Shear Stress Solutions for Curved Beams: A Structural Analysis Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shear Stress Equations Using a Mechanics of Materials Approach
2.2. Finite Element Analysis
3. Results and Discussion
3.1. Validation of the Shear Stress Equations
3.2. Poisson’s Ratio Sensibility in CB
3.3. CB vs. SB for Different Cross-Section
3.4. Parametric Analysis of CB
3.5. 3D Shear Stress Profiles from FEM
4. Conclusions
- The proposed equations demonstrated an overall accuracy within approximately 16%, with an improved accuracy of less than 8% for curved beams where and , respectively.
- The neutral axis location was predicted with high accuracy for beam ratios , with an absolute deviation of .
- Near the edges of the curved beams, FEM analysis indicated that both the mechanics of materials equations and the theory of elasticity solutions (for rectangular cross-sections) provide a shear stress prediction error of approximately 29% for . However, for ratios , the error decreases significantly, and any of the three mechanics of materials solutions can be applied with a small error of less than 8%.
- For structural solids with ratios , it is recommended to use numerical simulations via FEM for accurate prediction of the shear stress field.
- The current equations can be reduced to Collignon’s formula, which proves to be a reliable option for predicting shear stress in curved beams with ratios .
- The current solutions do not apply to CB structures with thin flanges (such as I-, L-, or T-shaped cross-sections), as they produce significant errors. These errors arise from discontinuities in the cross-section, affecting tangential stress distribution. Since the current solutions rely on accurate tangential stress calculations, they are directly impacted by this issue. In such cases, a correction factor must be developed or assessed whether Bleich’s methods can be applied.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Reduction for Shear Stress Equation in Curved Beams to Collignon’s Formula for Straight Beams
References
- Wu, S.; Li, Y.; Bao, Y.; Zhu, J.; Wu, H. Examination of Beam Theories for Buckling and Free Vibration of Functionally Graded Porous Beams. Materials 2024, 17, 3080. [Google Scholar] [CrossRef]
- Borković, A.; Marussig, B.; Radenković, G. Geometrically exact static isogeometric analysis of an arbitrarily curved spatial Bernoulli–Euler beam. Comput. Methods Appl. Mech. Eng. 2022, 390, 114447. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Shao, Y.B.; Liu, B.; Zhou, R. Analytical solutions for forced vibrations of Timoshenko curved beam by means of Green’s functions. Eng. Mech. 2020, 37, 12–27. [Google Scholar]
- Nicolalde, J.F.; Yaselga, J.; Martínez-Gómez, J. Selection of a sustainable structural beam material for rural housing in Latin América by multicriteria decision methods means. Appl. Sci. 2022, 12, 1393. [Google Scholar] [CrossRef]
- Zhang, S.; Qian, D.; Zhang, Z.; Ge, H. Low-Frequency Bandgap Characterization of a Locally Resonant Pentagonal Phononic Crystal Beam Structure. Materials 2024, 17, 1702. [Google Scholar] [CrossRef]
- Zhang, P.; Qing, H.; Gao, C.F. Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Compos. Struct. 2020, 245, 112362. [Google Scholar] [CrossRef]
- Bhagatji, J.D.; Kravchenko, O.G.; Asundi, S. Mechanics of Pure Bending and Eccentric Buckling in High-Strain Composite Structures. Materials 2024, 17, 796. [Google Scholar] [CrossRef]
- Ham, S.; Ji, S.; Cheon, S.S. The design of a piecewise-integrated composite bumper beam with machine-learning algorithms. Materials 2024, 17, 602. [Google Scholar] [CrossRef]
- Ye, S.Q.; Mao, X.Y.; Ding, H.; Ji, J.C.; Chen, L.Q. Nonlinear vibrations of a slightly curved beam with nonlinear boundary conditions. Int. J. Mech. Sci. 2020, 168, 105294. [Google Scholar] [CrossRef]
- Song, D.; Kim, R.; Choi, K.; Shin, D.; Lee, S. Effects of Beam Shape on the Microstructures and Mechanical Properties during Thin-Foil Laser Welding. Metals 2023, 13, 916. [Google Scholar] [CrossRef]
- He, X.T.; Wang, X.; Zhang, M.Q.; Sun, J.Y. The Thermal Stress Problem of Bimodular Curved Beams under the Action of End-Side Concentrated Shear Force. Materials 2023, 16, 5221. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Ni, J.; Shao, C.; Yang, X.; Lou, C. Nearly Perfect Transmission of Lamé Modes in a Rectangular Beam with Part and Through-Thickness Vertical Cracks. Materials 2023, 16, 4164. [Google Scholar] [CrossRef] [PubMed]
- Velilla-Díaz, W.; Pinzón, R.; Guillén-Rujano, R.; Pérez-Ruiz, J.; de Lacalle, L.; Palencia, A.; Maury, H.; Zambrano, H. Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique. Metals 2024, 14, 182. [Google Scholar] [CrossRef]
- Lindeburg, M.R.; Baradar, M. Seismic Design of Building Structures; Professional Publications, Inc.: Belmont, CA, USA, 2001. [Google Scholar]
- Schierle, G. Architectural Structures Excerpts; University of Southern California: Los Angeles, CA, USA, 2006. [Google Scholar]
- Chen, W.F.; Duan, L. Bridge Engineering Handbook; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Pollock, T.I.; Panagiotopoulou, O.; Hocking, D.P.; Evans, A.R. Taking a stab at modelling canine tooth biomechanics in mammalian carnivores with beam theory and finite-element analysis. R. Soc. Open Sci. 2022, 9, 220701. [Google Scholar] [CrossRef] [PubMed]
- Le Huec, J.C.; Droulout, T.; Boue, L.; Dejour, E.; Ramos-Pascual, S.; Bourret, S. A novel device with pedicular anchorage provides better biomechanical properties than balloon kyphoplasty for the treatment of vertebral compression fractures. J. Exp. Orthop. 2023, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Minutolo, V.; Esposito, L.; Sacco, E.; Fraldi, M. Designing stress for optimizing and toughening truss-like structures. Meccanica 2020, 55, 1603–1622. [Google Scholar] [CrossRef]
- Medina, L.; Gilat, R.; Ilic, B.; Krylov, S. Experimental investigation of the snap-through buckling of electrostatically actuated initially curved pre-stressed micro beams. Sens. Actuators A Phys. 2014, 220, 323–332. [Google Scholar] [CrossRef]
- Patil, A.S.; Arnold, E. Characterization of standard structural CFRP beam shapes for UAS VHF antenna applications. In Proceedings of the AIAA Scitech 2021 Forum, Virtual, 11–15 & 19–21 January 2021; p. 1803. [Google Scholar]
- Allen, E.; Zalewski, W. Form and Forces; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Gozluklu, B.; Uyar, I.; Coker, D. Intersonic delamination in curved thick composite laminates under quasi-static loading. Mech. Mater. 2015, 80, 163–182. [Google Scholar] [CrossRef]
- Peterson, D.R.; Bronzino, J.D. Biomechanics: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Winkelstein, B.A. Orthopaedic Biomechanics; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Timoshenko, S.P.; Goodier, J.N. Theory of Elasticity; McGraw-Hill Inc.: New York, NY, USA, 1970. [Google Scholar]
- Eason, G. The elastic-plastic bending of a compressible curved bar. Appl. Sci. Res. 1960, 9, 53–63. [Google Scholar] [CrossRef]
- Lekhnitskii, S.G.; Tsai, S.W.; Cheron, T. Anisotropic Plates; Gordon and Breach: New York, NY, USA, 1968. [Google Scholar]
- Kedward, K.T.; Wilson, R.S.; McLean, S.K. Flexure of simply curved composite shapes. Composites 1989, 20, 527–536. [Google Scholar] [CrossRef]
- Bagci, C. Exact Elasticity Solutions for Stresses and Deflections in Curved Beams and Rings of Exponential and T-Sections. J. Mech. Des. 1993, 115, 346–358. [Google Scholar] [CrossRef]
- Ugural, A.C.; Fenster, S.K. Advanced Mechanics of Materials and Applied Elasticity; Pearson Education Inc.: Boston, MA, USA, 2020. [Google Scholar]
- Sloboda, A.; Honarmandi, P. Generalized Elasticity Method for Curved Beam Stress Analysis: Analytical and Numerical Comparisons for a Lifting Hook. Mech. Based Des. Struct. Mach. 2007, 35, 319–332. [Google Scholar] [CrossRef]
- Black, W.E. Discussion: Stresses in Curved Beams—A Tabular Method of Solution Based on Winkler’s Theory. J. Appl. Mech. 1953, 20, 444–445. [Google Scholar] [CrossRef]
- Bleich, H. Die Spannungsverteilung in den Gurtungen gekrümmter Stäbe mit T- und I-formigen Querschnitt. Der. Stahlbau, Beil. Zur Z. Die Bautech. 1933, 6, 3–6. [Google Scholar]
- Anderson, C.G. Flexural Stresses in Curved Beams of I- and Box Sections. Proc. Inst. Mech. Eng. 1950, 163, 295–306. [Google Scholar] [CrossRef]
- Cook, R.D. Circumferential Stresses in Curved Beams. J. Appl. Mech. 1992, 59, 224–225. [Google Scholar] [CrossRef]
- Young, W.C.; Cook, R.D. Radial Stress Formula for Curved Beams. J. Vib. Acoust. 1989, 111, 491–492. [Google Scholar] [CrossRef]
- Wang, T.S. Shear Stresses in Curved Beams. Mach. Des. 1967, 39, 175–178. [Google Scholar]
- Birger, I.A.; Panovko, J.G. Strength-Stability-Vibrations; Machinery Publishing House: Moscow, Russia, 1968. [Google Scholar]
- Oden, J.; Ripperger, E. Mechanics of Elastic Structures; McGraw-Hill: New York, NY, USA, 1981; pp. 101–107. [Google Scholar]
- Liu, H. Advanced Strength of Materials; Advance Education Publishing House: Beijing, China, 1985. (In Chinese) [Google Scholar]
- Yu, A.; Nie, G. Explicit solutions for shearing and radial stresses in curved beams. Mech. Res. Commun. 2005, 32, 323–331. [Google Scholar] [CrossRef]
- Iandiorio, C.; Salvini, P. An Engineering Theory of Thick Curved Beams Loaded In-Plane and Out-of-Plane: 3D Stress Analysis. Eur. J. Mech./A Solids 2022, 92, 104484. [Google Scholar] [CrossRef]
- Wang, Y.P.; Lee, C.L.; Huang, S.C. Inelastic Stress Analysis of Curved Beams with Bending and Shear Coupling. In Proceedings of the World Congress on Civil, Structural, and Environmental Engineering, CSEE’16, Prague, Czech Republic, 30–31 March 2016. [Google Scholar] [CrossRef]
- Nahvi, H. Pure Bending and Tangential Stresses in Curved Beams of Trapezoidal and Circular Sections. J. Mech. Behav. Mater. 2007, 18, 123–132. [Google Scholar] [CrossRef]
- Sayyad, A.S.; Ghugal, Y.M. Bending, Buckling and Free Vibration of Laminated Composite and Sandwich Beams: A Critical Review of Literature. Compos. Struct. 2017, 171, 486–504. [Google Scholar] [CrossRef]
- Hajianmaleki, M.; Qatu, M.S. Vibrations of Straight and Curved Composite Beams: A Review. Compos. Struct. 2013, 100, 218–232. [Google Scholar] [CrossRef]
- Li, W.; Ma, H.; Gao, W. Geometrically Exact Beam Element with Rational Shear Stress Distribution for Nonlinear Analysis of FG Curved Beams. Thin-Walled Struct. 2021, 164, 107823. [Google Scholar] [CrossRef]
- Ferradi, M.K.; Cespedes, X. A Curved Beam Model with the Asymptotic Expansion Method. Eng. Struct. 2021, 241, 112494. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, M.Z.; Zhao, B.S. The Refined Theory of Rectangular Curved Beams. Acta Mech. 2006, 189, 141–150. [Google Scholar] [CrossRef]
- Thurnherr, C.; Groh, R.M.J.; Ermanni, P.; Weaver, P.M. Higher-Order Beam Model for Stress Predictions in Curved Beams Made from Anisotropic Materials. Inter. J. Solids Struct. 2016, 97–98, 16–28. [Google Scholar] [CrossRef]
- Ghuku, S.; Saha, K. A review on stress and deformation analysis of curved beams under large deflection. Int. J. Eng. Technol. 2017, 11, 13–39. [Google Scholar] [CrossRef]
- Cheung, K.; Sorensen, H. Effect of loads on radial stress in curved beams. Soc. Wood Sci. Technol. 1983, 15, 263–275. [Google Scholar]
- Hassan, I. Experimental and analytical study of bending stresses and deflections in curved beam made of laminated composite material. AL-Khwarizmi Eng. J. 2014, 10, 21–32. [Google Scholar]
- Prasad, S.; Subramanian, R.; Krishna, S.; Prashanth, S. Experimental stress analysis of curved beams using strain gauges. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2016, V, 1–6. [Google Scholar]
- Ahuett-Garza, H.; Chaides, O.; Garcia, P.N.; Urbina, P. Studies about the use of semicircular beams as hinges in large deflection planar compliant mechanisms. Precis. Eng. 2014, 38, 711–727. [Google Scholar] [CrossRef]
- Yanze, L.; Ke, Z.; Huaitao, S.; Songhua, L.; Xiaochen, Z. Theoretical and Experimental Analysis of Thin-Walled Curved Rectangular Box Beam under In-Plane Bending. Scanning 2021, 2021, 8867142. [Google Scholar] [CrossRef]
- Pai, P.F.; Anderson, T.J.; Wheater, E.A. Large-deformation tests and total-Lagrangian finite-element analyses of flexible beams. Int. J. Solids Struct. 2000, 37, 2951–2980. [Google Scholar] [CrossRef]
- Aşık, M.Z.; Tezcan, S. A mathematical model for the behavior of laminated glass beams. Comput. Struct. 2005, 83, 1742–1753. [Google Scholar] [CrossRef]
- Angel, G.; Haritos, G.; Chrysanthou, A.; Voloshin, V. Chord line force versus displacement for thin shallow arc pre-curved bimetallic strip. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 229, 116–124. [Google Scholar] [CrossRef]
- Boresi, A.P.; Schmidt, R.J. Advanced Mechanics of Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Fazlali, M.R.; Arghavani, J.; Eskandari, M. An Analytical Study on the Elastic-Plastic Pure Bending of a Linear Kinematic Hardening Curved Beam. Int. J. Mech. Sci. 2018, 144, 274–282. [Google Scholar] [CrossRef]
- Seely, F.B.; Smith, J.O. Advanced Mechanics of Materials; John Wiley & Sons, Inc.: New York, NY, USA, 1952. [Google Scholar]
- Cook, R.D.; Young, W.C. Advanced Mechanics of Materials; Macmillan: New York, NY, USA, 1985. [Google Scholar]
- Tsao, C.H. Radial Stresses for Curved Beams. J. Vib. Acoust. 1986, 108, 107–108. [Google Scholar] [CrossRef]
- Ortiz Berrocal, L. Resistencia de Materiales; McGraw-Hill: Madrid, Spain, 1990. [Google Scholar]
- Ansys User’s Manual: Theory Reference; 2023R1; The University of Texas Houston: Houston, TX, USA, 2023.
b/a | a | b | (a + b)/2 |
---|---|---|---|
5 | 20 | 100 | 60 |
3 | 50 | 150 | 100 |
2 | 100 | 200 | 150 |
1.5 | 200 | 300 | 250 |
1.25 | 400 | 500 | 450 |
1.2 | 500 | 600 | 550 |
CB | ||||
---|---|---|---|---|
b/a | Rectangular | Circular | Elliptical | Triangular |
5.00 | 0.138 | 0.200 | 0.200 | 0.100 |
3.00 | 0.238 (0.244 *) | 0.275 | 0.300 | 0.175 |
2.00 | 0.338 (0.331 *) | 0.350 | 0.375 | 0.250 |
1.50 | 0.400 | 0.400 | 0.425 | 0.300 |
1.25 | 0.450 | 0.450 | 0.450 | 0.325 |
1.20 | 0.450 | 0.475 | 0.475 | 0.325 |
SB | 0.500 | 0.500 | 0.500 | 0.333 |
CB | Cross-Section | |||
---|---|---|---|---|
b/a | Rectangular | Circular | Elliptical | Triangular |
5.00 | 1.03 | 0.86 | 0.92 | 1.04 |
3.00 | 1.09 (1.06 *) | 0.91 | 0.96 | 1.12 |
2.00 | 1.09 (1.03 *) | 0.96 | 0.99 | 1.07 |
1.50 | 1.08 | 0.98 | 0.99 | 1.01 |
1.25 | 1.07 | 0.97 | 0.98 | 0.98 |
1.20 | 1.07 | 0.96 | 0.98 | 0.97 |
Elasticity | MM | MM | MM | MM | MM | ||
---|---|---|---|---|---|---|---|
Ref. [26] | Refs. [40,42] | Ref. [41] | Equation (14) | Equation (15) | Equation (16) | ||
5 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
0.25 | 1.765 | 2.608 | 3.372 | 1.848 | 1.811 | 1.782 | |
0.50 | 1.063 | 1.500 | 2.249 | 1.038 | 1.073 | 1.023 | |
0.75 | 0.473 | 0.633 | 1.112 | 0.414 | 0.453 | 0.390 | |
1.00 | 0.000 | 0.000 | 0.318 | 0.000 | 0.000 | −0.071 | |
3 | 0.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
0.25 | 1.674 | 1.990 | 2.248 | 1.707 | 1.690 | 1.817 | |
0.50 | 1.256 | 1.500 | 1.818 | 1.258 | 1.268 | 1.348 | |
0.75 | 0.619 | 0.720 | 0.921 | 0.593 | 0.608 | 0.625 | |
1.00 | 0.000 | 0.000 | 0.122 | 0.000 | 0.000 | −0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillén-Rujano, R.; Contreras, V.; Palencia-Díaz, A.; Velilla-Díaz, W.; Hernández-Pérez, A. Shear Stress Solutions for Curved Beams: A Structural Analysis Approach. Materials 2024, 17, 5982. https://doi.org/10.3390/ma17235982
Guillén-Rujano R, Contreras V, Palencia-Díaz A, Velilla-Díaz W, Hernández-Pérez A. Shear Stress Solutions for Curved Beams: A Structural Analysis Approach. Materials. 2024; 17(23):5982. https://doi.org/10.3390/ma17235982
Chicago/Turabian StyleGuillén-Rujano, Renny, Victor Contreras, Argemiro Palencia-Díaz, Wilmer Velilla-Díaz, and Adrián Hernández-Pérez. 2024. "Shear Stress Solutions for Curved Beams: A Structural Analysis Approach" Materials 17, no. 23: 5982. https://doi.org/10.3390/ma17235982
APA StyleGuillén-Rujano, R., Contreras, V., Palencia-Díaz, A., Velilla-Díaz, W., & Hernández-Pérez, A. (2024). Shear Stress Solutions for Curved Beams: A Structural Analysis Approach. Materials, 17(23), 5982. https://doi.org/10.3390/ma17235982