Exploring the Utilization of Activated Volcanic Ash as a Substitute for Portland Cement in Mortar Formulation: A Thorough Experimental Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Ecuadorian Volcanic Ash (VA)
2.1.2. Calcined VA (CVA)
2.1.3. Alkaline Activators (AA)
2.1.4. Lime (L)
2.2. Experimental Programme: Production of Mortars Test Procedure
3. Stage 1 Mix Proportions. Results and Discussion
3.1. Mix Proportions of Mortar with 35% VA
- Phase 1.1: Mortar produced with calcined VA (CVA)
- Phase 1.2: Mortar produced using alkali activators (AA)
- Phase 1.3: Mortar produced using lime (L) as a corrector
- Phase 1.4: Mortar produced using CVA and lime as a corrector
- Phase 1.5: Mortar produced using CVA, lime as corrector and alkali activator
3.2. Results and Discussion
3.2.1. Compressive Strength (fcm)
- Phase 1.1: Mortar produced with calcined VA
- Phase 1.2: Mortar produced with alkali activator
- Phase 1.3: Mortar produced by adding lime as a corrector
- Phase 1.4 and 1.5: Mortar produced using CVA, lime as corrector and alkali activator
3.2.2. Physical Properties
4. Stage 2 Mix Proportions: Results and Discussion
4.1. Mix Proportion of Mortars with 50% and 75% VA
4.1.1. Stage 2.1: Mix Proportion of Mortars with 50% VA
- Phase 2.1.1: Mortar produced using lime as a corrector
- Phase 2.1.2: Mortar produced using CVA
- Phase 2.1.3: Mortar produced using CVA and lime as a corrector
- Phase 2.1.4: Mortar produced using CVA, lime as corrector and AA
4.1.2. Stage 2.2: Mix Proportion of Mortars with 75% VA
- Phase 2.2.1: Mortar produced using CVA
- Phase 2.2.2: Mortar produced using CVA and lime as a corrector
- Phase 2.2.3: Mortar produced using CVA, lime as corrector and AA
4.2. Results and Discussion
4.2.1. Compressive Strength (fcm)
Stage 2.1 Mix Proportion of Mortars with 50% VA
Stage 2.2 Mix Proportion of Mortars with 75% VA
4.2.2. Physical Properties
5. Conclusions
- -
- Calcined VA (CVA) at 700 °C for 1 h was the optimal thermal process, obtaining up to 59% of the amorphous component. In addition, the 20% lime in replacement of VA was optimal when the mortars were produced with 35–50% PC replacement.
- -
- The CVA35-L20 and CVA50-L20 mortars achieved the highest compressive strength, with 49.3 MPa and 46.3 MPa, respectively. An increase of up to 40% compared to VA mortars. The absorption capacity was also reduced for 35–50% of untreated VA mortars.
- -
- The effectiveness of calcined VA also showed that the CVA50 mortar achieved 43.5 MPa compressive strength, which was 29% higher than that of VA50. It also achieved lower absorption than that of VA50.
- -
- Although the mortars made with 75% VA showed lower mechanical and physical properties compared to those with 35–50% VA. The mortars produced with 75% CVA and 20% lime achieved 33.9 MPa and 33.3 MPa, respectively, 40% higher than the mortars with 75% untreated VA.
- -
- Although the mortars using alkali activators (AA) achieved a lower compressive strength at 28 days than those produced with CVA and lime addition, the mortars using 2% CaCl or 1% NSi activator and 35% of untreated VA achieved the highest strength at 7 days (34.4 MPa and 35.6 MPa, respectively). Moreover, at 28 days, the mortars produced with 2% CaCl or 1% NSi activators achieved a strength of 41 MPa and 45 MPa, respectively, avoiding using the calcination process in the VA activation.
- -
- The use of AA in mortars with 50–75% CVA and lime did not improve the properties of mortars CVA-lime at 28 days. However, the NSi-activated CVA-lime-based mortar with 75% CVA achieved 13% higher compressive strength at 7 days compared to the CVA-lime mortars.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fořt, J.; Černý, R. Transition to Circular Economy in the Construction Industry: Environmental Aspects of Waste Brick Recycling Scenarios. Waste Manag. 2020, 118, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Cements: Potential Economically Viable Solutions for a Low-CO2 cement-Based Materials Industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Ilham, D.J.; Kautsar, F.R.; Januarti, J.; Anggarini, U.; Fiantis, D. The Potential Use of Volcanic Deposits for Geopolymer Materials. IOP Conf. Ser. Earth Environ. Sci. 2020, 497, 012035. [Google Scholar] [CrossRef]
- Cai, G.; Noguchi, T.; Degée, H.; Zhao, J.; Kitagaki, R. Volcano-Related Materials in Concretes: A Comprehensive Review. Environ. Sci. Pollut. Res. 2016, 23, 7220–7243. [Google Scholar] [CrossRef]
- Baghabra Al-Amoudi, O.S.; Ahmad, S.; Maslehuddin, M.; Khan, S.M.S. Lime-Activation of Natural Pozzolan for Use as Supplementary Cementitious Material in Concrete. Ain Shams Eng. J. 2022, 13, 101602. [Google Scholar] [CrossRef]
- Celik, K.; Hay, R.; Hargis, C.W.; Moon, J. Effect of Volcanic Ash Pozzolan or Limestone Replacement on Hydration of Portland Cement. Constr. Build. Mater. 2019, 197, 803–812. [Google Scholar] [CrossRef]
- Kupwade-Patil, K.; Al-Aibani, A.F.; Abdulsalam, M.F.; Mao, C.; Bumajdad, A.; Palkovic, S.D.; Büyüköztürk, O. Microstructure of Cement Paste with Natural Pozzolanic Volcanic Ash and Portland Cement at Different Stages of Curing. Constr. Build. Mater. 2016, 113, 423–441. [Google Scholar] [CrossRef]
- Yetgin, Ş.; Çavdar, A. Study of Effects of Natural Pozzolan on Properties of Cement Mortars. J. Mater. Civ. Eng. 2006, 18, 813–816. [Google Scholar] [CrossRef]
- Cornejo, M.H.; Elsen, J.; Paredes, C.; Baykara, H. Thermomechanical Treatment of Two Ecuadorian Zeolite-Rich Tuffs and Their Potential Usage as Supplementary Cementitious Materials. J. Therm. Anal. Calorim. 2014, 115, 309–321. [Google Scholar] [CrossRef]
- Djobo, J.N.Y.; Elimbi, A.; Tchakouté, H.K.; Kumar, S. Reactivity of Volcanic Ash in Alkaline Medium, Microstructural and Strength Characteristics of Resulting Geopolymers under Different Synthesis Conditions. J. Mater. Sci. 2016, 51, 10301–10317. [Google Scholar] [CrossRef]
- Khan, K.; Amin, M.N.; Saleem, M.U.; Qureshi, H.J.; Al-Faiad, M.A.; Qadir, M.G. Effect of Fineness of Basaltic Volcanic Ash on Pozzolanic Reactivity, ASR Expansion and Drying Shrinkage of Blended Cement Mortars. Materials 2019, 12, 2603. [Google Scholar] [CrossRef]
- Shi, C. An Overview on the Activation of Reactivity of Natural Pozzolans. Can. J. Civ. Eng. 2011, 28, 778–786. [Google Scholar] [CrossRef]
- Balun, B.; Karatas, M. Compressive Strength of Pumice Based Alkali-Activated Hybrid Cement. In Proceedings of the 3rd International Conference on Engineering Technology and Applied Sciences (ICETAS), Skopje, North Macedonia, 17–21 July 2018. [Google Scholar]
- Qu, B.; Martin, A.; Pastor, J.Y.; Palomo, A.; Fernández-Jiménez, A. Characterisation of Pre-Industrial Hybrid Cement and Effect of Pre-Curing Temperature. Cem. Concr. Compos. 2016, 73, 281–288. [Google Scholar] [CrossRef]
- Shi, C.; Jiménez, A.F.; Palomo, A. New Cements for the 21st Century: The Pursuit of an Alternative to Portland Cement. Cem. Concr. Res. 2011, 41, 750–763. [Google Scholar] [CrossRef]
- Hamidi, M.; Kacimi, L.; Cyr, M.; Clastres, P. Evaluation and Improvement of Pozzolanic Activity of Andesite for Its Use in Eco-Efficient Cement. Constr. Build. Mater. 2013, 47, 1268–1277. [Google Scholar] [CrossRef]
- Nourredine, G.; Kerdal, D.E.; Nouria, K.; Rachida, I. Potential Use of Activated Algerian Natural Pozzolan Powder as a Cement Replacement Material. Eur. J. Environ. Civ. Eng. 2019, 25, 967–987. [Google Scholar] [CrossRef]
- Walker, R.; Pavía, S. Physical Properties and Reactivity of Pozzolans, and Their Influence on the Properties of Lime-Pozzolan Pastes. Mater. Struct. Mater. Constr. 2011, 44, 1139–1150. [Google Scholar] [CrossRef]
- Mangat, P.; Lambert, P. Sustainability of Alkali-Activated Cementitious Materials and Geopolymers. In Sustainability of Construction Materials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 459–476. [Google Scholar]
- Haddad, R.H.; Alshbuol, O. Production of Geopolymer Concrete Using Natural Pozzolan: A Parametric Study. Constr. Build. Mater. 2016, 114, 699–707. [Google Scholar] [CrossRef]
- Takeda, H.; Honda, S.; Kanie, H.; Iwamoto, Y.; Hashimoto, S. Fabrication and Characterization of Hardened Bodies from Japanese Volcanic Ash Using Geopolymerization. Ceram. Int. 2013, 40, 4071–4076. [Google Scholar] [CrossRef]
- Moon, J.; Kim, K.; Yoon, S.; Bae, S.; Kim, K.S.; Celik, K.; Monteiro, P.J.M. Characterization of Natural Pozzolan-Based Geopolymeric Binders. Cem. Concr. Compos. 2014, 53, 97–104. [Google Scholar] [CrossRef]
- Tchakoute, H.K.; Elimbi, A.; Yanne, E.; Djangang, C.N. Utilization of Volcanic Ashes for the Production of Geopolymers Cured at Ambient Temperature. Cem. Concr. Compos. 2013, 38, 75–81. [Google Scholar] [CrossRef]
- Myers, R.J.; Bernal, S.A.; San Nicolas, R.; Provis, J.L. Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model. Langmuir 2013, 29, 5294–5306. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.A.; Mejía de Gutiérrez, R. Natural Volcanic Pozzolans as an Available Raw Material for Alkali-Activated Materials in the Foreseeable Future: A Review. Constr. Build. Mater. 2018, 189, 109–118. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Donatello, S.; Fernández-Jiménez, A.; Palomo, Á. Hydration of Hybrid Alkaline Cement Containing a Very Large Proportion of Fly Ash: A Descriptive Model. Materials 2016, 9, 605. [Google Scholar] [CrossRef]
- Ghadir, P.; Razeghi, H.R. Effects of Sodium Chloride on the Mechanical Strength of Alkali Activated Volcanic Ash and Slag Pastes under Room and Elevated Temperatures. Constr. Build. Mater. 2022, 344, 128113. [Google Scholar] [CrossRef]
- Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. A Review on Alkaline Activation: New Analytical Perspectives. Mater. Constr. 2014, 64, e022. [Google Scholar]
- Bernal, S.A.; Provis, J.L.; Myers, R.J.; San Nicolas, R.; van Deventer, J.S.J. Role of Carbonates in the Chemical Evolution of Sodium Carbonate-Activated Slag Binders. Mater. Struct. 2015, 48, 517–529. [Google Scholar] [CrossRef]
- Kulasuriya, C. Durability Properties of Alkali Pozzolan Cemen (APC). J. Nat. Sci. Found. 2019, 47, 121–131. [Google Scholar]
- Wang, Y.; Lei, L.; Liu, J.; Ma, Y.; Liu, Y.; Xiao, Z.; Shi, C. Accelerators for Normal Concrete: A Critical Review on Hydration, Microstructure and Properties of Cement-Based Materials. Cem. Concr. Compos. 2022, 134, 104762. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Y.; Jia, Y.; She, W.; Liu, G.; Yang, Z.; Zhang, Y.; Zhang, W.; Sun, W. Effects of Sodium Sulfate on the Hydration and Properties of Lime-Based Low Carbon Cementitious Materials. J. Clean. Prod. 2019, 220, 677–687. [Google Scholar] [CrossRef]
- Vehmas, T.; Kronlöf, A.; Cwirzen, A. Calcium Chloride Acceleration in Ordinary Portland Cement. Mag. Concr. Res. 2017, 70, 856–863. [Google Scholar] [CrossRef]
- Almalkawi, A.T.; Hamadna, S.; Soroushian, P. One-Part Alkali Activated Cement Based Volcanic Pumice. Constr. Build. Mater. 2017, 152, 367–374. [Google Scholar] [CrossRef]
- Aliques-Granero, J.; Tognonvi, T.M.; Tagnit-Hamou, A. Durability Test Methods and Their Application to AAMs: Case of Sulfuric-Acid Resistance. Mater. Struct. 2017, 50, 36. [Google Scholar] [CrossRef]
- Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N. Sulfate Resistance of Alkali Activated Pozzolans. Int. J. Concr. Struct. Mater. 2015, 9, 145–158. [Google Scholar] [CrossRef]
- Tome, S.; Nana, A.; Kaze, C.R.; Djobo, J.N.Y.; Alomayri, T.; Kamseu, E.; Etoh, M.-A.; Etame, J.; Kumar, S. Resistance of Alkali-Activated Blended Volcanic Ash-MSWI-FA Mortar in Sulphuric Acid and Artificial Seawater. Silicon 2022, 14, 2687–2694. [Google Scholar] [CrossRef]
- Lemougna, P.N.; MacKenzie, K.J.D.; Melo, U.F.C.F.C. Synthesis and Thermal Properties of Inorganic Polymers (Geopolymers) for Structural and Refractory Applications from Volcanic Ash. Ceram. Int. 2011, 37, 3011–3018. [Google Scholar] [CrossRef]
- Taniguchi, M.; Takahashi, T.; Sagawa, T. Effect of Pozzolanic Reactivity of Volcanic Ash in Hokkaido on the Durability of Volcanic Ash Concrete. In High Tech Concrete: Where Technology and Engineering Meet; Hordijk, D.A., Luković, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 2177–2184. [Google Scholar]
- Yankwa Djobo, J.N.; Elimbi, A.; Kouamo Tchakouté, H.; Kumar, S. Mechanical Properties and Durability of Volcanic Ash Based Geopolymer Mortars. Constr. Build. Mater. 2016, 124, 606–614. [Google Scholar] [CrossRef]
- América Digital Descubren Que La Ceniza de Los Volcanes Puede Tener Un Mayor Impacto En El Clima de Lo Que Se Pensaba. Available online: https://www.americadigital.com/ciencia/descubren-que-la-ceniza-de-los-volcanes-puede-tener-un-mayor-impacto-en-el-clima-de-lo-que-se-pensaba-104819 (accessed on 15 February 2024).
- Pourkhorshidi, A.R.; Najimi, M.; Parhizkar, T.; Jafarpour, F.; Hillemeier, B. Applicability of the Standard Specifications of ASTM C618 for Evaluation of Natural Pozzolans. Cem. Concr. Compos. 2010, 32, 794–800. [Google Scholar] [CrossRef]
- ASTM C778; Standard Specification for Standard Sand. ASTM International: West Conshohocken, PA, USA, 2017.
- Labbaci, Y.; Abdelaziz, Y.; Mekkaoui, A.; Alouani, A.; Labbaci, B. The Use of the Volcanic Powders as Supplementary Cementitious Materials for Environmental-Friendly Durable Concrete. Constr. Build. Mater. 2017, 133, 468–481. [Google Scholar] [CrossRef]
- Vogel, A.; Diplas, S.; Durant, A.J.; Azar, A.S.; Sunding, M.F.; Rose, W.I.; Sytchkova, A.; Bonadonna, C.; Krüger, K.; Stohl, A. Reference Data Set of Volcanic Ash Physicochemical and Optical Properties. J. Geophys. Res. Atmos. 2017, 122, 9485–9514. [Google Scholar] [CrossRef]
- Ibrahim, M.; Megat Johari, M.A.; Rahman, M.K.; Maslehuddin, M.; Mohamed, H.D. Enhancing the Engineering Properties and Microstructure of Room Temperature Cured Alkali Activated Natural Pozzolan Based Concrete Utilizing Nanosilica. Constr. Build. Mater. 2018, 189, 352–365. [Google Scholar] [CrossRef]
- Ndjock, B.I.D.L.; Elimbi, A.; Cyr, M.; Djon Li Ndjock, B.I.; Elimbi, A.; Cyr, M. Rational Utilization of Volcanic Ashes Based on Factors Affecting Their Alkaline Activation. J. Non Cryst. Solids 2017, 463, 31–39. [Google Scholar] [CrossRef]
- Tashima, M.M.; Soriano, L.; Borrachero, M.V.; Monzó, J.; Payá, J. Towards the Valorization of Cumbre Vieja Volcanic Ash—Production of Alternative Cements. Constr. Build. Mater. 2023, 370, 130635. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Wang, K.-t.; Tang, Q.; Melo, U.C.; Cui, X.-m. Recent Developments on Inorganic Polymers Synthesis and Applications. Ceram. Int. 2016, 42, 15142–15159. [Google Scholar] [CrossRef]
- ASTM C618-17; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. ASTM International: West Conshohocken, PA, USA, 2017.
- Alraddadi, S. Surface and Thermal Properties of Fine Black and White Volcanic Ash. Mater. Today Proc. 2020, 26, 1964–1966. [Google Scholar] [CrossRef]
- Mañosa, J.; Serrano-Conte, J.; Maldonado-Alameda, A.; Aulinas, M.; Chimenos, J.M. Pyroclastic Volcanic Ash as a Potential Precursor of Alkali-Activated Binders—A Case Study from Tajogaite (La Palma, Canary Islands) Volcano Eruption. J. Build. Eng. 2023, 72, 106623. [Google Scholar] [CrossRef]
- Delmelle, P.; Villiéras, F.; Pelletier, M. Surface Area, Porosity and Water Adsorption Properties of Fine Volcanic Ash Particles. Bull. Volcanol. 2005, 67, 160–169. [Google Scholar] [CrossRef]
- Tavares, L.R.C.; Junior, J.F.T.; Costa, L.M.; da Silva Bezerra, A.C.; Cetlin, P.R.; Aguilar, M.T.P. Influence of Quartz Powder and Silica Fume on the Performance of Portland Cement. Sci. Rep. 2020, 10, 21461. [Google Scholar] [CrossRef] [PubMed]
- Tchakoute Kouamo, H.; Mbey, J.A.; Elimbi, A.; Kenne Diffo, B.B.; Njopwouo, D. Synthesis of Volcanic Ash-Based Geopolymer Mortars by Fusion Method: Effects of Adding Metakaolin to Fused Volcanic Ash. Ceram. Int. 2013, 39, 1613–1621. [Google Scholar] [CrossRef]
- Játiva, A.; Ruales, E.; Etxeberria, M. Volcanic Ash as a Sustainable Binder Material: An Extensive Review. Materials 2021, 14, 1302. [Google Scholar] [CrossRef] [PubMed]
- AENOR EN 12457-2; Characterization of Waste–Leaching; Compliance Test for Leaching of Granular and Sludges-Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 l/Kg with Particle Size below 4 Mm (without or with Size Reduction). SIST: Stockholm, Sweden, 2003.
- 2003/33/EC Council Decision Establishing Criteria and Procedures for the Acceptance of Waste at Landfills Pursuant to Article 16 of and Annex II to Directive 1999/31/EC. 2003. Available online: https://faolex.fao.org/docs/pdf/eur39228.pdf (accessed on 10 January 2024).
- ASTM C109/C; 109M Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-Mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2002.
- ASTM C642; Standard Test Method for Density, Absorption and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2022.
- Bernal, S.A.; Provis, J.L.; Fernández-Jiménez, A.; Krivenko, P.V.; Kavalerova, E.; Palacios, M.; Shi, C. Binder Chemistry—High-Calcium Alkali-Activated Materials. In RILEM State-of-the-Art; Springer: New York, NY, USA, 2014; Volume 13, pp. 59–91. ISBN 978-94-007-7671-5. [Google Scholar]
- Demir, İ.I.; Güzelkücük, S.; Sevim, Ö. Effect of Sulfate on Cement Mortar with Hybrid Pozzolan Substitution. Eng. Sci. Technol. Int. J. 2018, 21, 275–283. [Google Scholar] [CrossRef]
- Shi, C.; Day, R.L. Pozzolanic Reaction in the Presence of Chemical Activators: Part I. Reaction Kinetics. Cem. Concr. Res. 2000, 30, 51–58. [Google Scholar] [CrossRef]
- Allahverdi, A.; Ghorbani, J. Chemical Activation and Set Acceleration of Lime-Natural Pozzolan Cement. Ceram. Silik. 2006, 50, 193–199. [Google Scholar]
- Song, X.; Chen, C.; Zhou, H.; Shang, J.; Ren, T. Effect of High-Temperature Treatment on Water Vapour Sorption of Montmorillonite. Geoderma 2023, 436, 116563. [Google Scholar] [CrossRef]
- Kusiorowski, R.; Zaremba, T.; Piotrowski, J.; Adamek, J. Thermal Decomposition of Different Types of Asbestos. J. Therm. Anal. Calorim. 2012, 109, 693–704. [Google Scholar] [CrossRef]
- Zahid, S.; Oskierski, H.C.; Oluwoye, I.; Brand, H.E.A.; Xia, F.; Senanayake, G.; Altarawneh, M.; Dlugogorski, B.Z. Kinetics of Antigorite Dehydroxylation for CO2 Sequestration. Min. Eng. 2022, 184, 107630. [Google Scholar] [CrossRef]
- Said-Mansour, M.; Kadri, E.-H.; Kenai, S.; Ghrici, M.; Bennaceur, R. Influence of Calcined Kaolin on Mortar Properties. Constr. Build. Mater. 2011, 25, 2275–2282. [Google Scholar] [CrossRef]
- Alraddadi, S. Effects of Calcination on Structural Properties and Surface Morphology of Black Volcanic Ash. J. Phys. Commun. 2020, 4, 105002. [Google Scholar] [CrossRef]
- Kani, E.N.; Allahverdi, A.; Provis, J.L.; Najafi Kani, E.; Allahverdi, A.; Provis, J.L. Efflorescence Control in Geopolymer Binders Based on Natural Pozzolan. Cem. Concr. Compos. 2012, 34, 25–33. [Google Scholar] [CrossRef]
- Amin, N.-u.; Alam, S.; Gul, S.; Muhammad, K. Chemical Activation of Clay in Cement Mortar, Using Calcium Chloride. Adv. Cem. Res. 2013, 25, 164–170. [Google Scholar] [CrossRef]
- Farnam, Y.; Dick, S.; Wiese, A.; Davis, J.; Bentz, D.; Weiss, J. The Influence of Calcium Chloride Deicing Salt on Phase Changes and Damage Development in Cementitious Materials. Cem. Concr. Compos. 2015, 64, 1–15. [Google Scholar] [CrossRef]
- ASCC American Society of Concrete Contractors. Position Statement #31—Acceptable Use of Calcium Chloride in Concrete; ASCC American Society of Concrete Contractors: ST. Louis, MO, USA, 2010. [Google Scholar]
- Mendes, B.C.; Pedroti, L.G.; Vieira, C.M.F.; Marvila, M.; Azevedo, A.R.G.; Franco de Carvalho, J.M.; Ribeiro, J.C.L. Application of Eco-Friendly Alternative Activators in Alkali-Activated Materials: A Review. J. Build. Eng. 2021, 35, 102010. [Google Scholar] [CrossRef]
- Groot, C.; Veiga, R.; Papayianni, I.; Van Hees, R.; Secco, M.; Alvarez, J.I.; Faria, P.; Stefanidou, M. RILEM TC 277-LHS Report: Lime-Based Mortars for Restoration—a Review on Long-Term Durability Aspects and Experience from Practice. Mater. Struct. 2022, 55, 245. [Google Scholar] [CrossRef]
- Donatello, S.; Tyrer, M.; Cheeseman, C.R. Comparison of Test Methods to Assess Pozzolanic Activity. Cem. Concr. Compos. 2010, 32, 121–127. [Google Scholar] [CrossRef]
- Erdoğan, S.T.; Sağlık, A.Ü. Early-Age Activation of Cement Pastes and Mortars Containing Ground Perlite as a Pozzolan. Cem. Concr. Compos. 2013, 38, 29–39. [Google Scholar] [CrossRef]
- Alvarez, J.I.; Veiga, R.; Martínez-Ramírez, S.; Secco, M.; Faria, P.; Maravelaki, P.N.; Ramesh, M.; Papayianni, I.; Válek, J. RILEM TC 277-LHS Report: A Review on the Mechanisms of Setting and Hardening of Lime-Based Binding Systems. Mater. Struct. 2021, 54, 63. [Google Scholar] [CrossRef]
- Ghafoori, N.; Najimi, M.; Radke, B. Natural Pozzolan-Based Geopolymers for Sustainable Construction. Environ. Earth Sci. 2016, 75, 1110. [Google Scholar] [CrossRef]
- Khan, K.; Amin, M.N. Influence of Fineness of Volcanic Ash and Its Blends with Quarry Dust and Slag on Compressive Strength of Mortar under Different Curing Temperatures. Constr. Build. Mater. 2017, 154, 514–528. [Google Scholar] [CrossRef]
- Thomas, R.J.; Lezama, D.; Peethamparan, S. On Drying Shrinkage in Alkali-Activated Concrete: Improving Dimensional Stability by Aging or Heat-Curing. Cem. Concr. Res. 2017, 91, 13–23. [Google Scholar] [CrossRef]
- Kupwade-Patil, K.; Chin, S.; Ilavsky, J.; Andrews, R.N.; Bumajdad, A.; Büyüköztürk, O. Hydration Kinetics and Morphology of Cement Pastes with Pozzolanic Volcanic Ash Studied via Synchrotron-Based Techniques. J. Mater. Sci. 2018, 53, 1743–1757. [Google Scholar] [CrossRef]
(%) | SiO2 | Al2O3 | CaO | Fe2O3 | MgO | SO3 | Na2O | K2O | Others | LOI |
---|---|---|---|---|---|---|---|---|---|---|
VA | 60.15 | 16.51 | 6.30 | 6.22 | 3.26 | 0.03 | 3.62 | 1.17 | 0.94 | 1.81 |
PC | 19.4 | 4.2 | 63.5 | 3.4 | 1.4 | 3.0 | 0.12 | 0.53 | - | 3.7 |
Lime | 1.32 | 0.66 | 88.8 | 0.26 | 2.2 | - | - | - | 1.0 | - |
Requirements | Class N, ASTM C618 | VA |
---|---|---|
SiO2 + Al2O3 + Fe2O3, % | Min, 70.0 | 82.88 |
SO3, % | Max, 4.0 | 0.0312 |
Moisture content, % | Max, 3.0 | 6.5 |
Loss of ignition, % | Max, 10.0 | 1.81 |
Metals | VA (mg/kg) | EN 12457-2 | ||
---|---|---|---|---|
Inert (mg/kg) | Stable Non-Reactive (mg/kg) | Hazardous (mg/kg) | ||
Na | 613.04 | - | ||
Si | 9.52 | - | ||
Cr | 6.51 | 0.5 | 10 | 70 |
Ni | 0.02 | 0.4 | 10 | 40 |
Mo | 0.28 | 0.5 | 10 | 30 |
Cu | 0.02 | 2 | 50 | 100 |
Cd | ND | 0.04 | 1.0 | 5.0 |
Sb | ND | 0.06 | 0.7 | 5.0 |
As | ND | 0.5 | 2.0 | 25 |
Zn | ND | 4.0 | 50 | 200 |
Se | ND | 0.1 | 0.5 | 7 |
Pb | ND | 0.5 | 10 | 50 |
Ba | 10.54 | 20 | 100 | 300 |
Hg | ND | 0.01 | 0.2 | 2 |
Mix | Description |
---|---|
Phase 1.1: Calcined VA (CVA) | |
CVA35-500 | 35%CVA + 65%PC |
CVA35-700 | 35%CVA + 65%PC |
CVA35-800 | 35%CVA + 65%PC |
CVA35-900 | 35%CVA + 65%PC |
Phase 1.2: Alkali-activators | |
VA35-NSi2 | (35%VA + 65%PC) + 2%Na2SiO3 |
VA35-NSi1 | (35%VA + 65%PC) + 1% Na2SiO3 |
VA35-NSi0.5 | (35%VA + 65%PC) + 0.5% Na2SiO3 |
VA35-CaCl4 * | (35%VA + 65%PC) + 4%CaCl2 (0.2%SP) |
VA35-CaCl2 | (35%VA + 65%PC) + 2%CaCl2 |
VA35-CaCl1 | (35%VA + 65%PC) + 1%CaCl2 |
VA35-NS4 * | (35%VA + 65%PC) + 4%Na2SO4 (0.4%SP) |
VA35-NS2 | (35%VA + 65%PC) + 2% Na2SO4 |
VA35-NC4 * | (35%VA + 65%PC) + 4%Na2CO3 (0.2%SP) |
VA35-NC2 | (35%VA + 65%PC) + 2% Na2CO3 |
Phase 1.3: Lime as corrector | |
VA35-L10 | 35% (90%VA + 10%L) + 65%PC |
VA35-L20 | 35% (80%VA + 20%L) + 65%PC |
VA35-L30 | 35% (70%VA + 30%L) + 65%PC |
Phase 1.4: CVA and lime as corrector | |
CVA35-L20 | 35% (80%CVA + 20%L) + 65%PC |
Phase 1.5: CVA, lime as corrector and alkali-activator | |
NS1-CVA35-L20 | 35% (80%CVA + 20%L) + 65%PC + 1%Na2SiO3 |
CaCl2-CVA35-L20 | 35% (80%CVA + 20%L) + 65%PC + 2%CaCl2 |
Control mixture | |
VA35 | 35%VA + 65%PC |
Mix | Compressive Strength (MPa) | Porosity (%) | Water Absorption (%) | Dry Bulk Density (g/cc) | ||||
---|---|---|---|---|---|---|---|---|
7 d | 28 d | 7 d | 28 d | 7 d | 28 d | 7 d | 28 d | |
CVA35-500 | 28.64 (1.1) | 42.76 (1.2) | ||||||
CVA35-700 | 30.58 (0.56) | 44.50 (0.3) | 17.31 | 14.59 | 8.43 | 7.06 | 2.052 | 2.068 |
CVA35-800 | 29.84 (0.80) | 43.60 (1.2) | ||||||
CVA35-900 | 27.41 (1.40) | 41.38 (1.0) | ||||||
VA35-NSi2 | 32.17 (0.11) | 41.36 (0.67) | 13.78 | 13.90 | 6.58 | 6.58 | 2.094 | 2.112 |
VA35-NSi1 | 35.64 (1.16) | 44.99 (0.99) | 14.58 | 14.26 | 6.96 | 6.86 | 2.096 | 2.084 |
VA35-NSi0.5 | 33.84 (1.45) | 44.17 (2.09) | 15.99 | 12.57 | 7.69 | 5.91 | 2.081 | 2.129 |
VA35-CaCl4 * | 27.91 (1.02) | 40.57 (1.45) | 16.93 | 16.29 | 8.24 | 7.93 | 2.057 | 2.054 |
VA35-CaCl2 | 34.27 (1.18) | 41.29 (0.89) | 14.38 | 15.56 | 6.88 | 7.46 | 2.090 | 2.087 |
VA35-CaCl1 | 33.82 (1.06) | 40.40 (0.41) | 17.09 | 17.14 | 8.36 | 8.22 | 2.044 | 2.085 |
VA35-NS4 * | 27.93 (1.10) | 36.93 (1.50) | 16.06 | 13.17 | 7.75 | 6.30 | 2.078 | 2.128 |
VA35-NS2 | 30.79 (2.00) | 37.50 (2.26) | 13.79 | 12.89 | 6.51 | 6.04 | 2.119 | 2.133 |
VA35-NC4 * | 18.63 (0.35) | 28.59 (0.48) | 16.69 | 13.70 | 8.05 | 6.53 | 2.076 | 2.100 |
VA35-NC2 | 25.69 (0.70) | 39.66 (3.49) | 14.33 | 14.88 | 6.82 | 7.09 | 2.101 | 2.100 |
VA35-L10 | 33.5 (0.17) | 41.12 (1.93) | 17.87 | 16.77 | 8.62 | 8.04 | 2.071 | 2.085 |
VA35-L20 | 33.95 (1.31) | 43.78 (2.51) | 14.06 | 14.11 | 6.70 | 6.69 | 2.100 | 2.109 |
VA35-L30 | 32.0 (2.03) | 37.80 (2.10) | 18.12 | 14.07 | 8.88 | 6.64 | 2.041 | 2.122 |
CVA35-L20 | 34.48 (0.77) | 49.31 (0.96) | 17.74 | 15.52 | 8.47 | 7.32 | 2.096 | 2.121 |
NS1-CVA35-L20 | 32.80 (1.34) | 41.39 (1.82) | 17.98 | 17.60 | 8.73 | 8.55 | 2.059 | 2.062 |
CaCl2-CVA35-L20 | 34.79 (3.04) | 43.15 (2.32) | 17.20 | 17.12 | 8.29 | 8.23 | 2.075 | 2.080 |
VA35 | 29.62 (2.43) | 37.63 (2.46) | 17.56 | 16.92 | 8.44 | 8.07 | 2.080 | 2.096 |
Mix | Description |
---|---|
Stage 2.1 mortar produced with 50% VA | |
Phase 2.1.1: Lime as corrector | |
VA50-L10 * | 50% (90%VA + 10%L) + 50%PC (0.2%SP) |
VA50-L20 * | 50% (80%VA + 20%L) + 50%PC (0.2%SP) |
VA50-L30 * | 50% (70%VA + 30%L) + 50%PC (0.2%SP) |
Phase 2.1.2: CVA | |
CVA50 * | 50% CVA + 50% PC (0.4% SP) |
Phase 2.1.3: CVA and lime as corrector | |
CVA50-L20 * | 50% (80%CVA + 20%L) + 50%PC (0.4%SP) |
Phase 2.1.4: CVA, lime corrector and alkali-activator | |
NSi1-CVA50-L20 * | 50% (80%CVA + 20%L) + 50%PC +1%Na2SiO3 (0.2%SP) |
CaCl2-CVA50-L20 | 50% (80%CVA + 20%L) + 50%PC + 2%CaCl2 |
Control mixture | |
VA50 * | 50% VA + 50% PC (0.2%SP) |
Phase 2.2: mortar produced with 75% VA | |
Phase 2.2.1: CVA | |
CVA75 * | 75% CVA + 25% PC (0.4%SP) |
Phase 2.2.2.: CVA and lime as corrector | |
CVA75-L20 * | 75% (80%CVA + 20%L) + 25%PC +1% Na2SiO3 (0.4%SP) |
Phase 2.2.3.: CVA, lime corrector and alkali-activator | |
NSi1-CVA75-L20 * | 75% (80%CVA + 20%L) + 25%PC +1% Na2SiO3 (0.6%SP) |
CaCl2-CVA75-L20 * | 75% (80%CVA + 20%L) + 25%PC +2%CaCl2 (0.6%SP) |
Control mixture | |
VA75 * | 70% VA + 25% PC (0.2%SP) |
Mix | Compressive Strength (MPa) | Porosity (%) | Water Absorption (%) | Dry Bulk Density (g/cc) | ||||
---|---|---|---|---|---|---|---|---|
7 d | 28 d | 7 d | 28 d | 7 d | 28 d | 7 d | 28 d | |
Stage 2.1 mortar produced with 50% VA | ||||||||
VA50-L10 * | 26.76 (0.67) | 37.27 (2.93) | 18.33 | 17.74 | 9.01 | 8.67 | 2.034 | 2.047 |
VA50-L20 * | 27.87 (1.80) | 40.06 (1.72) | 18.22 | 18.47 | 8.94 | 9.04 | 2.037 | 2.043 |
VA50-L30 * | 27.66 (0.98) | 35.52 (2.97) | 17.91 | 15.51 | 8.74 | 7.52 | 2.050 | 2.067 |
CVA50 * | 27.68 (0.34) | 43.34 (2.55) | 16.49 | 17.03 | 8.08 | 8.26 | 2.041 | 2.061 |
CVA50-L20 * | 29.29 (1.70) | 46.31 (3.76) | 17.53 | 18.66 | 8.47 | 8.96 | 2.070 | 2.084 |
NSi1-CVA50-L20 * | 28.45 (0.82) | 40.20 (0.19) | 18.07 | 19.32 | 8.78 | 9.32 | 2.059 | 2.074 |
CaCl2-CVA50-L20 | 25.91 (2.22) | 35.02 (1.59) | 16.93 | 19.63 | 8.15 | 9.44 | 2.077 | 2.080 |
Control mixture | ||||||||
VA50 * | 24.69 (0.95) | 33.68 (2.45) | 18.38 | 17.87 | 9.03 | 8.60 | 2.036 | 2.077 |
Stage 2.2 mortar produced with 75% VA | ||||||||
CVA75 * | 14.91 (0.93) | 33.86 (1.57) | 18.60 | 18.80 | 9.26 | 9.18 | 2.008 | 2.048 |
CVA75-L20 * | 16.71 (0.90) | 33.34 (1.72) | 18.64 | 18.62 | 9.26 | 9.15 | 2.013 | 2.037 |
NSi1-CVA75-L20 * | 18.82 (0.84) | 31.11 (1.71) | 18.83 | 19.46 | 9.33 | 9.52 | 2.018 | 2.044 |
CaCl2-CVA75-L20 * | 13.92 (0.78) | 27.15 (1.68) | 18.67 | 19.59 | 9.27 | 9.77 | 2.014 | 2.013 |
VA75 * | 14.84 (3.22) | 24.21 (0.21) | 18.40 | 18.45 | 9.07 | 9.00 | 2.028 | 2.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Játiva, A.; Etxeberria, M. Exploring the Utilization of Activated Volcanic Ash as a Substitute for Portland Cement in Mortar Formulation: A Thorough Experimental Investigation. Materials 2024, 17, 1123. https://doi.org/10.3390/ma17051123
Játiva A, Etxeberria M. Exploring the Utilization of Activated Volcanic Ash as a Substitute for Portland Cement in Mortar Formulation: A Thorough Experimental Investigation. Materials. 2024; 17(5):1123. https://doi.org/10.3390/ma17051123
Chicago/Turabian StyleJátiva, Andrés, and Miren Etxeberria. 2024. "Exploring the Utilization of Activated Volcanic Ash as a Substitute for Portland Cement in Mortar Formulation: A Thorough Experimental Investigation" Materials 17, no. 5: 1123. https://doi.org/10.3390/ma17051123
APA StyleJátiva, A., & Etxeberria, M. (2024). Exploring the Utilization of Activated Volcanic Ash as a Substitute for Portland Cement in Mortar Formulation: A Thorough Experimental Investigation. Materials, 17(5), 1123. https://doi.org/10.3390/ma17051123