Effect of Limestone Powder Mixing Methods on the Performance of Mass Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mix Ratios
2.2. Test Methods
3. Results and Discussion
3.1. Workability
3.2. Compressive Strength
3.3. Constrained Expansion Rate
3.4. Hydration Temperature
3.5. Impermeability
3.6. SEM
3.7. XRD
3.8. TGA
4. Conclusions
- (1)
- Adding an appropriate amount of LP increases the workability of concrete. The optimum dosage of LP for replacing FA is 40% and the best workability of concrete is obtained when 10% of the manufactured sand is substituted with LP.
- (2)
- The compressive strength of concrete shows no significant change in the early stages (7 d and 28 d) and gradually decreases in later periods (60 d and 90 d) with an increasing dosage of LP replacing FA. The peak compressive strength is reached when 10% of the amount of manufactured sand is substituted with LP.
- (3)
- The constrained expansion rate initially grows and then shrinks as the amount of LP increases. The hydration temperature gradually decreases as the addition of LP increases, but the highest temperature peak appears earlier.
- (4)
- The impermeability of concrete gradually deteriorates as the amount of LP replacing FA increases. The best impermeability of concrete is obtained when 10% of the total amount of manufactured sand is replaced with LP.
- (5)
- The lower dosage of LP refines the pore structures of aggregates and promotes the early hydration of cement through filling and nucleation effects, which improves the performance of concrete.
5. Future Research Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full name |
LP | Limestone powder |
FA | Fly ash |
UEA | Calcium sulfoaluminate expansion agent |
AFt | Ettringite |
CH | Calcium hydroxide |
MB | Methylene blue adsorption |
PS | Polycarboxylate superplasticizer |
SEM | Scanning electron microscopy |
XRD | X-ray diffraction |
TGA | Thermogravimetric analysis |
References
- Tayebani, B.; Said, A.; Memari, A. Less carbon producing sustainable concrete from environmental and performance perspectives: A review. Constr. Build. Mater. 2023, 404, 133234. [Google Scholar] [CrossRef]
- Aqel, M.; Panesar, D.K. Hydration kinetics and compressive strength of steam-cured cement pastes and, mortars containing limestone filler. Constr. Build. Mater. 2016, 113, 359–368. [Google Scholar] [CrossRef]
- Wang, D.; Shi, C.; Farzadnia, N.; Shi, Z.; Jia, H.; Ou, Z. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr. Build. Mater. 2018, 181, 659–672. [Google Scholar] [CrossRef]
- Briki, Y.; Zajac, M.; Ben Haha, M.; Scrivener, K. Impact of limestone fineness on cement hydration at early age. Cem. Concr. Res. 2021, 147, 133234. [Google Scholar] [CrossRef]
- De Weerdt, K.; Ben Haha, M.; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 2011, 41, 279–291. [Google Scholar] [CrossRef]
- Joudi-Bahri, I.; Lecomte, A.; Ben Ouezdou, M.; Achour, T. Use of limestone sands and fillers in concrete without superplasticizer. Cem. Concr. Compos. 2012, 34, 771–780. [Google Scholar] [CrossRef]
- Ren, Q.; Xie, M.; Zhu, X.; Zhang, Y.; Jiang, Z. Role of Limestone Powder in Early-Age Cement Paste Considering Fineness Effects. J. Mater. Civ. Eng. 2020, 32, 04020289. [Google Scholar] [CrossRef]
- Fakhri, R.S.; Dawood, E.T. Limestone powder, calcined clay and slag as quaternary blended cement used for green concrete production. J. Build. Eng. 2023, 79, 107644. [Google Scholar] [CrossRef]
- Sua-iam, G.; Makul, N. Use of limestone powder during incorporation of Pb-containing cathode ray tube waste in self-compacting concrete. J. Environ. Manag. 2013, 128, 931–940. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Ghiasvand, E.; Nickseresht, I.; Mahdikhani, M.; Moodi, F. Influence of various amounts of limestone powder on performance of Portland limestone cement concretes. Cem. Concr. Compos. 2009, 31, 715–720. [Google Scholar] [CrossRef]
- Vuk, T.; Tinta, V.; Gabrovšek, R.; Kaučič, V. The effects of limestone addition, clinker type and fineness on properties of Portland cement. Cem. Concr. Res. 2001, 31, 135–139. [Google Scholar] [CrossRef]
- Rizwan, S.A.; Bier, T.A. Blends of limestone powder and fly-ash enhance the response of self-compacting mortars. Constr. Build. Mater. 2012, 27, 398–403. [Google Scholar] [CrossRef]
- Li, C.; Jiang, L. Utilization of limestone powder as an activator for early-age strength improvement of slag concrete. Constr. Build. Mater. 2020, 253, 119257. [Google Scholar] [CrossRef]
- Yannian, Z.; Bohan, Y.; Xiaowei, G.; Dong, H.; Qingjie, W. Improving the performance of ultra-high performance concrete containing lithium slag by incorporating limestone powder. J. Build. Eng. 2023, 72, 106610. [Google Scholar]
- Pliya, P.; Cree, D. Limestone derived eggshell powder as a replacement in Portland cement mortar. Constr. Build. Mater. 2015, 95, 1–9. [Google Scholar] [CrossRef]
- Schöler, A.; Lothenbach, B.; Winnefeld, F.; Zajac, M. Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder. Cem. Concr. Compos. 2015, 55, 374–382. [Google Scholar] [CrossRef]
- Li, W.; Huang, Z.; Cao, F.; Sun, Z.; Shah, S.P. Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix. Constr. Build. Mater. 2015, 95, 366–374. [Google Scholar] [CrossRef]
- Das, S.; Aguayo, M.; Dey, V.; Kachala, R.; Mobasher, B.; Sant, G.; Neithalath, N. The fracture response of blended formulations containing limestone powder: Evaluations using two-parameter fracture model and digital image correlation. Cem. Concr. Compos. 2014, 53, 316–326. [Google Scholar] [CrossRef]
- Vance, K.; Aguayo, M.; Oey, T.; Sant, G.; Neithalath, N. Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin. Cem. Concr. Compos. 2013, 39, 93–103. [Google Scholar] [CrossRef]
- Wang, D.; Shi, C.; Farzadnia, N.; Shi, Z.; Jia, H. A review on effects of limestone powder on the properties of concrete. Constr. Build. Mater. 2018, 192, 153–166. [Google Scholar] [CrossRef]
- Vijayalakshmi, M.; Sekar, A.S.S.; Prabhu, G.G. Strength and durability properties of concrete made with granite industry waste. Constr. Build. Mater. 2013, 46, 1–7. [Google Scholar] [CrossRef]
- Nikbin, I.M.; Beygi, M.H.A.; Kazemi, M.T.; Amiri, J.V.; Rabbanifar, S.; Rahmani, E.; Rahimi, S. A comprehensive investigation into the effect of water to cement ratio and powder content on mechanical properties of self-compacting concrete. Constr. Build. Mater. 2014, 57, 69–80. [Google Scholar] [CrossRef]
- Bayesteh, H.; Sharifi, M.; Haghshenas, A. Effect of stone powder on the rheological and mechanical performance of cement-stabilized marine clay/sand. Constr. Build. Mater. 2020, 262, 120792. [Google Scholar] [CrossRef]
- Zubair, M.; Mu’azu, N.D.; Nasir, M.; Manzar, M.S.; Aziz, M.A.; Saleem, M.; Al-Harthi, M.A. Cellulose Nanocrystals from Office Paper Waste for Green Mortar: Process Optimization Modeling, Characterization, and Mechanical Properties. Arab. J. Sci. Eng. 2022, 47, 5377–5393. [Google Scholar] [CrossRef]
- Thongsanitgarn, P.; Wongkeo, W.; Chaipanich, A.; Poon, C.S. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. Constr. Build. Mater. 2014, 66, 410–417. [Google Scholar] [CrossRef]
- Zhu, P.; Yang, G.; Jiang, L.; Shi, Y.; Xu, N.; Jin, M.; Gu, Y. Influence of high-volume limestone powder on hydration and microstructural development of cement. Adv. Cem. Res. 2021, 33, 197–209. [Google Scholar] [CrossRef]
- Kim, S.-J.; Yang, K.-H.; Moon, G.-D. Hydration Characteristics of Low-Heat Cement Substituted by Fly Ash and Limestone Powder. Metals 2015, 8, 5847–5861. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Wang, Q.; Liu, M.; Mei, Y. Early hydration properties of composite binder containing limestone powder with different finenesses. J. Therm. Anal. Calorim. 2016, 123, 1141–1151. [Google Scholar]
- Guo, J.; Zhang, S.; Qi, C.; Cheng, L.; Yang, L. Effect of calcium sulfoaluminate and MgO expansive agent on the mechanical strength and crack resistance of concrete. Constr. Build. Mater. 2021, 299, 123833. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, S.; Guo, T.; Zhang, P. Effects of UEA and MgO expansive agents on fracture properties of concrete. Constr. Build. Mater. 2020, 263, 120245. [Google Scholar] [CrossRef]
- Attanayake, U.; Liang, X.; Ng, S.; Aktan, H. Penetrating Sealants for Concrete Bridge Decks—Selection Procedure. J. Bridge Eng. 2006, 11, 533–540. [Google Scholar] [CrossRef]
- Arif, A.M.; Mukarram, Z.; Muhammad, S. Development and testing of cellulose nanocrystal-based concrete. Case. Stud. Constr. Mat. 2021, 15, e00761. [Google Scholar]
- Li, L.G.; Kwan, A.K.H. Adding limestone fines as cementitious paste replacement to improve tensile strength, stiffness and durability of concrete. Cem. Concr. Compos. 2015, 60, 17–24. [Google Scholar] [CrossRef]
- Ghrici, M.; Kenai, S.; Said-Mansour, M. Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cem. Concr. Compos. 2007, 29, 542–549. [Google Scholar] [CrossRef]
- Dhir, R.K.; Limbachiya, M.C.; McCarthy, M.J.; Chaipanich, A. Evaluation of Portland limestone cements for use in concrete construction. Mater. Struct. 2007, 40, 459–473. [Google Scholar] [CrossRef]
- Meddah, M.S.; Lmbachiya, M.C.; Dhir, R.K. Potential use of binary and composite limestone cements in concrete production. Constr. Build. Mater. 2014, 58, 193–205. [Google Scholar] [CrossRef]
- Bonavetti, V.; Donza, H.; Rahhal, V.; Irassar, E. Influence of initial curing on the properties of concrete containing limestone blended cement. Cem. Concr. Res. 2000, 30, 703–708. [Google Scholar] [CrossRef]
- GB175-2007; Common Portland Cement. China Standards Press: Beijing, China, 2007.
- GB/T 50080-2016; Standard for Test Method of Performance on Ordinary Fresh Concrete. China Architecture and Building Press: Beijing, China, 2016.
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. China Architecture and Building Press: Beijing, China, 2019.
- GB/T 50082-2009; Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete. China Architecture and Building Press: Beijing, China, 2009.
- GB/T 23439-2017; Expansive Agents for Concrete. Standardization Administration of the People’s Republic of China: Beijing, China, 2017.
- Ma, X.; He, T.; Xu, Y.; Yang, R.; Sun, Y. Hydration reaction and compressive strength of small amount of silica fume on cement-fly ash matrix. Case. Stud. Constr. Mat. 2022, 16, e00989. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Q.L.; Brouwers, H.J.H. Properties of alkali activated slag-fly ash blends with limestone addition. Cem. Concr. Compos. 2015, 59, 119–128. [Google Scholar] [CrossRef]
- Courard, L.; Michel, F.; Pierard, J. Influence of clay in limestone fillers for self-compacting cement based composites. Constr. Build. Mater. 2011, 25, 1356–1361. [Google Scholar] [CrossRef]
- Alyamac, K.E.; Ince, R. A Preliminary Concrete Mix Design For Scc With Marble Powders. Constr. Build. Mater. 2009, 23, 1201–1210. [Google Scholar] [CrossRef]
- Cam, H.T.; Neithalath, N. Moisture and ionic transport in concretes containing coarse limestone powder. Cem. Concr. Compos. 2010, 32, 486–496. [Google Scholar] [CrossRef]
- Mohammed, M.K.; Dawson, A.R.; Thom, N.H. Production, microstructure and hydration of sustainable self-compacting concrete with different types of filler. Constr. Build. Mater. 2013, 49, 84–92. [Google Scholar] [CrossRef]
- Yahia, A.; Tanimura, M.; Shimoyama, Y. Rheological properties of highly flowable mortar containing limestone filler-effect of powder content and W/C ratio. Cem. Concr. Res. 2004, 35, 532–539. [Google Scholar] [CrossRef]
- Sezer, G.I. Compressive strength and sulfate resistance of limestone and/or silica fume mortars. Constr. Build. Mater. 2012, 26, 613–618. [Google Scholar] [CrossRef]
- Nocun-Wczelik, W.; Konik, Z.; Stok, A. Blended systems with calcium aluminate and calcium sulphate expansive additives. Constr. Build. Mater. 2011, 25, 939–943. [Google Scholar] [CrossRef]
- Carballosa, P.; Garcia Calvo, J.L.; Revuelta, D. Influence of expansive calcium sulfoaluminate agent dosage on properties and microstructure of expansive self-compacting concretes. Cem. Concr. Compos. 2020, 107, 103464. [Google Scholar] [CrossRef]
- Liuquan, Q.; Dongxu, L.; Zongjin, L. Effects of lignin cellulose and expansive agent on microstructure and macro-property of polymer-modified mortar containing fly ash. Constr. Build. Mater. 2008, 23, 2467–2471. [Google Scholar] [CrossRef]
- Lothenbach, B.; Saout, G.L.; Gallucci, E.; Scrivener, K. Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 2008, 38, 848–860. [Google Scholar] [CrossRef]
- Feng, J.; Miao, M.; Yan, P. Hydration and Expansion Properties of Shrinkage Compensating Composite Cementitious Materials. J. Build. Mater. 2012, 15, 439–445. [Google Scholar]
- Wang, S.; Chen, C.; Lu, L.; Cheng, X. Effects of slag and limestone powder on the hydration and hardening process of alite-barium calcium sulphoaluminate cement. Constr. Build. Mater. 2012, 35, 227–231. [Google Scholar]
Composition/Properties | Cement | FA | UEA | LP | |
---|---|---|---|---|---|
SiO2 (%) | 21.89 | 49.62 | 25.35 | 0.69 | |
Al2O3 (%) | 4.46 | 17.52 | 15.80 | 0.36 | |
Fe2O3 (%) | 2.16 | 6.63 | 0.80 | 0.14 | |
MgO (%) | 1.38 | 1.15 | 0.77 | 0.37 | |
CaO (%) | 66.74 | 7.59 | 26.30 | 54.79 | |
Na2O (%) | 0.20 | 1.09 | 0.10 | - | |
K2O (%) | 0.59 | 2.29 | 0.50 | 0.08 | |
SO3 (%) | 1.12 | 1.04 | 26.80 | 0.01 | |
Water demand ratio (%) | 100 | 97 | - | 93 | |
Methylene Blue adsorption (MB, g/kg) | - | - | - | 1.25 | |
Compressive strength ratio (%) | 7 d | 100 | 69 | 94 | 67 |
28 d | 100 | 71 | 100 | 69 |
No. | LP Content | Cement | FA | LP | UEA | Sand | Stone | Water | PS |
---|---|---|---|---|---|---|---|---|---|
JZ | 0% | 195 | 135 | 0 | 36.6 | 856.7 | 1005.7 | 165 | 6.59 |
LF | 20% | 195 | 108 | 27 | 36.6 | 856.7 | 1005.7 | 165 | 6.59 |
40% | 195 | 81 | 54 | 36.6 | 856.7 | 1005.7 | 165 | 6.59 | |
60% | 195 | 54 | 81 | 36.6 | 856.7 | 1005.7 | 165 | 6.59 | |
80% | 195 | 27 | 108 | 36.6 | 856.7 | 1005.7 | 165 | 6.59 | |
100% | 195 | 0 | 135 | 36.6 | 856.7 | 1005.7 | 165 | 6.59 | |
LFS | 20% | 195 | 108 | 36 | 36.6 | 847.7 | 1005.7 | 165 | 6.59 |
40% | 195 | 81 | 72 | 36.6 | 838.7 | 1005.7 | 165 | 6.59 | |
60% | 195 | 54 | 108 | 36.6 | 829.7 | 1005.7 | 165 | 6.59 | |
80% | 195 | 27 | 114 | 36.6 | 820.7 | 1005.7 | 165 | 6.59 | |
100% | 195 | 0 | 180 | 36.6 | 811.7 | 1005.7 | 165 | 6.59 | |
LS | 5% | 195 | 135 | 43 | 36.6 | 813.7 | 1005.7 | 165 | 6.59 |
10% | 195 | 135 | 86 | 36.6 | 770.7 | 1005.7 | 165 | 6.59 | |
15% | 195 | 135 | 129 | 36.6 | 727.7 | 1005.7 | 165 | 6.59 | |
20% | 195 | 135 | 172 | 36.6 | 684.7 | 1005.7 | 165 | 6.59 | |
25% | 195 | 135 | 215 | 36.6 | 641.7 | 1005.7 | 165 | 6.59 |
No. | LP Content (%) | Slump | Slump Flow | ||
---|---|---|---|---|---|
0 h (mm) | 1 h (mm) | 0 h (mm) | 1 h (mm) | ||
JZ | 0 | 210 | 205 | 575 | 535 |
LF | 20 | 215 | 205 | 610 | 580 |
40 | 225 | 210 | 645 | 585 | |
60 | 215 | 200 | 600 | 485 | |
80 | 210 | 195 | 585 | 440 | |
100 | 205 | 200 | 560 | 430 | |
LFS | 20 | 215 | 205 | 600 | 575 |
40 | 225 | 210 | 620 | 580 | |
60 | 220 | 205 | 600 | 500 | |
80 | 215 | 200 | 580 | 450 | |
100 | 210 | 205 | 570 | 445 | |
LS | 5 | 210 | 195 | 570 | 500 |
10 | 215 | 185 | 555 | 485 | |
15 | 210 | 160 | 485 | 380 | |
20 | 210 | 115 | 465 | 340 | |
25 | 200 | 100 | 440 | 295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; He, T.; Niu, M.; Chang, X.; Wang, L.; Wang, Y. Effect of Limestone Powder Mixing Methods on the Performance of Mass Concrete. Materials 2024, 17, 617. https://doi.org/10.3390/ma17030617
Zhao L, He T, Niu M, Chang X, Wang L, Wang Y. Effect of Limestone Powder Mixing Methods on the Performance of Mass Concrete. Materials. 2024; 17(3):617. https://doi.org/10.3390/ma17030617
Chicago/Turabian StyleZhao, Lele, Tingshu He, Mengdie Niu, Xiulong Chang, Lei Wang, and Yan Wang. 2024. "Effect of Limestone Powder Mixing Methods on the Performance of Mass Concrete" Materials 17, no. 3: 617. https://doi.org/10.3390/ma17030617
APA StyleZhao, L., He, T., Niu, M., Chang, X., Wang, L., & Wang, Y. (2024). Effect of Limestone Powder Mixing Methods on the Performance of Mass Concrete. Materials, 17(3), 617. https://doi.org/10.3390/ma17030617