New Scalable Sulfur Cathode Containing Specifically Designed Polysulfide Adsorbing Materials
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of PPyNT
2.3. Preparation of CNT/PANI/PPyNT/TiO2
2.4. Preparation of S@CNT/PANI/PPyNT/TiO2 Composite
2.5. Characterization
2.6. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashuri, M.; Dunya, H.; Yue, Z.; Alramahi, D.; Mei, X.; Kucuk, K.; Aryal, S.; Segre, C.U.; Mandal, B.K. Enhancement in Electrochemical Performance of Lithium-Sulfur Cells through Sulfur Encapsulation in Hollow Carbon Nanospheres Coated with Ultra-Thin Aluminum Fluoride Layer. ChemistrySelect 2019, 4, 12622–12629. [Google Scholar] [CrossRef]
- Dunya, H.; Ashuri, M.; Alramahi, D.; Yue, Z.; Kucuk, K.; Segre, C.U.; Mandal, B.K. MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries. Chem. Eng. 2020, 4, 42. [Google Scholar] [CrossRef]
- Dunya, H.; Ashuri, M.; Yue, Z.; Kucuk, K.; Lin, Y.; Alramahi, D.; Segre, C.U.; Mandal, B.K. Rational design of titanium oxide-coated dual Core–Shell sulfur nanocomposite cathode for highly stable lithium-sulfur batteries. J. Phys. Chem. Solids 2021, 149, 109791. [Google Scholar] [CrossRef]
- Dunya, H.; Yue, Z.; Ashuri, M.; Mei, X.; Lin, Y.; Kucuk, K.; Aryal, S.; Segre, C.U.; Mandal, B.K. A New Graphitic Carbon Nitride-Coated Dual Core–Shell Sulfur Cathode for Highly Stable Lithium–Sulfur Cells. Mater. Chem. Phys. 2020, 246, 122842. [Google Scholar] [CrossRef]
- Li, G.; Chen, Z.; Lu, J. Lithium-Sulfur Batteries for Commercial Applications. Chem 2018, 4, 3–7. [Google Scholar] [CrossRef]
- Deng, C.; Wang, Z.; Wang, S.; Yu, J. Inhibition of Polysulfide Diffusion in Lithium-Sulfur Batteries: Mechanism and Improvement Strategies. J. Mater. Chem. A 2019, 7, 12381–12413. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Adair, K.; Zhang, H.; Sun, X. Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application. Electrochem. Energy Rev. 2018, 1, 239–293. [Google Scholar] [CrossRef]
- Angulakshmi, N.; Stephan, A.M. Efficient Electrolytes for Lithium-Sulfur Batteries. Front. Energy Res. 2015, 3, 17. [Google Scholar] [CrossRef]
- Yang, L.; Li, Q.; Wang, Y.; Chen, Y.; Guo, X.; Wu, Z.; Chen, G.; Zhong, B.; Xiang, W.; Zhong, Y. A review of cathode materials in lithium-sulfur batteries. Ionics 2020, 26, 5299–5318. [Google Scholar] [CrossRef]
- Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436. [Google Scholar] [CrossRef]
- Ye, R.; Bell, J.; Patino, D.; Ahmed, K.; Ozkan, M.; Ozkan, C.S. Advanced Sulfur-Silicon Full Cell Architecture for Lithium Ion Batteries. Sci. Rep. 2017, 7, 17264. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Dudney, N.J.; Howe, J.Y. Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery. Chem. Mater. 2009, 21, 4724–4730. [Google Scholar] [CrossRef]
- Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K.T.; Bein, T.; Nazar, L.F. Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium–Sulfur Batteries. Angew. Chem. 2012, 124, 3651–3655. [Google Scholar] [CrossRef]
- Chen, S.; Sun, B.; Xie, X.; Mondal, A.K.; Huang, X.; Wang, G. Multi-Chambered Micro/Mesoporous Carbon Nanocubes as New Polysulfides Reservoirs for Lithium–Sulfur Batteries with Long Cycle Life. Nano Energy 2015, 16, 268–280. [Google Scholar] [CrossRef]
- Li, G.; Sun, J.; Hou, W.; Jiang, S.; Huang, Y.; Geng, J. Three-Dimensional Porous Carbon Composites Containing High Sulfur Nanoparticle Content for High-Performance Lithium–Sulfur Batteries. Nat. Commun. 2016, 7, 10601. [Google Scholar] [CrossRef]
- Zheng, Z.; Guo, H.; Pei, F.; Zhang, X.; Chen, X.; Fang, X.; Wang, T.; Zheng, N. High Sulfur Loading in Hierarchical Porous Carbon Rods Constructed by Vertically Oriented Porous Graphene-Like Nanosheets for Li-S Batteries. Adv. Funct. Mater. 2016, 26, 8952–8959. [Google Scholar] [CrossRef]
- Shi, J.-L.; Tang, C.; Huang, J.-Q.; Zhu, W.; Zhang, Q. Effective Exposure of Nitrogen Heteroatoms in 3D Porous Graphene Framework for Oxygen Reduction Reaction and Lithium–Sulfur Batteries. J. Energy Chem. 2018, 27, 167–175. [Google Scholar] [CrossRef]
- Yuan, L.; Yuan, H.; Qiu, X.; Chen, L.; Zhu, W. Improvement of Cycle Property of Sulfur-Coated Multi-Walled Carbon Nanotubes Composite Cathode for Lithium/Sulfur Batteries. J. Power Sources 2009, 189, 1141–1146. [Google Scholar] [CrossRef]
- Dörfler, S.; Hagen, M.; Althues, H.; Tübke, J.; Kaskel, S.; Hoffmann, M.J. High Capacity Vertical Aligned Carbon Nanotube/Sulfur Composite Cathodes for Lithium–Sulfur Batteries. Chem. Commun. 2012, 48, 4097–4099. [Google Scholar] [CrossRef]
- Sun, L.; Wang, D.; Luo, Y.; Wang, K.; Kong, W.; Wu, Y.; Zhang, L.; Jiang, K.; Li, Q.; Zhang, Y.; et al. Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium–Sulfur Batteries. ACS Nano 2016, 10, 1300–1308. [Google Scholar] [CrossRef]
- Yuan, Z.; Peng, H.-J.; Huang, J.-Q.; Liu, X.-Y.; Wang, D.-W.; Cheng, X.-B.; Zhang, Q. Hierarchical Free-Standing Carbon-Nanotube Paper Electrodes with Ultrahigh Sulfur-Loading for Lithium–Sulfur Batteries. Adv. Funct. Mater. 2014, 24, 6105–6112. [Google Scholar] [CrossRef]
- Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E.J.; Zhang, Y. Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells. J. Am. Chem. Soc. 2011, 133, 18522–18525. [Google Scholar] [CrossRef]
- Wang, J.-Z.; Lu, L.; Choucair, M.; Stride, J.A.; Xu, X.; Liu, H.-K. Sulfur-Graphene Composite for Rechargeable Lithium Batteries. J. Power Sources 2011, 196, 7030–7034. [Google Scholar] [CrossRef]
- Yuan, S.; Guo, Z.; Wang, L.; Hu, S.; Wang, Y.; Xia, Y. Leaf-Like Graphene-Oxide-Wrapped Sulfur for High-Performance Lithium–Sulfur Battery. Adv. Sci. 2015, 2, 1500071. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Xu, C.; Sun, Z.; Wang, S.; Cheng, H.-M.; Li, F.; Ren, W. 3D Graphene-Foam–Reduced-Graphene-Oxide Hybrid Nested Hierarchical Networks for High-Performance Li–S Batteries. Adv. Mater. 2016, 28, 1603–1609. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, C.; Dong, W.; Lu, W.; Du, Z.; Chen, L. Monodispersed Sulfur Nanoparticles for Lithium–Sulfur Batteries with Theoretical Performance. Nano Lett. 2015, 15, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Dietz Rago, N.L.; Bloom, I.D.; Shaw, L.L. New Insights into the Electrode Mechanism of Lithium Sulfur Batteries via Air-Free Post-Test Analysis. Chem. Commun. 2016, 52, 9913–9916. [Google Scholar] [CrossRef] [PubMed]
- Chabu, J.M.; Zeng, K.; Jin, G.; Zhang, M.; Li, Y.; Liu, Y.-N. Simple Approach for the Preparation of Nitrogen and Sulfur Codoped Carbon Dots/Reduced Graphene Oxide as Host for High-Rate Lithium sulfur Batteries. Mater. Chem. Phys. 2019, 229, 226–231. [Google Scholar] [CrossRef]
- Yuan, H.; Peng, H.-J.; Li, B.-Q.; Xie, J.; Kong, L.; Zhao, M.; Chen, X.; Huang, J.-Q.; Zhang, Q. Conductive and Catalytic Triple-Phase Interfaces Enabling Uniform Nucleation in High-Rate Lithium–Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1802768. [Google Scholar] [CrossRef]
- Li, Z.; Wu, H.B.; Lou, X.W. Rational Designs and Engineering of Hollow Micro-/Nanostructures as Sulfur Hosts for Advanced Lithium–Sulfur Batteries. Energy Environ. Sci. 2016, 9, 3061–3070. [Google Scholar] [CrossRef]
- Hart, C.J.; Cuisinier, M.; Liang, X.; Kundu, D.; Garsuch, A.; Nazar, L.F. Rational Design of Sulphur Host Materials for Li–S Batteries: Correlating Lithium Polysulphide Adsorptivity and Self-Discharge Capacity Loss. Chem. Commun. 2015, 51, 2308–2311. [Google Scholar] [CrossRef]
- Seh, Z.W.; Zhang, Q.; Li, W.; Zheng, G.; Yao, H.; Cui, Y. Stable Cycling of Lithium Sulfide Cathodes through Strong Affinity with a Bifunctional Binder. Chem. Sci. 2013, 4, 3673–3677. [Google Scholar] [CrossRef]
- He, G.; Hart, C.J.; Liang, X.; Garsuch, A.; Nazar, L.F. Stable Cycling of a Scalable Graphene-Encapsulated Nanocomposite for Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2014, 6, 10917–10923. [Google Scholar] [CrossRef]
- Xiang, H.; Deng, N.; Zhao, H.; Wang, X.; Wei, L.; Wang, M.; Cheng, B.; Kang, W. A review on electronically conducting polymers for lithium-sulfur battery and lithium-selenium battery: Progress and prospects. J. Energy Chem. 2021, 58, 523–556. [Google Scholar] [CrossRef]
- Sapurina, I.; Li, Y.; Alekseeva, E.; Bober, P.; Trchová, M.; Morávková, Z.; Stejskal, J. Polypyrrole Nanotubes: The Tuning of Morphology and Conductivity. Polymer 2017, 113, 247–258. [Google Scholar] [CrossRef]
- John, J.; Manoj, M.; Abhilash, A.; Jayalekshmi, S. Sulfur/Polypyrrole Composite Cathodes for Applications in High Energy Density Lithium–Sulfur Cells. J. Mater. Sci. Mater. Electron. 2020, 31, 13926–13938. [Google Scholar] [CrossRef]
- Orendorff, C.J. The role of separators in lithium-ion cell safety. Electrochem. Soc. Interface 2012, 21, 61–65. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, R.; Li, T.; Li, F.; Liu, Z.; Zheng, M.; Wang, B.; Yang, Z.; Luo, H.; Wan, Y. Application of Polyaniline for Li-Ion Batteries, Lithium–Sulfur Batteries, and Supercapacitors. ChemSusChem 2019, 12, 1591–1611. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ruan, G.; Peng, Z.; Yang, Y.; Fei, H.; Raji, A.-R.O.; Samuel, E.L.G.; Tour, J.M. Enhanced Cycling Stability of Lithium Sulfur Batteries Using Sulfur–Polyaniline–Graphene Nanoribbon Composite Cathodes. ACS Appl. Mater. Interfaces 2014, 6, 15033–15039. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Cao, Y.; Xiao, J.; Schwenzer, B.; Engelhard, M.H.; Saraf, L.V.; Nie, Z.; Exarhos, G.J.; Liu, J. A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life. Adv. Mater. 2012, 24, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Kopecká, J.; Kopecký, D.; Vrňata, M.; Fitl, P.; Stejskal, J.; Trchová, M.; Bober, P.; Morávková, Z.; Prokeš, J.; Sapurina, I. Polypyrrole Nanotubes: Mechanism of Formation. RSC Adv. 2014, 4, 1551–1558. [Google Scholar] [CrossRef]
- Min, J.H.; Patel, M.; Koh, W.G. Incorporation of Conductive Materials into Hydrogels for Tissue Engineering Applications. Polymers 2018, 10, 1078. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Chi, Y.; Hu, Q.; Tang, H.; Jiang, X.; Zhang, L.; Zhang, S.; Pang, H.; Xu, Q. Carbon Nanotube-Based Materials for Lithium–Sulfur Batteries. J. Mater. Chem. A 2019, 7, 17204–17241. [Google Scholar] [CrossRef]
- Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L.F. Surface-Enhanced Redox Chemistry of Polysulphides on a Metallic and Polar Host for Lithium-Sulphur Batteries. Nat. Commun. 2014, 5, 4759. [Google Scholar] [CrossRef]
- Kim, J.W.; Seo, G.; Bong, S.; Lee, J. Improved Redox Reaction of Lithium Polysulfides on the Interfacial Boundary of Polar CoC2O4 as a Polysulfide Catenator for a High-Capacity Lithium-Sulfur Battery. ChemSusChem 2021, 14, 876–883. [Google Scholar] [CrossRef]
- Thamaphat, K.; Limsuwan, P.; Ngotawornchai, B. Phase Characterization of TiO2 Powder by XRD and TEM\n. Nat. Sci. 2008, 42, 357–361. Available online: https://www.researchgate.net/publication/284145208_Phase_characterization_of_TiO2_powder_by_XRD_and_TEMn (accessed on 10 August 2023).
- Yin, F.; Ren, J.; Zhang, Y.; Tan, T.; Chen, Z. A PPy/ZnO Functional Interlayer to Enhance Electrochemical Performance of Lithium/Sulfur Batteries. Nanoscale Res. Lett. 2018, 13, 307. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Han, Y.; Duan, X.; Jia, G.; Huang, L.; Chen, Y. A Stable Graphite Electrode in Superconcentrated LiTFSI-DME/DOL Electrolyte and Its Application in Lithium-Sulfur Full Battery. Mater. Res. Bull. 2017, 95, 61–70. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; Li, J.; Zhang, Y.; Wook, A.; Yu, A.; Chen, Z. Structural and Chemical Synergistic Encapsulation of Polysulfides Enables Ultralong-Life Lithium–Sulfur Batteries. Energy Environ. Sci. 2016, 9, 2533–2538. [Google Scholar] [CrossRef]
- Medenbach, L.; Escher, I.; Köwitsch, N.; Armbrüster, M.; Zedler, L.; Dietzek, B.; Adelhelm, P. Sulfur Spillover on Carbon Materials and Possible Impacts on Metal–Sulfur Batteries. Angew. Chem. Int. Ed. 2018, 57, 13666–13670. [Google Scholar] [CrossRef]
- Li, Q.; Liu, J.; Bai, A.; Li, P.; Li, J.; Zhang, X.; Yu, M.; Wang, J.; Sun, H. Preparation of a Nitrogen-Doped Reduced Graphene Oxide-Modified Graphite Felt Electrode for VO2+/VO2+ Reaction by Freeze-Drying and Pyrolysis Method. J. Chem. 2019, 2019, 8958946. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Zhang, F.; Liu, C.; Shaw, L.L. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2015, 7, 25748–25756. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, Z.; Zhang, H.; Tan, H.; Yu, J.; Wu, J. Mesoporous β-MnO2/Sulfur Composite as Cathode Material for Li–S Batteries. Electrochim. Acta 2013, 106, 307–311. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Ju, Z.; Yu, X.; Wang, Y.; Du, Y.; Bai, Z.; Dou, S.; Yu, G. Thickness-Independent Scalable High-Performance Li-S Batteries with High Areal Sulfur Loading via Electron-Enriched Carbon Framework. Nat. Commun. 2021, 12, 4519. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Kushima, A.; Li, M.; Wang, Z.; Li, W.; Wang, C.; Li, J. Scalable Synthesis of a Sulfur Nanosponge Cathode for a Lithium–Sulfur Battery with Improved Cyclability. J. Mater. Chem. A 2014, 2, 19788–19796. [Google Scholar] [CrossRef]
- Li, C.; Shi, J.; Zhu, L.; Zhao, Y.; Lu, J.; Xu, L. Titanium Nitride Hollow Nanospheres with Strong Lithium Polysulfide Chemisorption as Sulfur Hosts for Advanced Lithium-Sulfur Batteries. Nano Res. 2018, 11, 4302–4312. [Google Scholar] [CrossRef]
Sample | Element | ||||
---|---|---|---|---|---|
Sulfur | Carbon | Oxygen | Nitrogen | Titanium | |
BTX | 40.69 | 32.57 | 13.46 | 6.91 | 6.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzanowicz, A.M.; Turner, B.; Abeywickrama, T.M.; Lin, H.; Alramahi, D.; Segre, C.U.; Mandal, B.K. New Scalable Sulfur Cathode Containing Specifically Designed Polysulfide Adsorbing Materials. Materials 2024, 17, 856. https://doi.org/10.3390/ma17040856
Suzanowicz AM, Turner B, Abeywickrama TM, Lin H, Alramahi D, Segre CU, Mandal BK. New Scalable Sulfur Cathode Containing Specifically Designed Polysulfide Adsorbing Materials. Materials. 2024; 17(4):856. https://doi.org/10.3390/ma17040856
Chicago/Turabian StyleSuzanowicz, Artur M., Bianca Turner, Thulitha M. Abeywickrama, Hao Lin, Dana Alramahi, Carlo U. Segre, and Braja K. Mandal. 2024. "New Scalable Sulfur Cathode Containing Specifically Designed Polysulfide Adsorbing Materials" Materials 17, no. 4: 856. https://doi.org/10.3390/ma17040856
APA StyleSuzanowicz, A. M., Turner, B., Abeywickrama, T. M., Lin, H., Alramahi, D., Segre, C. U., & Mandal, B. K. (2024). New Scalable Sulfur Cathode Containing Specifically Designed Polysulfide Adsorbing Materials. Materials, 17(4), 856. https://doi.org/10.3390/ma17040856