Southampton, UK, 2008; pp. 121–128. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Inaba, A.; Tan, R.; Christiansen, K.; Klüppel, H.-J. The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. Int. J. Life Cycle Assess. 2006, 11, 80–85. [Google Scholar] [CrossRef]
- Piasecka, I.; Tomporowski, A. Analysis of Environmental and Energetical Possibilities of Sustainable Development of Wind and Photovoltaic Power Plants. Probl. Sustain. Dev. 2018, 13, 125–130. [Google Scholar]
- Kutraleeswaran, M.; Venkatachalam, M.; Saroja, M.; Gowthaman, M.; Shankar, S. Dye sensitized solar cells—A review. Trans. Indian Ceram. Soc. 2017, 4, 26–38. [Google Scholar]
- Tian, X.; Stranks, S.D.; You, F. Life cycle energy use and environmental implications of high-performance perovskite tandem solar cells. Sci. Adv. 2020, 6, eabb0055. [Google Scholar] [CrossRef] [PubMed]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in Life Cycle Assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef]
- Guinée, J. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Springer: Dordrecht, The Netherlands, 2002; pp. 1–390. [Google Scholar] [CrossRef]
- Fukushige, S.; Kobayashi, H.; Yamasue, E.; Hara, K. EcoDesign for Sustainable Products, Services and Social Systems II; Springer: Singapore, 2024; pp. 109–124. [Google Scholar] [CrossRef]
- Bałdowska-Witos, P.; Piasecka, I.; Flizikowski, J.; Tomporowski, A.; Idzikowski, A.; Zawada, M. Life Cycle Assessment of Two Alternative Plastics for Bottle Production. Materials 2021, 14, 4552. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Goedkoop, M.; Guinée, J.; Heijungs, R.; Huijbregts, M.; Jolliet, O.; Margni, M.; De Schryver, A.; Humbert, S.; Laurent, A.; et al. Identifying best existing practice for characterization modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 2013, 18, 683–697. [Google Scholar] [CrossRef]
- Bare, J.C.; Hofstetter, P.; Pennington, D.W.; Udo de Haes, H.A. Midpoints versus endpoints: The sacrifices and benefits. Int. J. Life Cycle Assess. 2000, 5, 319–326. [Google Scholar] [CrossRef]
- Jolliet, O.; Müller-Wenk, R.; Bare, J.; Brent, A.; Goedkoop, M.; Heijungs, R.; Itsubo, N.; Peña, C.; Pennington, D.; Potting, J.; et al. The LCIA midpoint-damage framework of the UNEP/SETAC life cycle initiative. Int. J. Life Cycle Assess. 2004, 9, 394–404. [Google Scholar] [CrossRef]
- Portillo, F.; Alcayde, A.; Garcia, R.M.; Fernandez-Ros, M.; Gazquez, J.A.; Novas, N. Life Cycle Assessment in Renewable Energy: Solar and Wind Perspectives. Environments 2024, 11, 147. [Google Scholar] [CrossRef]
- Piasecka, I.; Tomporowski, A.; Piotrowska, K. Environmental analysis of post-use management of car tires. Przem. Chem. 2018, 10, 1649–1653. [Google Scholar] [CrossRef]
- Millet, D.; Bistagnino, L.; Lanzavecchia, C.; Camous, R.; Poldma, T. Does the Potential of the Use of LCA Match the Design Team Needs? J. Clean. Prod. 2007, 15, 335–346. [Google Scholar] [CrossRef]
- Su, D. Sustainable Product Development. Tools, Methods and Examples; Springer: Cham, Switzerland, 2020; pp. 15–70. [Google Scholar] [CrossRef]
- Cooper, J.S. Specifying functional units and reference flows for comparable alternatives. Int. J. Life Cycle Assess. 2003, 8, 337–349. [Google Scholar] [CrossRef]
- Finkbeiner, M. Product environmental footprint—Breakthrough or breakdown for policy implementation of life cycle assessment? Int. J. Life Cycle Assess. 2014, 19, 266–271. [Google Scholar] [CrossRef]
- Sobaszek, L.; Piasecka, I.; Flizikowski, J.; Tomporowski, A.; Sokolovskij, E.; Baldowska-Witos, P. Environmentally Oriented Analysis of Benefits and Expenditures in the Life Cycle of a Wind Power Plant. Materials 2023, 16, 538. [Google Scholar] [CrossRef] [PubMed]
- Heijungs, R. Probability, Statistics and Life Cycle Assessment. Guidance for Dealing with Uncertainty and Sensitivity; Springer: Cham, Switzerland, 2024; pp. 331–454. [Google Scholar] [CrossRef]
- Bulle, C.; Margni, M.; Patouillard, L.; Boulay, A.M.; Bourgault, G.; De Bruille, V.; Cao, V.; Hauschild, M.; Henderson, A.; Humbert, S.; et al. IMPACT World+: A globally regionalized life cycle impact assessment method. Int. J. Life Cycle Assess. 2019, 24, 1653–1674. [Google Scholar] [CrossRef]
- Jolliet, O.; Frischknecht, R.; Bare, J.; Boulay, A.M.; Bulle, C.; Fantke, P.; Gheewala, S.; Hauschild, M.; Itsubo, N.; Margni, M.; et al. Global guidance on environmental life cycle impact assessment indicators: Findings of the scoping phase. Int. J. Life Cycle Assess. 2014, 19, 962–967. [Google Scholar] [CrossRef]
- Nalau, J.; Gilmore, E.; Howden, M. Improving adaptation assessment in the IPCC. NJP Clim. Action 2024, 3, 76. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge; University Press: Cambridge, UK, 2021; pp. 147–1926. [Google Scholar] [CrossRef]
- Muñoz, I.; Schmidt, J.H. Methane oxidation, biogenic carbon, and the IPCC’s emission metrics. Proposal for a consistent greenhouse-gas accounting. Int. J. Life Cycle Assess. 2016, 21, 1069–1075. [Google Scholar] [CrossRef]
- Piotrowska, K.; Piasecka, I. Specification of Environmental Consequences of the Life Cycle of Selected Post-Production Waste of Wind Power Plants Blades. Materials 2021, 14, 4975. [Google Scholar] [CrossRef]
- Frischknecht, R.; Wyss, F.; Büsser Knöpfel, S.; Lützkendorf, T.; Balouktsi, M. Cumulative energy demand in LCA: The energy harvested approach. Int. J. Life Cycle Assess. 2015, 20, 957–969. [Google Scholar] [CrossRef]
- Patel, M. Cumulative energy demand (CED) and cumulative CO2 emissions for products of the organic chemical industry. Energy 2003, 28, 721–740. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Hellweg, S.; Frischknecht, R.; Hendriks, H.W.M.; Hungerbühler, K.; Hendriks, A.J. Cumulative Energy Demand As Predictor for the Environmental Burden of Commodity Production. Environ. Sci. Technol. 2010, 44, 2189–2196. [Google Scholar] [CrossRef]
- Kłos, Z.; Kalkowska, J.; Kasprzak, J. Towards a Sustainable Future—Life Cycle Management. Challenges and Prospects; Springer: Cham, Switzerland, 2022; pp. 87–163. [Google Scholar] [CrossRef]
- Curran, M.A. Interpretation, Critical Review and Reporting in Life Cycle Assessment; Springer: Cham, Switzerland, 2023; pp. 7–50. [Google Scholar] [CrossRef]
- Piasecka, I.; Bałdowska-Witos, P.; Piotrowska, K.; Kruszelnicka, W.; Flizikowski, J.; Tomporowski, A. Ecological life cycle assessment of the 1 MW photovoltaic power plant under Polish environmental conditions. Przem. Chem. 2021, 1, 40–46. [Google Scholar] [CrossRef]
- Koehler, A. Water use in LCA: Managing the planet’s freshwater resources. Int. J. Life Cycle Assess. 2008, 13, 451–455. [Google Scholar] [CrossRef]
- Boulay, A.M.; Bulle, C.; Bayart, J.B.; Deschênes, L.; Margni, M. Regional Characterization of Freshwater Use in LCA: Modeling Direct Impacts on Human Health. Environ. Sci. Technol. 2011, 45, 8948–8957. [Google Scholar] [CrossRef] [PubMed]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the Environmental Impacts of Freshwater Consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef]
- Andrew, R.M. A comparison of estimates of global carbon dioxide emissions from fossil carbon sources. Earth Syst. Sci. Data 2020, 12, 1437–1465. [Google Scholar] [CrossRef]
- Burke, P.J.; Shahiduzzaman, M.; Stern, D.I. Carbon dioxide emissions in the short run: The rate and sources of economic growth matter. Glob. Environ. Chang. 2015, 33, 109–121. [Google Scholar] [CrossRef]
- Georgopoulos, P.G.; Roy, A.; Yonone-Lioy, M.J.; Opiekun, R.E.; Lioy, P.J. Environmental copper: Its dynamics and human exposure issues. J. Toxicol. Environ. Health 2011, 4, 341–394. [Google Scholar] [CrossRef]
- Ibrahim, M.; El-Haes, H. Computational spectroscopic study of copper, cadmium, lead and zinc interactions in the environment. Int. J. Environ. Pollut. 2005, 23, 417–424. [Google Scholar] [CrossRef]
- Laws, E.A. Environmental Toxicology; Springer: New York, NY, USA, 2013; pp. 203–238. [Google Scholar] [CrossRef]
- Mar, K.A.; Unger, C.; Walderdorff, L.; Butler, T. Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environ. Sci. Policy 2022, 134, 127–136. [Google Scholar] [CrossRef]
- Miller, S.M.; Wofsy, S.C.; Michalak, A.M.; Kort, E.A.; Andrews, A.E.; Biraud, S.C.; Dlugokencky, E.J.; Eluszkiewicz, J.; Fischer, M.L.; Janssens-Maenhout, G.; et al. Anthropogenic emissions of methane. Earth Atmos. Planet. Sci. 2013, 110, 20018–20022. [Google Scholar] [CrossRef]
- Piotrowska, K.; Bałdowska-Witos, P.; Piasecka, I.; Kasner, R.; Kruszelnicka, W.; Tomporowski, A. Identification of the most important areas of environmental impact over the life cycle of car tires. Przem. Chem. 2021, 11, 1593–1599. [Google Scholar] [CrossRef]
- El Chaar, L.; Lamont, L.A.; El Zein, N. Review of photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 2165–2175. [Google Scholar] [CrossRef]
- Zacher, L.W. Technology, Society and Sustainability: Selected Concepts, Issues and Cases; Springer: Basel, Switzerland, 2017; pp. 203–221. [Google Scholar] [CrossRef]
- Bagnall, D.M.; Boreland, M. Photovoltaic technologies. Energy Policy 2008, 36, 4390–4396. [Google Scholar] [CrossRef]
- Khan, I. Renewable Energy and Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–22. [Google Scholar] [CrossRef]
- Leda, P.; Kruszelnicka, W.; Leda, A.; Piasecka, I.; Kłos, Z.; Tomporowski, A.; Flizikowski, J.; Opielak, M. Life Cycle Analysis of a Photovoltaic Power Plant Using the CED Method. Energies 2024, 16, 8098. [Google Scholar] [CrossRef]
- Rigatos, G.G. Intelligent Renewable Energy Systems: Modelling and Control; Springer: Cham, Switzerland, 2016; pp. 339–409. [Google Scholar] [CrossRef]
- Ross, J.R.H. Sustainable Energy; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–75. [Google Scholar] [CrossRef]
Element of a Technical Object | Support Structure | Photovoltaic Panels | Inverter Station | Electrical Installation | Transformer | Unit | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Form of Post-Use Management | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | |
Impact Category | |||||||||||
Climate change, human health, short term | 3.11 × 10−5 | 2.81 × 10−6 | 4.70 × 10−3 | 3.17 × 10−3 | 6.29 × 10−5 | 5.66 × 10−5 | 2.67 × 10−5 | 1.68 × 10−5 | 4.53 × 10−5 | 4.51 × 10−5 | DALY |
Climate change, human health, long term | 9.42 × 10−5 | −7.62 × 10−6 | 2.47 × 10−2 | 1.82 × 10−2 | 1.88 × 10−4 | 1.34 × 10−4 | 8.25 × 10−5 | 4.07 × 10−5 | 1.31 × 10−4 | 1.09 × 10−4 | DALY |
Photochemical oxidant formation | 4.15 × 10−7 | 1.49 × 10−7 | 1.35 × 10−5 | 8.19 × 10−7 | 6.95 × 10−7 | 5.14 × 10−7 | 3.96 × 10−7 | 2.03 × 10−7 | 4.93 × 10−7 | 4.19 × 10−7 | DALY |
Ionizing radiation, human health | 1.66 × 10−7 | −1.12 × 10−7 | 1.34 × 10−5 | 9.33 × 10−6 | 2.96 × 10−7 | 2.41 × 10−7 | 9.49 × 10−8 | 4.72 × 10−8 | 1.96 × 10−7 | 1.29 × 10−6 | DALY |
Ozone layer depletion | 7.13 × 10−9 | −4.50 × 10−9 | 9.47 × 10−7 | 2.73 × 10−7 | 1.41 × 10−8 | 5.10 × 10−9 | 5.38 × 10−9 | 2.04 × 10−9 | 1.14 × 10−8 | 3.51 × 10−9 | DALY |
Human toxicity cancer, short term | 8.10 × 10−5 | 9.38 × 10−6 | 6.12 × 10−5 | 3.93 × 10−4 | 1.40 × 10−4 | 7.37 × 10−5 | 6.16 × 10−5 | 7.35 × 10−6 | 1.17 × 10−4 | 8.58 × 10−5 | DALY |
Human toxicity cancer, long term | 3.49 × 10−6 | 2.19 × 10−6 | 2.22 × 10−5 | 1.51 × 10−5 | 9.99 × 10−6 | 4.66 × 10−6 | 1.68 × 10−6 | 5.88 × 10−6 | 4.03 × 10−6 | 1.85 × 10−6 | DALY |
Human toxicity non-cancer, short term | 1.71 × 10−5 | 4.00 × 10−5 | 7.51 × 10−5 | 4.24 × 10−5 | 2.92 × 10−5 | 4.49 × 10−5 | 1.30 × 10−5 | 3.41 × 10−5 | 2.33 × 10−5 | 3.56 × 10−5 | DALY |
Human toxicity non-cancer, long term | 2.01 × 10−4 | 1.37 × 10−4 | 7.06 × 10−4 | 4.16 × 10−5 | 3.43 × 10−4 | 1.58 × 10−4 | 1.47 × 10−4 | 1.07 × 10−4 | 2.76 × 10−4 | 1.13 × 10−4 | DALY |
Particulate matter formation | 5.80 × 10−5 | 1.60 × 10−5 | 3.02 × 10−3 | 2.08 × 10−3 | 1.15 × 10−4 | 6.09 × 10−5 | 4.05 × 10−5 | 1.73 × 10−5 | 6.75 × 10−5 | 4.03 × 10−5 | DALY |
Water availability, human health | 1.89 × 10−2 | −1.72 × 10−2 | 2.13 × 100 | 1.27 × 100 | 3.10 × 10−2 | 1.03 × 10−2 | 1.14 × 10−2 | 2.16 × 10−3 | 2.54 × 10−2 | 1.01 × 10−2 | DALY |
Climate change, ecosystem quality, short term | 7.70 × 10−8 | 6.94 × 10−9 | 2.16 × 10−5 | 1.46 × 10−5 | 1.36 × 10−7 | 1.22 × 10−7 | 5.77 × 10−8 | 3.63 × 10−8 | 9.80 × 10−8 | 9.73 × 10−8 | PDF × m2 × yr |
Climate change, ecosystem quality, long term | 2.37 × 10−7 | −1.90 × 10−8 | 6.62 × 10−5 | 4.56 × 10−5 | 4.14 × 10−7 | 2.94 × 10−7 | 1.81 × 10−7 | 8.97 × 10−8 | 2.89 × 10−7 | 2.39 × 10−7 | PDF × m2 × yr |
Marine acidification, short term | 5.89 × 10−9 | 7.53 × 10−10 | 1.72 × 10−6 | 1.19 × 10−6 | 1.06 × 10−8 | 7.66 × 10−9 | 4.61 × 10−9 | 2.29 × 10−9 | 7.43 × 10−9 | 6.14 × 10−9 | PDF × m2 × yr |
Marine acidification, long term | 5.42 × 10−8 | 6.94 × 10−9 | 1.59 × 10−5 | 1.09 × 10−5 | 9.81 × 10−8 | 7.06 × 10−8 | 4.25 × 10−8 | 2.11 × 10−8 | 6.84 × 10−8 | 5.66 × 10−8 | PDF × m2 × yr |
Freshwater ecotoxicity, short term | 1.59 × 10−8 | 1.33 × 10−8 | 4.05 × 10−6 | 2.05 × 10−6 | 3.37 × 10−8 | 1.73 × 10−8 | 9.92 × 10−9 | 3.62 × 10−9 | 2.09 × 10−8 | 1.47 × 10−8 | PDF × m2 × yr |
Freshwater ecotoxicity, long term | 5.12 × 10−5 | 2.31 × 10−5 | 1.58 × 10−3 | 6.78 × 10−4 | 1.45 × 10−4 | 1.56 × 10−5 | 4.17 × 10−5 | 1.13 × 10−6 | 6.01 × 10−5 | 9.27 × 10−6 | PDF × m2 × yr |
Freshwater acidification | 1.34 × 10−8 | 2.14 × 10−9 | 8.80 × 10−7 | 5.91 × 10−7 | 3.97 × 10−8 | 1.66 × 10−8 | 1.05 × 10−8 | 3.78 × 10−9 | 1.68 × 10−8 | 7.59 × 10−9 | PDF × m2 × yr |
Terrestrial acidification | 8.64 × 10−8 | 1.50 × 10−8 | 5.74 × 10−6 | 3.87 × 10−6 | 2.46 × 10−7 | 1.05 × 10−7 | 7.78 × 10−8 | 2.83 × 10−8 | 1.05 × 10−7 | 4.84 × 10−8 | PDF × m2 × yr |
Freshwater eutrophication | 1.18 × 10−10 | −8.07 × 10−11 | 6.19 × 10−9 | 2.59 × 10−9 | 2.29 × 10−10 | 1.95 × 10−10 | 7.55 × 10−11 | 3.63 × 10−11 | 1.57 × 10−10 | 1.22 × 10−10 | PDF × m2 × yr |
Marine eutrophication | 2.10 × 10−9 | 1.48 × 10−9 | 1.27 × 10−7 | 8.17 × 10−8 | 3.68 × 10−9 | 2.59 × 10−9 | 1.45 × 10−9 | 1.37 × 10−9 | 2.69 × 10−9 | 1.93 × 10−9 | PDF × m2 × yr |
Ionizing radiation, ecosystem quality | 1.80 × 10−16 | −9.66 × 10−17 | 2.22 × 10−14 | 1.45 × 10−14 | 3.23 × 10−16 | 1.48 × 10−16 | 1.66 × 10−16 | 3.82 × 10−17 | 2.09 × 10−16 | 7.89 × 10−17 | PDF × m2 × yr |
Land transformation, biodiversity | 4.32 × 10−8 | 3.38 × 10−9 | 4.64 × 10−6 | 2.77 × 10−6 | 8.48 × 10−8 | 5.84 × 10−8 | 3.65 × 10−8 | 2.28 × 10−8 | 5.27 × 10−8 | 3.39 × 10−8 | PDF × m2 × yr |
Land occupation, biodiversity | 1.29 × 10−8 | 7.19 × 10−9 | 2.15 × 10−6 | 1.49 × 10−6 | 2.58 × 10−8 | 1.84 × 10−8 | 1.16 × 10−8 | 7.18 × 10−9 | 1.51 × 10−8 | 1.10 × 10−8 | PDF × m2 × yr |
Water availability, freshwater ecosystem | 1.95 × 10−10 | −1.58 × 10−10 | 2.37 × 10−9 | 1.09 × 10−9 | 3.51 × 10−10 | 6.55 × 10−12 | 1.50 × 10−10 | 9.90 × 10−12 | 2.69 × 10−10 | 8.04 × 10−12 | PDF × m2 × yr |
Water availability, terrestrial ecosystem | 1.49 × 10−11 | 6.07 × 10−12 | 3.80 × 10−9 | 2.32 × 10−9 | 2.65 × 10−11 | 1.79 × 10−11 | 1.15 × 10−11 | 5.80 × 10−12 | 1.73 × 10−11 | 1.26 × 10−11 | PDF × m2 × yr |
Thermally polluted water | 1.13 × 10−12 | 5.26 × 10−13 | 5.19 × 10−10 | 3.30 × 10−10 | 2.60 × 10−12 | 1.41 × 10−12 | 1.07 × 10−12 | 3.26 × 10−13 | 2.19 × 10−12 | 1.92 × 10−12 | PDF × m2 × yr |
Element of a Technical Object | Support Structure | Photovoltaic Panels | Inverter Station | Electrical Installation | Transformer | Unit | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Form of Post-Use Management | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | |
Impact Category | |||||||||||
Climate change, human health, short term | 2.82 × 10−5 | 2.54 × 10−6 | 4.26 × 10−3 | 2.87 × 10−3 | 5.69 × 10−5 | 5.12 × 10−5 | 2.41 × 10−5 | 1.52 × 10−5 | 4.10 × 10−5 | 4.08 × 10−5 | DALY |
Climate change, human health, long term | 8.52 × 10−5 | −6.90 × 10−6 | 2.23 × 10−2 | 1.64 × 10−2 | 1.70 × 10−4 | 1.21 × 10−4 | 7.46 × 10−5 | 3.68 × 10−5 | 1.19 × 10−4 | 9.85 × 10−5 | DALY |
Photochemical oxidant formation | 3.76 × 10−7 | 1.35 × 10−7 | 1.22 × 10−5 | 7.41 × 10−7 | 6.29 × 10−7 | 4.65 × 10−7 | 3.58 × 10−7 | 1.84 × 10−7 | 4.46 × 10−7 | 3.79 × 10−7 | DALY |
Ionizing radiation, human health | 1.50 × 10−7 | −1.02 × 10−7 | 1.22 × 10−5 | 8.44 × 10−6 | 2.68 × 10−7 | 2.18 × 10−7 | 8.59 × 10−8 | 4.27 × 10−8 | 1.78 × 10−7 | 1.17 × 10−7 | DALY |
Ozone layer depletion | 6.45 × 10−9 | −4.08 × 10−9 | 8.57 × 10−7 | 2.47 × 10−7 | 1.27 × 10−8 | 4.62 × 10−9 | 4.87 × 10−9 | 1.85 × 10−9 | 1.03 × 10−8 | 3.18 × 10−9 | DALY |
Human toxicity cancer, short term | 7.33 × 10−5 | 8.48 × 10−6 | 5.53 × 10−4 | 3.56 × 10−4 | 1.26 × 10−4 | 6.67 × 10−5 | 5.58 × 10−5 | 6.65 × 10−6 | 1.06 × 10−4 | 7.77 × 10−5 | DALY |
Human toxicity cancer, long term | 3.16 × 10−6 | 1.98 × 10−6 | 2.01 × 10−5 | 1.36 × 10−5 | 9.04 × 10−6 | 4.22 × 10−6 | 1.52 × 10−6 | 5.32 × 10−7 | 3.65 × 10−6 | 1.67 × 10−6 | DALY |
Human toxicity non-cancer, short term | 1.55 × 10−4 | 3.62 × 10−5 | 6.80 × 10−4 | 3.84 × 10−4 | 2.64 × 10−4 | 4.06 × 10−5 | 1.18 × 10−4 | 3.08 × 10−5 | 2.11 × 10−4 | 3.22 × 10−5 | DALY |
Human toxicity non-cancer, long term | 1.81 × 10−4 | 1.24 × 10−4 | 6.39 × 10−4 | 3.76 × 10−5 | 3.11 × 10−4 | 1.43 × 10−4 | 1.33 × 10−4 | 9.65 × 10−5 | 2.50 × 10−4 | 1.02 × 10−4 | DALY |
Particulate matter formation | 5.25 × 10−5 | 1.45 × 10−5 | 2.74 × 10−3 | 1.88 × 10−3 | 1.04 × 10−4 | 5.51 × 10−5 | 3.66 × 10−5 | 1.57 × 10−5 | 6.10 × 10−5 | 3.65 × 10−5 | DALY |
Water availability, human health | 1.71 × 10−2 | −1.55 × 10−2 | 1.92 × 100 | 1.15 × 100 | 2.80 × 10−2 | 9.36 × 10−3 | 1.03 × 10−2 | 1.95 × 10−3 | 2.29 × 10−2 | 9.10 × 10−3 | DALY |
Climate change, ecosystem quality, short term | 6.97 × 10−8 | 6.28 × 10−9 | 1.95 × 10−5 | 1.32 × 10−5 | 1.23 × 10−7 | 1.11 × 10−7 | 5.22 × 10−8 | 3.28 × 10−8 | 8.87 × 10−8 | 8.81 × 10−8 | PDF × m2 × yr |
Climate change, ecosystem quality, long term | 2.14 × 10−7 | −1.72 × 10−8 | 5.99 × 10−5 | 4.12 × 10−5 | 3.74 × 10−7 | 2.66 × 10−7 | 1.64 × 10−7 | 8.12 × 10−8 | 2.61 × 10−7 | 2.16 × 10−7 | PDF × m2 × yr |
Marine acidification, short term | 5.33 × 10−9 | 6.81 × 10−10 | 1.56 × 10−6 | 1.07 × 10−6 | 9.63 × 10−9 | 6.93 × 10−9 | 4.17 × 10−9 | 2.07 × 10−9 | 6.72 × 10−9 | 5.55 × 10−9 | PDF × m2 × yr |
Marine acidification, long term | 4.91 × 10−8 | 6.28 × 10−9 | 1.44 × 10−5 | 9.90 × 10−6 | 8.88 × 10−8 | 6.39 × 10−8 | 3.84 × 10−8 | 1.91 × 10−8 | 6.19 × 10−8 | 5.12 × 10−8 | PDF × m2 × yr |
Freshwater ecotoxicity, short term | 1.44 × 10−8 | 1.20 × 10−8 | 3.67 × 10−6 | 1.85 × 10−6 | 3.05 × 10−8 | 1.56 × 10−8 | 8.97 × 10−9 | 3.27 × 10−9 | 1.89 × 10−8 | 1.33 × 10−8 | PDF × m2 × yr |
Freshwater ecotoxicity, long term | 4.63 × 10−5 | 2.09 × 10−5 | 1.43 × 10−3 | 6.14 × 10−4 | 1.32 × 10−4 | 1.41 × 10−5 | 3.78 × 10−5 | 1.03 × 10−6 | 5.44 × 10−5 | 8.39 × 10−6 | PDF × m2 × yr |
Freshwater acidification | 1.21 × 10−8 | 1.93 × 10−9 | 7.96 × 10−7 | 5.35 × 10−7 | 3.59 × 10−8 | 1.50 × 10−8 | 9.53 × 10−9 | 3.42 × 10−9 | 1.52 × 10−8 | 6.87 × 10−9 | PDF × m2 × yr |
Terrestrial acidification | 7.82 × 10−8 | 1.35 × 10−8 | 5.19 × 10−6 | 3.50 × 10−6 | 2.23 × 10−7 | 9.54 × 10−8 | 7.04 × 10−8 | 2.56 × 10−8 | 9.48 × 10−8 | 4.38 × 10−8 | PDF × m2 × yr |
Freshwater eutrophication | 1.07 × 10−10 | −7.30 × 10−11 | 5.60 × 10−9 | 2.34 × 10−9 | 2.08 × 10−10 | 1.77 × 10−10 | 6.83 × 10−11 | 3.28 × 10−11 | 1.42 × 10−10 | 1.10 × 10−10 | PDF × m2 × yr |
Marine eutrophication | 1.90 × 10−9 | 1.34 × 10−9 | 1.15 × 10−7 | 7.39 × 10−8 | 3.33 × 10−9 | 2.35 × 10−9 | 1.31 × 10−9 | 1.24 × 10−9 | 2.43 × 10−9 | 1.75 × 10−9 | PDF × m2 × yr |
Ionizing radiation, ecosystem quality | 1.63 × 10−16 | −8.74 × 10−17 | 2.00 × 10−14 | 1.31 × 10−14 | 2.92 × 10−16 | 1.34 × 10−16 | 1.50 × 10−16 | 3.45 × 10−17 | 1.89 × 10−16 | 7.14 × 10−17 | PDF × m2 × yr |
Land transformation, biodiversity | 3.91 × 10−8 | 3.06 × 10−9 | 4.20 × 10−6 | 2.51 × 10−6 | 7.67 × 10−8 | 5.28 × 10−8 | 3.30 × 10−8 | 2.06 × 10−8 | 4.77 × 10−8 | 3.07 × 10−8 | PDF × m2 × yr |
Land occupation, biodiversity | 1.16 × 10−8 | 6.51 × 10−9 | 1.94 × 10−6 | 1.35 × 10−6 | 2.33 × 10−8 | 1.66 × 10−8 | 1.05 × 10−8 | 6.50 × 10−9 | 1.37 × 10−8 | 9.99 × 10−9 | PDF × m2 × yr |
Water availability, freshwater ecosys. | 1.76 × 10−10 | −1.43 × 10−10 | 2.14 × 10−9 | 9.82 × 10−10 | 3.18 × 10−10 | 5.93 × 10−12 | 1.35 × 10−10 | 8.96 × 10−12 | 2.43 × 10−10 | 7.28 × 10−12 | PDF × m2 × yr |
Water availability, terrestrial ecosys. | 1.35 × 10−11 | 5.49 × 10−12 | 3.44 × 10−9 | 2.10 × 10−9 | 2.40 × 10−11 | 1.62 × 10−11 | 1.04 × 10−11 | 5.25 × 10−12 | 1.57 × 10−11 | 1.14 × 10−11 | PDF × m2 × yr |
Thermally polluted water | 1.02 × 10−12 | 4.76 × 10−13 | 4.70 × 10−10 | 2.99 × 10−10 | 2.35 × 10−12 | 1.28 × 10−12 | 9.72 × 10−13 | 2.95 × 10−13 | 1.98 × 10−12 | 1.73 × 10−12 | PDF × m2 × yr |
Area of Influence | Power Plant Components | Support Structure | Photovoltaic Panels | Inverter Station | Electrical Installation | Transformer | Unit | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Post-Use Development Scenario | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | ||
Human health | sc-Si | 1.96 × 10−2 | −1.70 × 10−2 | 2.16 × 100 | 1.29 × 100 | 3.21 × 10−2 | 1.09 × 10−2 | 1.19 × 10−2 | 2.38 × 10−3 | 2.62 × 10−2 | 1.05 × 10−2 | DALY |
PSC | 1.77 × 10−2 | −1.54 × 10−2 | 1.95 × 100 | 1.17 × 100 | 2.91 × 10−2 | 9.84 × 10−3 | 1.08 × 10−2 | 2.16 × 10−3 | 2.37 × 10−2 | 9.49 × 10−3 | ||
Ecosystem quality | sc-Si | 5.18 × 10−5 | 2.32 × 10−5 | 1.70 × 10−3 | 7.62 × 10−4 | 1.47 × 10−4 | 1.63 × 10−5 | 4.22 × 10−5 | 1.35 × 10−6 | 6.08 × 10−5 | 9.79 × 10−6 | PDF × m2 × yr |
PSC | 4.68 × 10−5 | 2.10 × 10−5 | 1.54 × 10−3 | 6.89 × 10−4 | 1.33 × 10−4 | 1.47 × 10−5 | 3.81 × 10−5 | 1.22 × 10−6 | 5.50 × 10−5 | 8.86 × 10−6 |
Element of a Technical Object | Support Structure | Photovoltaic Panels | Inverter Station | Electrical Installation | Transformer | Unit | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Form of Post-Use Management | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | ||
Areas of Influence | Type of Power Plant | |||||||||||
Human health | sc-Si | 1.24 × 105 | 2.51 × 104 | 7.27 × 106 | 4.03 × 106 | 3.03 × 105 | 1.13 × 105 | 8.11 × 104 | 2.37 × 104 | 1.50 × 105 | 6.28 × 104 | EUR |
PSC | 1.23 × 105 | 7.74 × 104 | 3.80 × 106 | 2.06 × 106 | 1.94 × 105 | 4.59 × 104 | 1.04 × 105 | 3.71 × 104 | 1.36 × 105 | 4.43 × 104 | EUR | |
Ecosystem quality | sc-Si | 1.23 × 105 | 7.74 × 104 | 3.80 × 106 | 2.06 × 106 | 1.94 × 105 | 4.59 × 104 | 1.04 × 105 | 3.71 × 104 | 1.36 × 105 | 4.43 × 104 | EUR |
PSC | 1.01 × 105 | 6.30 × 104 | 1.57 × 106 | 7.96 × 105 | 1.75 × 105 | 4.16 × 104 | 8.28 × 104 | 2.95 × 104 | 1.23 × 105 | 4.01 × 104 | EUR |
Element of a Technical Object | Support Structure | Photovoltaic Panels | Inverter Station | Electrical Installation | Transformer | Unit | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Form of Post-Use Management | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | ||
Impact Category | Type of Power Plant | |||||||||||
GWP100—fossil | sc-Si | 1.32 × 104 | −3.97 × 102 | 1.01 × 106 | 5.51 × 105 | 2.32 × 104 | 6.75 × 103 | 8.76 × 103 | 1.76 × 103 | 1.83 × 104 | 6.10 × 103 | kg CO2 eq |
PSC | 1.07 × 104 | −1.55 × 103 | 5.45 × 105 | 2.69 × 105 | 2.10 × 104 | 6.11 × 103 | 6.98 × 103 | 1.40 × 103 | 1.66 × 104 | 5.52 × 103 | kg CO2 eq | |
GWP100—biogenic | sc-Si | 2.86 × 102 | 9.02 × 101 | 4.06 × 103 | 2.22 × 103 | 4.60 × 102 | 3.78 × 101 | 2.04 × 102 | 2.13 × 100 | 3.68 × 102 | 4.67 × 101 | kg CO2 eq |
PSC | 2.33 × 102 | 5.58 × 101 | 2.28 × 103 | 1.10 × 103 | 4.16 × 102 | 3.42 × 101 | 1.62 × 102 | 1.70 × 100 | 3.33 × 102 | 4.23 × 101 | kg CO2 eq | |
GWP100—land transformation | sc-Si | 4.33 × 101 | 1.48 × 101 | 1.95 × 103 | 9.95 × 102 | 6.03 × 101 | 9.60 × 100 | 3.31 × 101 | 1.20 × 100 | 4.84 × 101 | 1.11 × 101 | kg CO2 eq |
PSC | 3.53 × 101 | 9.51 × 100 | 1.02 × 103 | 4.74 × 102 | 5.45 × 101 | 8.69 × 100 | 2.64 × 101 | 9.56 × 10−1 | 4.38 × 101 | 1.01 × 101 | kg CO2 eq |
Element of a Technical Object | Support Structure | Photovoltaic Panels | Inverter Station | Electrical Installation | Transformer | Unit | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Form of Post-Use Management | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | Landfill | Recycling | ||
Impact Category | Type of Power Plant | |||||||||||
Non-renewable, fossil | sc-Si | 1.84 × 105 | 1.69 × 104 | 1.27 × 107 | 6.96 × 106 | 2.76 × 105 | 1.23 × 105 | 1.52 × 105 | 4.98 × 104 | 2.16 × 105 | 1.08 × 105 | MJ |
PSC | 1.43 × 105 | 1.31 × 104 | 6.81 × 106 | 5.23 × 106 | 2.38 × 105 | 1.06 × 105 | 1.15 × 105 | 3.78 × 104 | 1.86 × 105 | 9.34 × 104 | MJ | |
Non-renewable, nuclear | sc-Si | 2.55 × 104 | −2.18 × 104 | 1.86 × 106 | 9.60 × 105 | 4.05 × 104 | 2.11 × 104 | 2.26 × 104 | 7.45 × 103 | 3.24 × 104 | 1.57 × 104 | MJ |
PSC | 1.98 × 104 | −1.69 × 104 | 1.07 × 106 | 7.79 × 105 | 3.49 × 104 | 1.82 × 104 | 1.72 × 104 | 5.65 × 103 | 2.79 × 104 | 1.35 × 104 | MJ | |
Non-renewable, biomass | sc-Si | 2.11 × 101 | 5.08 × 100 | 9.71 × 102 | 1.90 × 102 | 2.95 × 101 | 5.27 × 100 | 1.58 × 101 | 7.61 × 10−1 | 2.56 × 101 | 6.74 × 100 | MJ |
PSC | 1.64 × 101 | 3.94 × 100 | 4.85 × 102 | 1.21 × 102 | 2.54 × 101 | 4.54 × 100 | 1.20 × 101 | 5.77 × 10−1 | 2.21 × 101 | 5.81 × 100 | MJ | |
Renewable, biomass | sc-Si | 3.39 × 103 | 1.44 × 103 | 5.73 × 105 | 3.07 × 105 | 4.57 × 103 | 2.13 × 103 | 2.96 × 103 | 1.10 × 103 | 3.84 × 103 | 2.02 × 103 | MJ |
PSC | 2.63 × 103 | 1.12 × 103 | 3.03 × 105 | 2.29 × 105 | 3.94 × 103 | 1.84 × 103 | 2.25 × 103 | 8.32 × 102 | 3.31 × 103 | 1.74 × 103 | MJ | |
Renewable, wind, solar, geothe | sc-Si | 3.69 × 103 | 1.95 × 103 | 3.72 × 105 | 1.53 × 105 | 5.95 × 103 | 2.71 × 103 | 2.80 × 103 | 7.28 × 102 | 4.20 × 103 | 2.29 × 103 | MJ |
PSC | 2.86 × 103 | 1.51 × 103 | 2.09 × 105 | 1.22 × 105 | 5.12 × 103 | 2.34 × 103 | 2.12 × 103 | 5.52 × 102 | 3.62 × 103 | 1.98 × 103 | MJ | |
Renewable, water | sc-Si | 3.25 × 104 | −2.03 × 104 | 2.71 × 106 | 2.09 × 106 | 9.78 × 104 | 8.70 × 103 | 1.98 × 104 | 9.07 × 102 | 4.16 × 104 | 5.19 × 103 | MJ |
PSC | 4.19 × 104 | −2.62 × 104 | 4.92 × 106 | 3.00 × 106 | 1.14 × 105 | 1.01 × 104 | 2.61 × 104 | 1.20 × 103 | 4.83 × 104 | 6.03 × 103 | MJ |
Area of Influence | sc-Si | PSC | Unit | ||
---|---|---|---|---|---|
Landfill | Recycling | Landfill | Recycling | ||
Human health | 2.25 × 100 | 1.30 × 100 | 2.04 × 100 | 1.17 × 100 | DALY |
Ecosystem quality | 2.00 × 10−3 | 8.12 × 10−4 | 1.81 × 10−3 | 7.35 × 10−4 | PDF × m2 × yr |
Human health | 7.93 × 106 | 4.25 × 106 | 4.36 × 106 | 2.27 × 106 | EUR |
Ecosystem quality | 4.36 × 106 | 2.27 × 106 | 2.05 × 106 | 9.70 × 105 | |
Total impact | 1.23 × 107 | 6.52 × 106 | 6.59 × 106 | 3.81 × 106 | |
GWP100 | 1.08 × 106 | 5.69 × 105 | 6.05 × 105 | 2.82 × 105 | kg CO2eq |
Cumulative energy demand | 2.16 × 107 | 1.17 × 107 | 1.21 × 107 | 8.73 × 106 | MJ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piasecka, I.; Kłos, Z. An Assessment of the Environmental Impact of Construction Materials of Monocrystalline and Perovskite Photovoltaic Power Plants Toward Their Sustainable Development. Materials 2024, 17, 5787. https://doi.org/10.3390/ma17235787
Piasecka I, Kłos Z. An Assessment of the Environmental Impact of Construction Materials of Monocrystalline and Perovskite Photovoltaic Power Plants Toward Their Sustainable Development. Materials. 2024; 17(23):5787. https://doi.org/10.3390/ma17235787
Chicago/Turabian StylePiasecka, Izabela, and Zbigniew Kłos. 2024. "An Assessment of the Environmental Impact of Construction Materials of Monocrystalline and Perovskite Photovoltaic Power Plants Toward Their Sustainable Development" Materials 17, no. 23: 5787. https://doi.org/10.3390/ma17235787
APA StylePiasecka, I., & Kłos, Z. (2024). An Assessment of the Environmental Impact of Construction Materials of Monocrystalline and Perovskite Photovoltaic Power Plants Toward Their Sustainable Development. Materials, 17(23), 5787. https://doi.org/10.3390/ma17235787