Adsorption Behavior of NO and NO2 on Two-Dimensional As, Sb, and Bi Materials: First-Principles Insights
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bennett, M.; Nault, I.; Koehle, M.; Wilton, S. Air Pollution and Arrhythmias. Can. J. Cardiol. 2023, 39, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Koolen, C.D.; Rothenberg, G. Air Pollution in Europe. ChemSusChem 2019, 12, 164–172. [Google Scholar] [CrossRef]
- Brauer, M.; Casadei, B.; Harrington, R.A.; Kovacs, R.; Sliwa, K.; WHF Air Pollution Expert Group. Taking a Stand Against Air Pollution—The Impact on Cardiovascular Disease. Circulation 2021, 143, e800–e804. [Google Scholar] [CrossRef]
- Aguilar-Gomez, S.; Dwyer, H.; Graff Zivin, J.; Neidell, M. This Is Air: The “Nonhealth” Effects of Air Pollution. Annu. Rev. Resour. Econ. 2022, 14, 403–425. [Google Scholar] [CrossRef]
- Li, L.; Zhang, W.; Liu, S.; Xu, J.; Cui, L.; Yang, D.; Wang, Y.; Wang, W.; Duan, J.; Sun, Z.; et al. Associations of Multiple Air Pollutants with Kidney Function in Normal-Weight and Obese Adults and Effect Modification by Free Fatty Acids. Chemosphere 2023, 341, 140009. [Google Scholar] [CrossRef]
- Han, Z.; Qi, Y.; Yang, Z.; Han, H.; Jiang, Y.; Du, W.; Zhang, X.; Zhang, J.; Dai, Z.; Wu, L.; et al. Recent Advances and Perspectives on Constructing Metal Oxide Semiconductor Gas Sensing Materials for Efficient Formaldehyde Detection. J. Mater. Chem. C 2020, 8, 13169–13188. [Google Scholar] [CrossRef]
- Cui, F.; Sun, Y.; Xie, J.; Li, D.; Wu, M.; Song, L.; Hu, Y.; Tian, Y. Air Pollutants, Genetic Susceptibility and Risk of Incident Idiopathic Pulmonary Fibrosis. Eur. Respir. J. 2023, 61, 2200777. [Google Scholar] [CrossRef] [PubMed]
- Graham, A.M.; Pope, R.J.; Chipperfield, M.P.; Dhomse, S.S.; Pimlott, M.; Feng, W.; Singh, V.; Chen, Y.; Wild, O.; Sokhi, R.; et al. Quantifying Effects of Long-Range Transport of Air Pollutants over Delhi Using Back-Trajectories and Satellite NO2 Data. EGUsphere 2023. [Google Scholar] [CrossRef]
- Lasek, J.A.; Lajnert, R. On the Issues of NOx as Greenhouse Gases: An Ongoing Discussion…. Appl. Sci. 2022, 12, 10429. [Google Scholar] [CrossRef]
- Gas Sensor Market Size, Share and Trends Analysis by 2027. Available online: https://www.alliedmarketresearch.com/gas-sensors-market (accessed on 31 August 2023).
- Zhang, B.; Sun, J.-Y.; Gao, P.-X. Low-Concentration NOx Gas Analysis Using Single Bimodular ZnO Nanorod Sensor. ACS Sens. 2021, 6, 2979–2987. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Rao, M.V.; Li, Q. Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors 2019, 19, 905. [Google Scholar] [CrossRef]
- Pal, N.; Dutta, G.; Kharashi, K.; Murray, E.P. Investigation of an Impedimetric LaSrMnO3-Au/Y2O3-ZrO2-Al2O3 Composite NOx Sensor. Materials 2022, 15, 1165. [Google Scholar] [CrossRef]
- Petruci, J.F.D.S.; Tütüncü, E.; Cardoso, A.A.; Mizaikoff, B. Real-Time and Simultaneous Monitoring of NO, NO2, and N2O Using Substrate–Integrated Hollow Waveguides Coupled to a Compact Fourier Transform Infrared (FT-IR) Spectrometer. Appl. Spectrosc. 2019, 73, 98–103. [Google Scholar] [CrossRef]
- Fadardi, M.A.; Movlarooy, T. Simulation of NOx and COx Gas Sensor Based on Pristine Armchair Stanene Nanoribbon. Adv. Theory Simul. 2023, 6, 2200875. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Pan, Q.; Zhang, G. MOF-Derived In2O3 Nanotubes Modified by r-GO for Highly Sensitive NOx Detection at Room Temperature. Colloids Surf. A Physicochem. Eng. Asp. 2023, 670, 131609. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Liu, H.; Pan, Q.; Zhang, G. Construction of MOF-Derived In2O3/g-C3N4/rGO Nanostructures to Enhance NOx Gas-Sensitive Properties at Room Temperature. Sens. Actuators B Chem. 2023, 380, 133308. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, Y.; Liu, H. Room-Temperature Semiconductor Gas Sensors: Challenges and Opportunities. ACS Sens. 2022, 7, 3582–3597. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.; Hayasaka, T.; Liu, Y.; Liu, H.; Oliveira, O.N.; Lin, L. A Review on Chemiresistive Room Temperature Gas Sensors Based on Metal Oxide Nanostructures, Graphene and 2D Transition Metal Dichalcogenides. Microchim. Acta 2018, 185, 213. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Gu, Y.; Chen, L.; Ji, L.; Zhu, H.; Sun, Q. Gas Sensing Devices Based on Two-Dimensional Materials: A Review. Nanotechnology 2022, 33, 252001. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Yan, C.; Jia, P.; Cao, W. Adsorption and Sensing Behaviors of SF6 Decomposed Species on Ni-Doped C3N Monolayer: A First-Principles Study. Appl. Surf. Sci. 2020, 512, 145759. [Google Scholar] [CrossRef]
- Wu, H.; Xia, Y.; Zhang, C.; Xie, S.; Wu, S.; Cui, H. Adsorptions of C5F10O Decomposed Compounds on the Cu-Decorated NiS2 Monolayer: A First-Principles Theory. Mol. Phys. 2023, 121, e2163715. [Google Scholar] [CrossRef]
- Zhai, S.; Jiang, X.; Wu, D.; Chen, L.; Su, Y.; Cui, H.; Wu, F. Single Rh Atom Decorated Pristine and S-Defected PdS2 Monolayer for Sensing Thermal Runaway Gases in a Lithium-Ion Battery: A First-Principles Study. Surf. Interfaces 2023, 37, 102735. [Google Scholar] [CrossRef]
- Zhang, B.-W.; Fang, D.; Fang, X.; Zhao, H.-B.; Wang, D.-K.; Li, J.-H.; Wang, X.-H.; Wang, D.-B. InAs/InAsSb Type-II Superlattice with near Room-Temperature Long-Wave Emission through Interface Engineering. Rare Met. 2022, 41, 982–991. [Google Scholar] [CrossRef]
- Miao, X.-J.; Zhao, X.-J.; Qin, H.; Jin, Q.; Chen, Y.; Cao, Z.-Q.; Yang, W.-T.; Wang, Q.-J.; Pan, Q.-H. Synergistic Effect of Cubic C3N4/ZnO/C Hybrid Composite for Selective Detection of Sulfur Dioxide. Rare Met. 2022, 41, 3662–3670. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of Individual Gas Molecules Adsorbed on Graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Ta, Q.T.H.; Tran, N.M.; Tri, N.N.; Sreedhar, A.; Noh, J.-S. Highly Surface-Active Si-Doped TiO2/Ti3C2TX Heterostructure for Gas Sensing and Photodegradation of Toxic Matters. Chem. Eng. J. 2021, 425, 131437. [Google Scholar] [CrossRef]
- Ou, P.; Zhou, X.; Li, X.-Y.; Chen, Y.; Chen, C.; Meng, F.; Song, J. Single-Walled Black Phosphorus Nanotube as a NO2 Gas Sensor. Mater. Today Commun. 2022, 31, 103434. [Google Scholar] [CrossRef]
- Ye, X.; Yang, Y.; Qi, M.; Chen, M.; Qiang, H.; Zheng, X.; Gu, M.; Zhao, X.; Zhao, D.; Zhang, J. Ultrasonic Exfoliated Violet Phosphorene/Graphene Heterojunction as NO Gas Sensor. Thin Solid Film. 2023, 767, 139666. [Google Scholar] [CrossRef]
- Chen, G.-X.; Wang, R.-X.; Li, H.-X.; Chen, X.-N.; An, G.; Zhang, J.-M. Sensing Properties of Nonmetal Doped Blue Phosphorene toward NO and NO2 Molecules: A First-Principles Study. Int. J. Quantum Chem. 2022, 122, e26919. [Google Scholar] [CrossRef]
- Krik, S.; Valt, M.; Gaiardo, A.; Fabbri, B.; Spagnoli, E.; Caporali, M.; Malagù, C.; Bellutti, P.; Guidi, V. Elucidating the Ambient Stability and Gas Sensing Mechanism of Nickel-Decorated Phosphorene for NO2 Detection: A First-Principles Study. ACS Omega 2022, 7, 9808–9817. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, D.; Fang, D.; Yan, H.; Zhai, Y.; Chu, X.; Li, J.; Fang, X. NO2 Adsorption Sensitivity Adjustment of As/Sb Lateral Heterojunctions through Strain: First Principles Calculations. Crystals 2023, 13, 1325. [Google Scholar] [CrossRef]
- Illarionov, Y.Y.; Waltl, M.; Rzepa, G.; Kim, J.-S.; Kim, S.; Dodabalapur, A.; Akinwande, D.; Grasser, T. Long-Term Stability and Reliability of Black Phosphorus Field-Effect Transistors. ACS Nano 2016, 10, 9543–9549. [Google Scholar] [CrossRef] [PubMed]
- Abate, Y.; Akinwande, D.; Gamage, S.; Wang, H.; Snure, M.; Poudel, N.; Cronin, S.B. Recent Progress on Stability and Passivation of Black Phosphorus. Adv. Mater. 2018, 30, 1704749. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-H.; Wang, D.-W.; Liu, Z.; Lan, T.-S.; Yang, A.-J.; Pan, J.-B.; Chu, J.-F.; Yuan, H.; Rong, M.-Z. Antimonene: A Promising Candidate for SF6 Decomposition Gas Sensors With High Sensitivity and High Stability. IEEE Electron Device Lett. 2020, 41, 1408–1411. [Google Scholar] [CrossRef]
- Khan, M.I.; Hassan, M.; Majid, A.; Shakil, M.; Rafique, M. DFT Perspective of Gas Sensing Properties of Fe-Decorated Monolayer Antimonene. Appl. Surf. Sci. 2023, 616, 156520. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B Condens. Matter Mater. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A Fast and Robust Algorithm for Bader Decomposition of Charge Density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Liu, M.; Li, W.; Cheng, D.; Fang, X.; Zhao, H.; Wang, D.; Li, J.; Zhai, Y.; Fan, J.; Wang, H.; et al. Strain Engineering of Lateral Heterostructures Based on Group-V Enes (As, Sb, Bi) for Infrared Optoelectronic Applications Calculated by First Principles. RSC Adv. 2022, 12, 14578–14585. [Google Scholar] [CrossRef]
- Li, W.; Fang, X.; Wang, D.; Tian, F.; Wang, H.; Fang, D.; Li, J.; Chu, X.; Zhao, H.; Wang, D.; et al. Band and Optical Properties of Arsenene and Antimonene Lateral Heterostructure by First-Principles Calculations. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 134, 114933. [Google Scholar] [CrossRef]
- Yang, D.; Fang, D.; Wang, D.; Li, J.; Zhai, Y.; Chu, X.; Wang, D.; Wang, X.; Yan, H.; Fang, X. First-Principles Investigation of NO Molecule Adsorption on As6/Sb6 and Sb6/Bi6 Lateral Heterostructures. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2023, 17, 2300184. [Google Scholar] [CrossRef]
- Pyykkö, P.; Atsumi, M. Molecular Single-Bond Covalent Radii for Elements 1–118. Chem.—Eur. J. 2009, 15, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Kawano, H. Effective Work Functions of the Elements: Database, Most Probable Value, Previously Recommended Value, Polycrystalline Thermionic Contrast, Change at Critical Temperature, Anisotropic Dependence Sequence, Particle Size Dependence. Prog. Surf. Sci. 2022, 97, 100583. [Google Scholar] [CrossRef]
- Gao, L.; Souto-Casares, J.; Chelikowsky, J.R.; Demkov, A.A. Orientation Dependence of the Work Function for Metal Nanocrystals. J. Chem. Phys. 2017, 147, 214301. [Google Scholar] [CrossRef] [PubMed]
- Leenaerts, O.; Partoens, B.; Peeters, F.M.; Volodin, A.; Haesendonck, C.V. The Work Function of Few-Layer Graphene. J. Phys. Condens. Matter 2016, 29, 035003. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Xi, C.; Dong, C.; Cheng, C.; Qin, J.; Hu, S.; Liu, H.; Du, X.-W. Improving Interfacial Electron Transfer via Tuning Work Function of Electrodes for Electrocatalysis: From Theory to Experiment. J. Phys. Chem. C 2019, 123, 28319–28326. [Google Scholar] [CrossRef]
- Du, W.; Zhao, C.; Liu, K.; Li, H.; Chen, Y.; Bai, Y.; Ahuja, R.; Qian, Z. Defective and Doped Aluminum Nitride Monolayers for NO Adsorption: Physical Insight. Chem. Phys. Lett. 2020, 753, 137592. [Google Scholar] [CrossRef]
- Gao, Z.; Li, X.; Li, A.; Ma, C.; Liu, X.; Yang, J.; Yang, W. Adsorption Behavior of Pt Embedded on N-Doped Graphene Sheets toward NO and NH3 Molecules. Appl. Organomet. Chem. 2019, 33, e5079. [Google Scholar] [CrossRef]
Adsorption Type | Material | N | O | Charge Transfer (C) | Effect |
---|---|---|---|---|---|
As-NO | 0.79 | −0.31 | −0.47 | −0.79 | Acceptor |
As-NO2 | 0.89 | 0.37 | −1.25 | −0.89 | Acceptor |
Sb-NO | 0.82 | −0.25 | −0.57 | −0.82 | Acceptor |
Sb-NO2 | 0.65 | 0.45 | −1.1 | −0.65 | Acceptor |
Bi-NO | 0.58 | −0.56 | −0.02 | −0.58 | Acceptor |
Bi-NO2 | 0.66 | 0.4 | −1.06 | −0.66 | Acceptor |
Adsorption Type | Adsorption Energy (eV) |
---|---|
As-NO | −0.91 |
As-NO2 | −0.69 |
Sb-NO | −0.77 |
Sb-NO2 | −0.74 |
Bi-NO | −0.9 |
Bi-NO2 | −0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, X.; Fang, D.; Yan, H.; Wang, D.; Wang, X.; Li, J.; Zhai, Y.; Chu, X.; Wang, D.; et al. Adsorption Behavior of NO and NO2 on Two-Dimensional As, Sb, and Bi Materials: First-Principles Insights. Materials 2024, 17, 1024. https://doi.org/10.3390/ma17051024
Zhang Y, Chen X, Fang D, Yan H, Wang D, Wang X, Li J, Zhai Y, Chu X, Wang D, et al. Adsorption Behavior of NO and NO2 on Two-Dimensional As, Sb, and Bi Materials: First-Principles Insights. Materials. 2024; 17(5):1024. https://doi.org/10.3390/ma17051024
Chicago/Turabian StyleZhang, Yuting, Xi Chen, Dan Fang, Hao Yan, Dengkui Wang, Xiaohua Wang, Jinhua Li, Yingjiao Zhai, Xueying Chu, Dongbo Wang, and et al. 2024. "Adsorption Behavior of NO and NO2 on Two-Dimensional As, Sb, and Bi Materials: First-Principles Insights" Materials 17, no. 5: 1024. https://doi.org/10.3390/ma17051024
APA StyleZhang, Y., Chen, X., Fang, D., Yan, H., Wang, D., Wang, X., Li, J., Zhai, Y., Chu, X., Wang, D., Zhao, H., & Fang, X. (2024). Adsorption Behavior of NO and NO2 on Two-Dimensional As, Sb, and Bi Materials: First-Principles Insights. Materials, 17(5), 1024. https://doi.org/10.3390/ma17051024