Synthesis, Purification, and Characterization of Molten Salt Fuel for the SALIENT-03 Irradiation Experiment
Abstract
:1. Introduction
1.1. Molten Salt Reactor for the Sustainable Energy Production
1.2. Irradiation Experiments of Molten Salt Reactor Fuel Candidates
1.3. Preparation of the Fuel for the SALIENT-03 Experiment
1.3.1. Synthesis of the Pure Fluorides for the SALIENT-03 Fuel
1.3.2. Preparation of the Fuel Salts from the End Members
2. Experimental
2.1. Fuel Salts Specification
2.2. Irradiation Capsules
2.3. Experimental Set-Up for the Synthesis
2.4. Analytical Scheme
3. Results
3.1. Synthesis of the End-Members
- The dissolution of app. 20 g of 7LiOH⋅H2O in water to a concentration of app. 2 M (concentration is estimated as the initial material contained traces of 7Li2CO3 and moisture);
- The filtration of the undissolved 7Li2CO3, which was partly formed in the delivered package, likely due to CO2 intake during open handling of the material between manufacturing and delivery;
- The reaction of the 7LiOH solution with hydrofluoric acid solution (HF, 49 wt.%, Sigma-Aldrich, Nuremberg, Germany, p.a. plus, diluted to 2 M concentration), controlled online by a commercial pH meter with a calibrated pH electrode (InLab Routine, Mettler Toledo GmbH, Gießen, Germany), until it reached pH ~4–5;
- The filtration under a vacuum of the formed solid, 7LiF;
- The rinsing of the 7LiF with pure ethanol (p.a., Sigma-Aldrich, Nuremberg, Germany);
- The drying of the product at 150 °C for 2 h in air;
- The drying of the product at 350 °C under argon in the glove box described above in Section 2.3
3.2. Fabrication of Fuels-1, -2 and -3
3.3. Fabrication of Fuel-4
4. Discussion
4.1. Outcomes from the Synthesis of Actinide Fluoride End-Members
4.2. Outcomes from the Synthesis of UF3
- The reaction was not quantitative up to a temperature of 800 °C, as some residual UF4 was always present at lower temperatures, specifically at 600, 700, and 750 °C;
- Using a flow rate of H2/Ar gas lower than 600 mL/min led to disproportionation of the product at 800 °C;
- The reaction kinetics at 800 °C, with a H2/Ar gas flow rate of 600 mL/min, were still very slow, requiring 40 h to complete the conversion;
- The commercially available mixture of Ar/H2 (6% H2, Linde, 99.9999% purity) was insufficient to prevent the formation of trace amounts of UO2 in the product (<0.5 wt.%), likely due to oxygen or moisture impurities in this reaction gas.
4.3. Outcomes from Production of Solid Melt Ingots
5. Conclusions, Implications, and Future Research
- The fuels for the SALIENT-03 irradiation experiment have been successfully synthesized with the required composition, purity, and mass;
- The fuel ingots have been inserted into irradiation capsules, sealed in a gas-tight manner by orbital welding, and transported from JRC Karlsruhe to NRG Petten, where they have been accepted for the irradiation campaign;
- The achieved purity of all end-members synthesized during this work exceeded 99.0%, based on the detection limit and uncertainty of the applied analytical techniques;
- No impurities have been detected in the end-members, except for UF3, where trace amounts of oxide impurity (<0.5%) were observed;
- The synthesis campaign detailed herein has demonstrated the capability of JRC laboratories to prepare fluoride salts of high purity, including actinide fluorides, on a 100 g scale, since the total mass of the three fuels created for irradiation is 40.6 g, and the mass of the fuel for the out-of-pile electrochemical experiments is 53.8 g.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Decarbonising our Energy System to Meet our Climate Goals. European Commission Website. In Publications: Delivering the European Green Deal; European Union: Brussels, Belgium, 2021; ISBN 978-92-76-39782-3. Available online: https://ec.europa.eu/info/publications/delivering-european-green-deal_en (accessed on 18 December 2024).
- Schlömer, S.; Bruckner, T.; Fulton, L.; Hertwich, E.; McKinnon, A.; Perczyk, D.; Roy, J.; Schaeffer, R.; Sims, R.; Smith, P.; et al. Annex III: Technology-specific cost and performance parameters. In Climate Change 2014: Mitigation of Climate Change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Krey, V.; Masera, O.; Blanford, G.; Bruckner, T.; Cooke, R.; Fisher-Vanden, K.; Haberl, H.; Hertwich, E.; Kriegler, E.; Mueller, D.; et al. Annex II: Metrics & Methodology. In Climate Change 2014: Mitigation of Climate Change”, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Technology Roadmap Update for Generation IV Nuclear Energy Systems, in Generation IV International Forum; OECD Nuclear Energy Agency: Paris, France. 2014. Available online: www.gen-4.org (accessed on 18 December 2024).
- Allibert, M.; MAufiero; Brovchenko, M.; Delpech, S.; Ghetta, V.; Heuer, D.; Laureau, A.; Merle-Lucotte, E. 7—Molten salt fast reactors. In Handbook of Generation IV Nuclear Reactors; Pioro, I.L., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 157–188. [Google Scholar]
- Serp, J.; Allibert, M.; Beneš, O.; Delpech, S.; Feynberg, O.; Ghetta, V.; Heuer, D.; Holcomb, D.; Ignatiev, V.; Kloosterman, J.L.; et al. The molten salt reactor (MSR) in generation IV: Overview and perspectives. Prog. Nucl. Energy 2014, 77, 308–319. [Google Scholar] [CrossRef]
- Elsheikh, B.M. Safety assessment of molten salt reactors in comparison with light water reactors. J. Radiat. Res. Appl. Sci. 2013, 6, 63–70. [Google Scholar] [CrossRef]
- Brovchenko, M.; Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Ghetta, V.; Laureau, A.; Rubiolo, P. Design-Related Studies for the Preliminary Safety Assessment of the Molten Salt Fast Reactor. Nucl. Sci. Eng. 2013, 175, 329–339. [Google Scholar] [CrossRef]
- Paviet, P. Molten Salt Reactor Campaign. In 2021 Virtual Molten Salt Reactor (MSR) Workshop; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2021; Available online: https://www.youtube.com/watch?v=tqZTZV4py-8&list=PLisa2eqmVBFaAI8_AFle1QxA26k3FTWB6&index=4 (accessed on 18 December 2024).
- Mallapaty, S. China prepares to test thorium-fuelled nuclear reactor. Nature 2021, 597, 311–312. [Google Scholar] [CrossRef]
- Hania, P.R.; Boomstra, D.A.; Benes, O.; Soucek, P.; de Koning, A.J.; Bobeldijk, I.; de Groot, S.; Konings, R.J.M.; Capelli, E.; Naji, M.; et al. Irradiation of thorium-bearing molten fluoride salt in graphite crucibles. Nucl. Eng. Des. 2021, 375, 111094. [Google Scholar] [CrossRef]
- D’Agata, E.; Hania, R.; Benes, O.; Konings, R.; Kottrup, K.; Soucek, P.; Boomstra, D.A.; Baas, P.J.; Charpin-Jacobs, F.F.; Uitslag-Doolaard, H.J.; et al. SALIENT-03: Irradiation of Molten Salt Fuel in Ni-Based Alloy Capsules at the High Flux Reactor. In Proceedings of the Global 2019, Seattle, WA, USA, 22–27 September 2019; pp. 279–284. [Google Scholar]
- Krepel, J. SAMOFAR—A paradigm shift in reactor safety with the molten salt fast reactor. In Proceedings of the ThEC15—International Thorium Energy Conference, Mumbai, India, 12–15 October 2015. [Google Scholar]
- Kloosterman, J.L. 20—Safety assessment of the molten salt fast reactor (SAMOFAR). In Molten Salt Reactors and Thorium Energy; Dolan, T.J., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 565–570. [Google Scholar]
- European Commission Web Page. 2019. Available online: https://cordis.europa.eu/project/id/847527 (accessed on 3 August 2022).
- Bellinger, S.L.; Fronk, R.G.; McNeil, W.J.; Sobering, T.J.; McGregor, D.S. Improved High Efficiency Stacked Microstructured Neutron Detectors Backfilled with Nanoparticle 6LiF. IEEE Trans. Nucl. Sci. 2012, 59, 167–173. [Google Scholar] [CrossRef]
- Suarez, D.S.; Pinna, E.G.; Rosales, G.D.; Rodriguez, M.H. Synthesis of Lithium Fluoride from Spent Lithium Ion Batteries. Minerals 2017, 7, 81. [Google Scholar] [CrossRef]
- Goodenough, R.D. Lithium Fluoride Production; U.S.P. Office, Ed.; Dow Chemical Co: Midland, MI, USA, 1966. [Google Scholar]
- Vallejo Hernandez, M.; Sosa, M.A.; Rivera, E.; Azorín, J.C.; Bernal, J.; Navarro, R.; Encarnación, E.K.; Díaz-Torres, L.A. Effect of Crystal Size and Ag Concentration on the Thermoluminescent Response of Pure and Ag-Doped LiF Cubes. Nano 2015, 11, 1650041. [Google Scholar] [CrossRef]
- Souček, P.; Beneš, O.; Claux, B.; Capelli, E.; Ougier, M.; Tyrpekl, V.; Vigier, J.-F.; Konings, R.J.M. Synthesis of UF4 and ThF4 by HF gas fluorination and re-determination of the UF4 melting point. J. Fluor. Chem. 2017, 200, 33–40. [Google Scholar] [CrossRef]
- Tosolin, A.; Souček, P.; Beneš, O.; Vigier, J.F.; Luzzi, L.; Konings, R.J.M. Synthesis of plutonium trifluoride by hydro-fluorination and novel thermodynamic data for the PuF3-LiF system. J. Nucl. Mater. 2018, 503, 171–177. [Google Scholar] [CrossRef]
- Roy, K.N.; Prasad, R.; Bhupathy, M.; Venugopal, V.; Singh, Z.; Sood, D.D. Preparation of uranium trifluoride and studies on its disproportionation. Thermochim. Acta 1981, 43, 333–338. [Google Scholar] [CrossRef]
- Domingues, J.T.H. The Kinetics of the Reduction of Uranium Fluoride by Magnesium. Ph.D. Thesis, University of London, London, UK, 1964. [Google Scholar]
- Runnalls, O.J.C. A New Synthesis of Uranium Trifluoride. Can. J. Chem. 1953, 31, 694–696. [Google Scholar] [CrossRef]
- Gilpatrick, L.O.R.; Baldock, J.R. Sites Mass Spectrometer Investigation of UF3. In ORNL-1736; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1952. [Google Scholar]
- Workshop on the Chemistry of Fuel Cycles for Molten Salt Reactor Technologies. 2023. Available online: https://conferences.iaea.org/event/361/ (accessed on 18 December 2024).
- Paviet, P. The Fuel Cycle of a Molten Salt Reactor. In Regulatory Information Conference W19 Molten Salt Reactors: Rethinking the Fuel Cycle; U.S. Nuclear Regulatory Commission (NRC): Rockville, MD, USA, 2022. [Google Scholar]
- Reed, W.; Carlson, J.; Iyengar, R. Technical Considerations for the Molten Salt Reactor Fuel Cycle. In Regulatory Information Conference (RIC) W19 on Molten Salt Reactors: Rethinking the Fuel Cycle; U.S. Nuclear Regulatory Commission (NRC): Rockville, MD, USA, 2022. [Google Scholar]
- Rose, M.A.; Ezell, D. Molten Salt Reactor Fuel Cycle Chemistry Workshop—Report for the US Department of Energy; ANL/CFCT-23/50; Office of Nuclear Energy, Argonne National Laboratory: Argonne, IL, USA, 2023. [Google Scholar]
- Fredrickson, G.; Cao, G.; Gakhar, R.; Yoo, T.S. Molten Salt Reactor Salt Processing—Technology Status; INL/EXT-18-51033; Idaho National Laboratory: Idaho Falls, ID, USA, 2018. [Google Scholar]
- Flanagan, G.F.; Holcomb, D.E.; Poore, I.W.P. MSR Fuel Qualification Consideration and Challenges; ORNL/LTR-2018/1045; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2018. [Google Scholar]
- Souček, P.; Beneš, O.; Tosolin, A.; Konings, R. Chemistry of Molten Salt Reactor Fuel Salt Candidates. Trans. Am. Nucl. Soc. 2018, 118, 114–117. [Google Scholar]
- Souček, P.; Fucina, M.; Beneš, O.; Capelli, E.; Rodrigues, A.; Konings, R.J.M.; Rondinella, V. Synthesis and measurements of thermal properties of the molten salt reactor fuel candidates. In Proceedings of the Global 2024, Tokyo, Japan, 6–10 October 2024. [Google Scholar]
- Souček, P.; Fucina, M.; Beneš, O.; Vigier, J.F.; Rodrigues, A.; Walter, O.; Konings, R.J.M. Synthesis of actinide chlorides for Molten Salt Reactor fuels. In Proceedings of the 16th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation (16IEMPT), Boulogne-Billancourt, France, 24–27 October 2023. [Google Scholar]
- Malcolm, W.C., Jr. NIST-JANAF Thermochemical Tables, 4th ed.; American Chemical Society: Washington, DC, USA; American Institute of Physics for the National Institute of Standards and Technology: New York, NY, USA, 1998. [Google Scholar]
- Rand, M.; Fuger, J.; Grenthe, I.; Neck, V.; Raiof, D. Chemical thermodynamics of Thorium. Chem. Thermodyn. Ser. 2009, 11, 198. [Google Scholar]
- Sheil, R.J. The System UF4-UO2. In ORNL-2061; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1956; p. 71. [Google Scholar]
- Kumar, R.; Gupta, S.; Wajhal, S.; Satpati, S.K.; Sahu, M. Effect of process parameters on the recovery of thorium tetrafluoride prepared by hydrofluorination of thorium oxide, and their optimization. Nucl. Eng. Technol. 2022, 54, 1560–1569. [Google Scholar] [CrossRef]
- Fisher, R.W. The Preparation of Thorium Oxide and Thorium Fluoride from Thorium Nitrate. In Progress in Nuclear Energy, Series III; Process Chemistry; Pergamon Press: London, UK, 1958; Volume 2. [Google Scholar]
- Correa, H.S.; Costa, E.C. Dry-way Preparation of Thorium Tetrafluoride. In Publicação IEA No. 185; Instituto de Energia Atômica: Sao Paulo, Brazil, 1969. [Google Scholar]
- Wani, B.N.; Patwe, S.J.; Rao UR, K.; Venkateswarlu, K.S. Fluorination of oxides of uranium and thorium by ammonium hydrogenfluoride. J. Fluor. Chem. 1989, 44, 177–185. [Google Scholar] [CrossRef]
- D’Eye, R.W.M.; Booth, G.W.; Harper, E.A. The Preparation of Thorium Tetrafluoride by the Thermal Degradation of the Hydrate; Gt. Brit. Atomic Energy Research Establishment: Harwell, UK, 1955; p. 5. [Google Scholar]
- Dell, R.M.; Wheeler, V.J. Chemical reactivity of uranium trioxide. Part 1.—Conversion to U3O8, UO2 and UF4. Trans. Faraday Soc. 1962, 58, 1590–1607. [Google Scholar] [CrossRef]
- Ellis, W.P. Hydrofluorination kinetics of doped uranium dioxide. J. Nucl. Mater. 1966, 19, 212–214. [Google Scholar] [CrossRef]
- Nicole, C.; Patisson, F.; Ablitzer, D.; Houzelot, J.L. A thermogravimetric study of the kinetics of hydrofluorination of uranium dioxide. Chem. Eng. Sci. 1996, 51, 5213–5222. [Google Scholar] [CrossRef]
- Tomlinson, L.; Morrow, S.A.; Graves, S. Kinetics of the hydrofluorination of uranium dioxide. Trans. Faraday Soc. 1961, 57, 1008–1018. [Google Scholar] [CrossRef]
- Eykens, R.; Pauwels, J.; Van Audenhove, J. The hydrofluorination of uranium and plutonium. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1985, 236, 497–499. [Google Scholar] [CrossRef]
- Kim, E.H.; Hwang, D.S.; Park, J.H. Fluorination of UO2 and CeO2 under the atmosphere of HF and H2. J. Ind. Eng. Chem. 2002, 8, 98–102. [Google Scholar]
- Dawson, J.K.; Elliott, R.M.; Hurst, R.; Truswell, A. The preparation and some properties of plutonium fluorides. J. Chem. Soc. (Resumed) 1954, 558–564. [Google Scholar] [CrossRef]
- Reavis, J.G.; Leary, J.A. Partial phase diagram of the PuCl3-PuOCl system. J. Inorg. Nucl. Chem. 1966, 28, 1205–1208. [Google Scholar] [CrossRef]
- Scheele, R.; McNamara, B.; Casella, A.M.; Kozelisky, A. On the use of thermal NF3 as the fluorination and oxidation agent in treatment of used nuclear fuels. J. Nucl. Mater. 2012, 424, 224–236. [Google Scholar] [CrossRef]
- Gibson, J.K.; Haire, R.G. High-temperature fluorination studies of uranium, neptunium, plutonium and americium. J. Alloys Compd. 1992, 181, 23–32. [Google Scholar] [CrossRef]
- Claux, B.; Beneš, O.; Capelli, E.; Souček, P.; Meier, R. On the fluorination of plutonium dioxide by ammonium hydrogen fluoride. J. Fluor. Chem. 2016, 183, 10–13. [Google Scholar] [CrossRef]
- Berndt, U.; Erdmann, B. Darstellung von ultrareinem UF3. Radiochim. Acta 1973, 19, 45–46. [Google Scholar] [CrossRef]
Salt Composition (mol.%) | Mass (g) | Acronym |
---|---|---|
75.07LiF—18.7ThF4—6.0UF4—0.3PuF3 | 23.151 | Fuel-1 |
75.07LiF—18.7ThF4—5.7UF4—0.3UF3—0.3PuF3 | 11.584 | Fuel-2 |
74.67LiF—18.6ThF4—6.0UF4—0.4CrF3 -0.3PuF3 | 5.792 | Fuel-3 |
75.0LiF—23.0ThF4—2.0UF4—0.1UF3 | 50.000 | Fuel-4 |
End-Member | 7LiF | ThF4 | UF4 | UF3 | PuF3 |
---|---|---|---|---|---|
Mass required (g) | 10.075 | 66.423 | 12.811 | 0.282 | 0.459 |
Pin | Material | Salt | Mass (g) |
---|---|---|---|
1 | Hastelloy N | Fuel-1 | 11.567 |
2 | Hastelloy N | Fuel-2 | 5.792 |
3 | Hastelloy N | Fuel-1 | 5.792 |
4 | Hastelloy N | Fuel-3 | 5.792 |
5 | GH3535 | Fuel-2 | 5.792 |
D1 | Hastelloy N | Fuel-1 | 5.792 |
Batch | AnO2 Mass (g) | T (°C) | Time (h) | mAnFx (g) | Conversion Efficiency | XRD | DSC (m.p.°C) | mAnFx_FINAL (g) |
---|---|---|---|---|---|---|---|---|
ThF4-1 | 15.4910 | 600 | 5:15 | 17.8071 | 99.1% | phase pure | 1117.0 | 17.5865 |
ThF4-2 | 16.0160 | 600 | 5:40 | 18.3997 | 98.4% | phase pure | 1118.6 | 18.2528 |
ThF4-3 | 15.5905 | 600 | 5:45 | 17.2990 | n/a 1 | phase pure | 1119.4 2 | 17.1193 |
ThF4-4 | 15.8677 | 600 | 5:15 | 18.5115 | 98.5% | phase pure | 1119.4 2 | 17.3325 |
UF4-1 3 | 7.5841 | 450 | 6:30 | 8.7385 | 99.1% | phase pure | 1029.5 | 8.5123 |
UF4-2 3 | 9.6630 | 450 | 7:00 | 11.1562 | 99.3% | phase pure | 1016.5 | 10.7598 |
PuF3 4 | 2.8163 | 550 | 2:10 | n/a 5 | n/a 5 | n/a 5 | n/a 5 | n/a 5 |
600 | 15:00 | 3.0708 | 99.8% | phase pure | n/a 6 | 2.9239 |
Batch | UF4 Mass (g) | T (°C) | Time (h) | UF3 Mass (g) | Conversion Efficiency | XRD | DSC (m.p.°C) | Final Mass (g) |
---|---|---|---|---|---|---|---|---|
UF3 03/19 | 1.0807 | 800 | 40:00 | 0.9797 | 96.5% 1 | >99.5% UF3<0.5% UO2 | n/a 2 | 0.7841 |
Fuel | 7LiF (g) | ThF4 (g) | UF4 (g) | UF3 (g) | PuF3 (g) | CrF3 (g) | mFUEL (g) | mFINAL (g) |
---|---|---|---|---|---|---|---|---|
1 | 5.6451 | 16.6662 | 5.4535 | - | 0.2571 | - | 27.7669 | 27.7135 |
2 | 3.0270 | 8.9347 | 2.7844 | 0.1308 | 0.1378 | - | 15.0148 | 14.9957 |
3 | 1.4030 | 4.1426 | 1.3613 | - | 0.0644 | 0.0351 | 7.0048 | 6.9930 |
4 | 11.0803 1 | 40.3503 | 3.5446 | 0.0333 | - | - | 55.0085 | 54.9448 |
ID | mFINAL (g) | ΔmMELTING (g/%) | mBLACK_L (g) | Target Pin | Composition (mol.%) |
---|---|---|---|---|---|
1-1 | 2.9324 | 0.0086/0.29 | 0.0171 | 1 | 75.07LiF—18.7ThF4 6.0UF4—0.3PuF3 |
1-2 | 2.9806 | 0.0094/0.31 | 0.0095 | ||
1-3 | 2.9599 | 0.0088/0.30 | 0.0103 | ||
1-4 | 2.7222 | 0.0079/0.29 | 0.0059 | ||
2-1 | 1.6925 | n/a | 0.0053 | 2 | 75.07LiF—18.7ThF4—5.7UF4—0.3UF3—0.3PuF3 |
2-2 | 1.3953 | 0.0035/0.25 | 0.0061 | ||
2-3 | 1.3455 | 0.0027/0.20 | 0.0024 | ||
2-4 | 1.3891 | 0.0032/0.23 | 0.0022 | ||
3-1 | 1.8507 | 0.0030/0.16 | 0.0079 | 3 | 75.07LiF—18.7ThF4 6.0UF4—0.3PuF3 |
3-2 | 1.3526 | 0.0039/0.29 | 0.0028 | ||
3-3 | 1.3227 | n/a | 0.0023 | ||
3-4 | 1.2800 | 0.0036/0.28 | 0.0020 | ||
4-1 | 1.4837 | 0.0044/0.30 | 0.0020 | 4 | 74.67LiF—18.6ThF4—6.0UF4—0.4CrF3—0.3PuF3 |
4-2 | 1.5049 | 0.0039/0.26 | 0.0033 | ||
4-3 | 1.4736 | 0.0043/0.29 | 0.0023 | ||
4-4 | 1.3569 | 0.0039/0.29 | 0.0033 | ||
5-1 | 1.5086 | 0.0034/0.22 | 0.0034 | 5 | 75.07LiF—18.7ThF4—5.7UF4—0.3UF3—0.3PuF3 |
5-2 | 1.3070 | n/a | 0.0017 | ||
5-3 | 1.1841 | n/a | 0.0020 | ||
D-1 | 1.6061 | 0.0063/0.39 | 0.0057 | D | 75.07LiF—18.7ThF4 6.0UF4—0.3PuF3 |
D-2 | 1.5822 | 0.0016/0.10 | 0.0004 | ||
D-3 | 1.4849 | 0.0043/0.29 | 0.0030 | ||
D-4 | 1.1511 | 0.0031/0.27 | 0.0017 | ||
GC-1 | 0.4271 | 0.0012/0.28 | 0.0014 | 5 | 75.07LiF—18.7ThF4—5.7UF4—0.3UF3—0.3PuF3 |
GC-2 | 0.3974 | 0.0003/0.08 | 0.0001 | ||
GC-3 | 0.4153 | 0.0015/0.36 | 0.0010 | ||
GC-4 | 0.4014 | n/a | 0.0009 | ||
GC-5 | 0.4365 | 0.0010/0.23 | 0.0004 | QA | |
GC-6 | 0.4093 | 0.0009/0.22 | 0.0010 |
Capsule 1 | Sub-Ingot 1-1 | Sub-Ingot 1-2 | Sub-Ingot 1-3 | Sub-Ingot 1-4 |
---|---|---|---|---|
mSALT (g) | 2.9581 | 2.9995 | 2.9790 | 2.7360 |
mINGOT (g) | 2.9495 | 2.9901 | 2.9702 | 2.7281 |
ΔmMELTING (g/%) | 0.0086/0.29 | 0.0094/0.31 | 0.0088/0.30 | 0.0079/0.29 |
mFINAL (g) | 2.9324 | 2.9806 | 2.9599 | 2.7222 |
mBLACK_L (g/%) | 0.0171/0.58 | 0.0095/0.32 | 0.0103/0.35 | 0.0059/0.22 |
ΔmLINER (g/%) | 0.0002/0.002 | 0.0002/0.001 | 0.0002/0.002 | 0.0002/0.002 |
Photo |
Target Capsule | mFINAL (g) | ΔmMELTING (g/%) | mBLACK_L (g) | ΔmREQUEST (%) | Density (g/cm3) |
---|---|---|---|---|---|
1 | 11.5850 | 0.0021/0.02 | 0.0119 | 0.16 | 4.85 |
2 | 5.8039 | 0.0011/0.02 | 0.0076 | 0.21 | 4.40 |
3 | 5.7987 | 0.0017/0.03 | 0.0119 | 0.12 | 4.49 |
4 | 5.8182 | 0.0029/0.05 | 0.0030 | 0.45 | 4.55 |
5 | 5.7947 1 | 0.0022/0.031 | 0.0031 1 | 0.05 | 4.30 |
D1 | 5.8047 | 0.0010/0.02 | 0.0037 | 0.22 | 4.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souček, P.; Beneš, O.; Hania, P.R.; Kottrup, K.G.; D’Agata, E.; Rodrigues, A.; Uitslag-Doolaard, H.J.; Konings, R.J.M. Synthesis, Purification, and Characterization of Molten Salt Fuel for the SALIENT-03 Irradiation Experiment. Materials 2024, 17, 6215. https://doi.org/10.3390/ma17246215
Souček P, Beneš O, Hania PR, Kottrup KG, D’Agata E, Rodrigues A, Uitslag-Doolaard HJ, Konings RJM. Synthesis, Purification, and Characterization of Molten Salt Fuel for the SALIENT-03 Irradiation Experiment. Materials. 2024; 17(24):6215. https://doi.org/10.3390/ma17246215
Chicago/Turabian StyleSouček, Pavel, Ondřej Beneš, Pieter Ralph Hania, Konstantin Georg Kottrup, Elio D’Agata, Alcide Rodrigues, Helena Johanna Uitslag-Doolaard, and Rudy J. M. Konings. 2024. "Synthesis, Purification, and Characterization of Molten Salt Fuel for the SALIENT-03 Irradiation Experiment" Materials 17, no. 24: 6215. https://doi.org/10.3390/ma17246215
APA StyleSouček, P., Beneš, O., Hania, P. R., Kottrup, K. G., D’Agata, E., Rodrigues, A., Uitslag-Doolaard, H. J., & Konings, R. J. M. (2024). Synthesis, Purification, and Characterization of Molten Salt Fuel for the SALIENT-03 Irradiation Experiment. Materials, 17(24), 6215. https://doi.org/10.3390/ma17246215