Compositional Optimization of Sputtered WO3/MoO3 Films for High Coloration Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Sputtering Facility
2.2. Combinatorial Deposition
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of the WO3/MoO3 Samples Using SE and RBS
3.2. Coloration Efficiency Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Granqvist, C.G. Handbook of Inorganic Electrochromic Materials; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- González-Borrero, P.P.; Sato, F.; Medina, A.N.; Baesso, M.L.; Bento, A.C.; Baldissera, G.; Persson, C.; Niklasson, G.A.; Granqvist, C.G.A. Ferreira da Silva, Optical band-gap determination of nanostructured WO3 film. Appl. Phys. Lett. 2010, 96, 061909. [Google Scholar] [CrossRef]
- Novinrooz, A.; Sharbatdaran, M.; Noorkojouri, H. Structural and optical properties of WO3 electrochromic layers prepared by the sol-gel method. Centr. Eur. J. Phys. 2005, 3, 456–466. [Google Scholar] [CrossRef]
- Hsu, C.-S.; Chan, C.-C.; Huang, H.-T.; Peng, C.-H.; Hsu, W.-C. Electrochromic properties of nanocrystalline MoO3 thin films. Thin. Solid. Films. 2008, 516, 4839–4844. [Google Scholar] [CrossRef]
- Chaichana, S.; Sikong, L.; Kooptarnond, K.; Chetpattananondh, K. The electrochromic property of MoO3/WO3 nanocomposite films. IOP Conf. Ser. Mater. Sci. Eng. 2018, 378, 012002. [Google Scholar] [CrossRef]
- Livage, J.; Ganguli, D. Sol–gel electrochromic coatings and devices: A review. Sol. Energy Mater. Sol. Cells 2001, 68, 365–381. [Google Scholar] [CrossRef]
- Hamelmann, F.; Gesheva, K.; Ivanova, T.; Szekeres, A.; Abrashev, M.; Heinzmann, U. Optical and electrochromic characterization of multilayered mixed metal oxide thin films. J. Optoelectron. Adv. Mater. 2005, 7, 393. [Google Scholar]
- MArvizu, A.; Granqvist, C.G.; Niklasson, G.A. Electrochromism in sputter deposited W1-y MoyO3 thin films. J. Phys. Conf. Ser. 2016, 682, 012005. [Google Scholar] [CrossRef]
- Prameela, C.; Srinivasarao, K. Characterization of (MoO3)x − (Wo3)1 − x composites. Int. J. Appl. Eng. Res. 2015, 10, 9865–9875. [Google Scholar]
- Faughnan, B.W.; Crandall, R.S. Optical properties of mixed-oxide WO3/MoO3 electrochromic films. Appl. Phys. Lett. 1977, 31, 834–836. [Google Scholar] [CrossRef]
- Madhavi, V.; Kondaiah, P.; Hussain, O.M.; Uthanna, S. Structural, Optical, and Electrochromic Properties of Pure and Mo-Doped WO3 Films by RF Magnetron Sputtering. Conf. Pap. Sci. 2013, 2013, 104047. [Google Scholar] [CrossRef]
- Ivanova, T.; Gesheva, K.A.; Popkirov, G.; Ganchev, M.; Tzvetkova, E. Electrochromic properties of atmospheric CVD MoO3 and MoO3–WO3 films and their application in electrochromic devices. Mater. Sci. Eng. B 2005, 119, 232–239. [Google Scholar] [CrossRef]
- Dong, W.; Lv, Y.; Xiao, L.; Fan, Y.; Zhang, N.; Liu, X. Bifunctional MoO3–WO3/Ag/MoO3–WO3 Films for Efficient ITO–Free Electrochromic Devices. ACS Appl. Mater. Interfaces 2016, 8, 33842–33847. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Shi, F.; Xie, D.; Wang, D.H.; Xia, X.H.; Wang, X.L.; Gu, C.D.; Tu, J.P. Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. J. Colloid Interface Sci. 2016, 465, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Jittiarporn, P.; Sikong, L.; Kooptarnond, K.; Taweepreda, W.; Stoenescu, S.; Badilescu, S.; Truong, V.-V. Electrochromic properties of MoO3-WO3 thin films prepared by a sol-gel method, in the presence of a triblock copolymer template. Surf. Coat. Technol. 2017, 327, 66–74. [Google Scholar] [CrossRef]
- Wu, W.; Fang, H.; Ma, H.; Wu, L.; Wang, Q.; Wang, H. Self-Powered Rewritable Electrochromic Display based on WO3-x Film with Mechanochemically Synthesized MoO3–y Nanosheets. ACS Appl. Mater. Interfaces 2021, 13, 20326–20335. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-C.; Chao, S.-H.; Wu, N.-J.; Huang, J.-H.; Kang, J.-L.; Weng, H.C.; Liu, T.-Y. Facile synthesis of hybrid WO3/MoOx electrochromic films for application in complementary electrochromic devices. J. Alloys Compd. 2023, 945, 169256. [Google Scholar] [CrossRef]
- Fried, M.; Bogar, R.; Lábadi, Z.; Hovath, Z.E.; Zolnai, Z. Investigation of Combinatorial WO3-MoO3 Mixed Layers by Spectroscopic Ellipsometry using Different Optical Models. Nanomaterials 2022, 12, 2421. [Google Scholar] [CrossRef] [PubMed]
- Kótai, E. Computer Methods for Analysis and Simulation of RBS and ERDA spectra. Nucl. Instr. Meth. B 1994, 85, 588–596. [Google Scholar] [CrossRef]
- Akbar, I.; Inamdar, Y.S.; Kim, B.U.; Jang, H.I.; Jung, W.; Kim, D.-Y.; Kim, H. Effects of oxygen stoichiometry on electrochromic properties in amorphous tungsten oxide films. Thin. Solid. Film. 2012, 520, 5367–5371. [Google Scholar] [CrossRef]
Deposition Parameter | Typical Value |
---|---|
Working distance (mm) | 60 |
Substrate preheating | Optional, up to 300 °C |
End vacuum (mbar) | 1–5 × 10−6 |
Target power (W) | 500–4000 |
Target voltage (V) | 280–380 |
Pulse duty factor (µs) | 0.5 |
Pulse cycle time (µs) | 10 |
Position (cm) | Thickness (nm) | Mo % from SE | Mo % from RBS |
---|---|---|---|
0 | 499.5 | 0 | - |
0.5 | 496.4 | 0 | - |
1 | 463.3 | 0 | - |
1.5 | 446.1 | 0 | - |
2 | 424.5 | 0 | 0 |
2.5 | 406.1 | 0 | - |
3 | 388.8 | 0 | - |
3.5 | 367.7 | 0.5 | - |
4 | 351.7 | 1 | 0 |
4.5 | 332.1 | 1.5 | - |
5 | 316.1 | 2 | - |
5.5 | 295.0 | 3 | - |
6 | 278.4 | 4 | - |
6.5 | 262.3 | 5 | - |
7 | 247.0 | 6 | 6 |
7.5 | 232.9 | 7 | - |
8 | 220.8 | 8 | - |
8.5 | 210.7 | 10 | - |
9 | 206.2 | 12 | - |
9.5 | 198.9 | 15 | - |
10 | 194.3 | 19 | 17 |
10.5 | 192.0 | 23 | - |
11 | 192.5 | 27 | - |
11.5 | 195.9 | 31 | 23 |
12 | 201.6 | 35 | - |
12.5 | 210.0 | 39 | 38 |
13 | 221.2 | 43 | - |
13.5 | 235.2 | 47.5 | 47 |
14 | 251.4 | 51. | - |
14.5 | 270.0 | 56 | - |
15 | 290.6 | 60 | - |
15.5 | 313.0 | 64 | 68 |
16 | 337.2 | 68 | - |
16.5 | 362.8 | 72 | 76 |
17 | 389.2 | 76 | - |
17.5 | 416.6 | 81 | - |
18 | 467.4 | 85 | 83 |
18.5 | 495.4 | 90 | - |
19 | 526.8 | 92 | 86 |
19.5 | 556.8 | 93.5 | - |
20 | 586.9 | 95.5 | 91 |
20.5 | 617.5 | 98 | - |
21 | 647.1 | 98.5 | 93 |
21.5 | 676.9 | 98.5 | - |
22 | 707.4 | 99 | 96 |
22.5 | 734.6 | 100 | 98 |
23 | 760.7 | 100 | - |
23.5 | 786.0 | 100 | - |
24 | 808.8 | 100 | - |
24.5 | 831.2 | 100 | - |
25 | 852.1 | 100 | - |
25.5 | 873.2 | 100 | 100 |
26 | 889.2 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lábadi, Z.; Takács, D.; Zolnai, Z.; Petrik, P.; Fried, M. Compositional Optimization of Sputtered WO3/MoO3 Films for High Coloration Efficiency. Materials 2024, 17, 1000. https://doi.org/10.3390/ma17051000
Lábadi Z, Takács D, Zolnai Z, Petrik P, Fried M. Compositional Optimization of Sputtered WO3/MoO3 Films for High Coloration Efficiency. Materials. 2024; 17(5):1000. https://doi.org/10.3390/ma17051000
Chicago/Turabian StyleLábadi, Zoltán, Dániel Takács, Zsolt Zolnai, Péter Petrik, and Miklós Fried. 2024. "Compositional Optimization of Sputtered WO3/MoO3 Films for High Coloration Efficiency" Materials 17, no. 5: 1000. https://doi.org/10.3390/ma17051000
APA StyleLábadi, Z., Takács, D., Zolnai, Z., Petrik, P., & Fried, M. (2024). Compositional Optimization of Sputtered WO3/MoO3 Films for High Coloration Efficiency. Materials, 17(5), 1000. https://doi.org/10.3390/ma17051000