Hydrothermal Synthesis of Cancrinite from Coal Gangue for the Immobilization of Sr
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Experimental Section
2.2.1. Hydrothermal Processing
2.2.2. Single Factor Test
2.2.3. Sample Characterization and Chemical Durability Testing
3. Results and Discussion
3.1. The Effect of NaOH
3.2. The Effect of Hydrothermal Temperature and Time
3.3. Effect of Sr/Al(Si) Molar Ratio
3.4. Sr2+ Solidification and Leaching Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Atomic Energy Agency. Country Nuclear Power Profiles; International Atomic Energy Agency: Vienna, Austria, 2022. [Google Scholar]
- Deutch, J.M.; Forsberg, C.W.; Kadak, A.C.; Kazimi, M.S.; Moniz, E.J.; Parsons, J.E.; Du, Y.; Pierpoint, L. Update of the MIT 2003 Future of Nuclear Power; Report for Massachusetts Institute of Technology; Massachusetts Institute of Technology: Cambridge, MA, USA, 2009. [Google Scholar]
- Hamidouche, T.; Bousbia-Salah, A.; Si-Ahmed, E.K.; D’Auria, F. Overview of accident analysis in nuclear research reactors. Prog. Nucl. Energy 2008, 50, 7–14. [Google Scholar] [CrossRef]
- Inan, S. Inorganic ion exchangers for strontium removal from radioactive waste: A review. J. Radioanal. Nucl. Chem. 2022, 331, 1137–1154. [Google Scholar] [CrossRef]
- Ojovan, M.I. Nuclear Waste Disposal. Encyclopedia 2023, 3, 419–429. [Google Scholar] [CrossRef]
- Hirose, K.; Igarashi, Y.; Aoyama, M. Analysis of the 50-year records of the atmospheric deposition of long-lived radionuclides in Japan. Appl. Radiat. Isot. Incl. Data Instrum. Methods Use Agric. Ind. Med. 2008, 66, 1675–1678. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Yang, G.S.; Tazoe, H.; Ma, L.L.; Yamada, M.; Xu, D.D. A review of measurement methodologies and their applications to environmental 90Sr. J. Environ. Radioact. 2018, 192, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Pollock, D.W. Simulation of fluid-flow and energy-transport processes associated with high-level radioactive-waste disposal in unsaturated alluvium. Water Resour. Res. 1986, 22, 765–775. [Google Scholar] [CrossRef]
- Oettingen, M. The Application of Radiochemical Measurements of PWR Spent Fuel for the Validation of Burnup Codes. Energies 2022, 15, 3041. [Google Scholar] [CrossRef]
- Caurant, D.; Loiseau, P.; Majérus, O.; Aubin-Chevaldonnet, V.; Quintas, A. Glasses, Glass-Ceramics and Ceramics for Immobilization of Highy Radioactive Nuclear Wastes; Nova Science: Hauppauge, NY, USA, 2009. [Google Scholar]
- Donald, I.W.; Metcalfe, B.L.; Taylor, R.N.J. The immobilization of high level radioactive wastes using ceramics and glasses. J. Mater. Sci. 1997, 32, 5851–5887. [Google Scholar] [CrossRef]
- Jostsons, A.; Reeve, K.D. Immobilization of high level waste in Synroc. Trans. Am. Nucl. Soc. 1988, 56 (Suppl. 1), 537–544. [Google Scholar]
- Kyong Won, H.; Heinonen, J.; Bonne, A. Radioactive waste disposal: Global experience and challenges. IAEA Bull. 1997, 39, 33–41. [Google Scholar]
- Ojovan, M.I.; Lee, W.E.; Kalmykov, S.N. Chapter 20—Ceramics and Novel Technologies. In An Introduction to Nuclear Waste Immobilisation, 3rd ed.; Ojovan, M.I., Lee, W.E., Kalmykov, S.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 369–395. [Google Scholar]
- Ringwood, A.E.; Kesson, S.E.; Ware, N.G.; Hibberson, W.; Major, A. Immobilization of high-level nuclear-reactor wastes in synroc. Nature 1979, 278, 219–223. [Google Scholar] [CrossRef]
- Lutze, W.; Ewing, R.C. Radioactive Waste Forms for the Future; North-Holland: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Poitrasson, F.; Hanchar, J.M.; Schaltegger, U. The current state and future of accessory mineral research. Chem. Geol. 2002, 191, 3–24. [Google Scholar] [CrossRef]
- Vance, E. Development of ceramic waste forms for high-level nuclear waste over the last 30 years. In Proceedings of the 30th Symposium on Scientific Basis for Nuclear Waste Management, Boston, MA, USA, 27 November–1 December 2006; Materials Research Society: Warrendale, PA, USA, 2007; Volume 985, pp. 137–144. [Google Scholar]
- Weber, W.J.; Navrotsky, A.; Stefanovsky, S.; Vance, E.R.; Vernaz, E. Materials Science of High-Level Nuclear Waste Immobilization. MRS Bull. 2009, 34, 46–53. [Google Scholar] [CrossRef]
- Șenilă, M.; Neag, E.; Tănăselia, C.; Șenilă, L. Removal of Cesium and Strontium Ions from Aqueous Solutions by Thermally Treated Natural Zeolite. Materials 2023, 16, 2965. [Google Scholar] [CrossRef]
- Bonaccorsi, E.; Merlino, S. Modular microporous minerals: Cancrinite-Davyne group and C-S-H phases. In Micro- and Mesoporous Mineral Phases; Ferraris, G., Merlino, S., Eds.; Reviews in Mineralogy & Geochemistry; Mineralogical Society of America & Geochemical Society: Chantilly, VA, USA, 2005; Volume 57, pp. 241–290. [Google Scholar]
- Gatta, G.D.; Lotti, P. Cancrinite-group minerals: Crystal-chemical description and properties under non ambient conditions—A review. Am. Miner. 2016, 101, 253–265. [Google Scholar] [CrossRef]
- Hassan, I.; Antao, S.M.; Parise, J.B. Cancrinite: Crystal structure, phase transitions, and dehydration behavior with temperature. Am. Miner. 2006, 91, 1117–1124. [Google Scholar] [CrossRef]
- Ballirano, P.; Maras, A.; Buseck, P.R. Crystal chemistry and IR spectroscopy of Cl- and SO4-bearing cancrinite-like minerals. Am. Miner. 1996, 81, 1003–1012. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Nedelko, V.V.; Blinova, L.N.; Korshunova, L.A.; Olysych, L.V.; Lykova, I.S.; Pekov, I.V.; Buhl, J.C.; Depmeier, W. The role of additional anions in microporous aluminosilicates with cancrinite-type framework. Russ. J. Phys. Chem. B 2012, 6, 593–600. [Google Scholar] [CrossRef]
- Chorover, J.; Choi, S.; Rotenberg, P.; Serne, R.J.; Rivera, N.; Strepka, C.; Thompson, A.; Mueller, K.T.; O’Day, P.A. Silicon control of strontium and cesium partitioning in hydroxide-weathered sediments. Geochim. Cosmochim. Acta 2008, 72, 2024–2047. [Google Scholar] [CrossRef]
- Deng, Y.J.; Flury, M.; Harsh, J.B.; Felmy, A.R.; Qafoku, O. Cancrinite and sodalite formation in the presence of cesium, potassium, magnesium, calcium and strontium in Hanford tank waste simulants. Appl. Geochem. 2006, 21, 2049–2063. [Google Scholar] [CrossRef]
- Deng, Y.J.; Harsh, J.B.; Flury, M.; Young, J.S.; Boyle, J.S. Mineral formation during simulated leaks of Hanford waste tanks. Appl. Geochem. 2006, 21, 1392–1409. [Google Scholar] [CrossRef]
- Mon, J.; Deng, Y.J.; Flury, M.; Harsh, J.B. Cesium incorporation and diffusion in cancrinite, sodalite, zeolite, and allophane. Microporous Mesoporous Mat. 2005, 86, 277–286. [Google Scholar] [CrossRef]
- Armstrong, J.A.; Dann, S.E. Investigation of zeolite scales formed in the Bayer process. Microporous Mesoporous Mat. 2000, 41, 89–97. [Google Scholar] [CrossRef]
- Hermeler, G.; Buhl, J.C.; Hoffmann, W. The influence of carbonate on the synthesis of an intermediate phase between sodalite and cancrinite. In Proceedings of the 2nd German Workshop on Zeolite Chemistry, Hamburg, Germany, 21–22 March 1990; Elsevier Science Publisher B.V.: Amsterdam, The Netherlands, 1991; pp. 415–426. [Google Scholar]
- Passos, F.; Castro, D.C.; Ferreira, K.K.; Simoes, K.M.A.; Bertolino, L.C.; Barbato, C.N.; Garrido, F.M.S.; Felix, A.A.S.; Silva, F. Synthesis and Characterization of Sodalite and Cancrinite from Kaolin. In Proceedings of the TMS Annual Meeting and Exhibition/Symposium on Characterization of Minerals, Metals, and Materials, San Diego, CA, USA, 7 February 2017; Springer International Publishing: Cham, Switzerland, 2017; pp. 279–288. [Google Scholar] [CrossRef]
- Xu, B.A.; Giles, D.E.; Ritchie, I.M. Reactions of lime with carbonate-containing solutions. Hydrometallurgy 1998, 48, 205–224. [Google Scholar] [CrossRef]
- Baic, I.; Witkowska-Kita, B. Hard Coal Mining Waste Management Technologies-Diagnosis of Current Development, Innovativeness Evaluation and SWOT Analysis. Rocz. Ochr. Srodowiska 2011, 13, 1315–1325. [Google Scholar]
- Bian, Z.; Inyang, H.I.; Daniels, J.L.; Otto, F.; Struthers, S. Environmental issues from coal mining and their solutions. Min. Sci. Technol. 2010, 20, 215–223. [Google Scholar] [CrossRef]
- Yu, L.J.; Feng, Y.L.; Yan, W. The current situation of comprehensive utilization of coal gangue in China. In Proceedings of the 1st International Conference on Energy and Environmental Protection (ICEEP 2012), Hohhot, China, 23–24 June 2012; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2012; Volume 524–527, pp. 915–918. [Google Scholar] [CrossRef]
- Li, J.Y.; Wang, J.M. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 18. [Google Scholar] [CrossRef]
- Pekov, I.V.; Olysych, L.V.; Chukanov, N.V.; Zubkova, N.V.; Pushcharovsky, D.Y.; Van, K.V.; Giester, G.; Tillmanns, E. Crystal chemistry of cancrinite-group minerals with an AB-type framework: A review and new data. I. chemical and structural variations. Can. Mineral. 2011, 49, 1129–1150. [Google Scholar] [CrossRef]
- ASTM International C 1285-14; Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT). ASTM International: West Conshohocken, PA, USA, 1997.
- Kim, J.K.; Lee, H.D. Effects of step change of heating source on synthesis of zeolite 4A from coal fly ash. J. Ind. Eng. Chem. 2009, 15, 736–742. [Google Scholar] [CrossRef]
- Maenami, H.; Shin, H.; Ishida, H.; Mitsuda, T. Hydrothermal solidification of wastes with formation of zeolites. J. Mater. Civ. Eng. 2000, 12, 302–306. [Google Scholar] [CrossRef]
- Lee, W.E.; Ojovan, M.I.; Stennett, M.C.; Hyatt, N.C. Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Adv. Appl. Ceram. 2006, 105, 3–12. [Google Scholar] [CrossRef]
Ingredients | SiO2 | Al2O3 | TiO2 | Fe2O3 | K2O | CaO | MgO | Na2O | C |
---|---|---|---|---|---|---|---|---|---|
Natural CG | 42.93 | 30.20 | 0.88 | 0.58 | 0.43 | 0.36 | 0.15 | 0.10 | 5.29 |
Calcined CG | 47.15 | 34.58 | 1.01 | 0.73 | 0.45 | 0.42 | 0.17 | 0.10 | 1.31 |
Sample | Mass Ratio of Sr2+ (wt%) | Normalized Concentration (mg/L) | Solidification Rate (%) |
---|---|---|---|
Na8[(SiAl)6O12](NO3)2 | 0 | 0.000 | - |
Sr0.2Na7.6[(SiAl)6O12](NO3)2 | 1.63 | 2.217 | >99.9 |
Sr0.4Na7.2[(SiAl)6O12](NO3)2 | 3.24 | 3.795 | >99.9 |
Sr0.6Na6.8[(SiAl)6O12](NO3)2 | 4.82 | 4.561 | >99.9 |
Sr0.8Na6.4[(SiAl)6O12](NO3)2 | 6.38 | 5.484 | >99.9 |
SrNa6[(SiAl)6O12](NO3)2 | 7.92 | 6.190 | >99.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, F.; Ang, R.; Ren, D. Hydrothermal Synthesis of Cancrinite from Coal Gangue for the Immobilization of Sr. Materials 2024, 17, 573. https://doi.org/10.3390/ma17030573
Wang H, Zhang F, Ang R, Ren D. Hydrothermal Synthesis of Cancrinite from Coal Gangue for the Immobilization of Sr. Materials. 2024; 17(3):573. https://doi.org/10.3390/ma17030573
Chicago/Turabian StyleWang, Hao, Fujie Zhang, Ran Ang, and Ding Ren. 2024. "Hydrothermal Synthesis of Cancrinite from Coal Gangue for the Immobilization of Sr" Materials 17, no. 3: 573. https://doi.org/10.3390/ma17030573