Mechanical Behavior of Bio-Inspired Honeycomb–Core Composite Sandwich Structures to Low-Velocity Dynamic Loading
Abstract
:1. Introduction
2. Geometric Model of the BIH Sandwich Structure
3. Finite Element Method of BIH Sandwich Structure
3.1. FE Model
3.2. Validity Verification
4. Comparative Analysis of Two Honeycomb Core Sandwich Structures
4.1. Dynamic Response Analysis
4.2. Energy Absorption and Its Enhancement Mechanism
5. Parameter Study
5.1. Effect of Ratio γ
5.2. Effect of Ratio K
5.3. Effect of Impact Angle θ
6. Optimization Design
6.1. Determination of Optimization Problem
6.2. Response Surface Method
6.2.1. The Process of Design Optimization
6.2.2. Design of Experiments and Metamodel
6.3. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yahaya, M.A.; Ruan Lu, D.G.; Dargusch, M.S. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact—An experimental study. Int. J. Impact Eng. 2015, 75, 100–109. [Google Scholar] [CrossRef]
- Wowk, D.; Reyno, T.; Yeung, R.; Marsden, C. An experimental and numerical investigation of core damage size in honeycomb sandwich panels subject to low-velocity impact. Compos. Struct. 2020, 254, 112739. [Google Scholar] [CrossRef]
- Alavi Nia, A.; Mokari, S.; Zakizadeh, M.; Kazemi, M. Experimental and numerical investigations of the effect of cellular wired core on the ballistic resistance of sandwich structures. Aerosp. Sci. Technol. 2017, 70, 445–452. [Google Scholar] [CrossRef]
- Vaziri, A.; Hutchinson, J.W. Metal sandwich plates subject to intense air shocks. Int. J. Solids Struct. 2007, 44, 2021–2035. [Google Scholar] [CrossRef]
- Palomba, G.; Epasto, G.; Crupi, V.; Guglielmino, E. Single and Double-Layer Honeycomb Sandwich Panels under Impact Loading. Int. J. Impact Eng. 2018, 121, 77–90. [Google Scholar] [CrossRef]
- Foster, L.; Peketi, P.; Allen, T.; Senior, T.; Duncan, O.; Alderson, A. Application of auxetic foam in sports helmets. Appl. Sci. 2018, 8, 354. [Google Scholar] [CrossRef]
- Dharmasenaa, K.P.; Wadleya HN, G.; Xue, Z.Y.; Hutchinson, J.W. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. Int. J. Impact Eng. 2008, 35, 1063–1074. [Google Scholar] [CrossRef]
- Bahei-El-Din, Y.A.; Dvorak, G.J. Enhancement of blast resistance of sandwich plates. Compos. Part B 2008, 39, 120–127. [Google Scholar] [CrossRef]
- Van Quyen, N.; Van Thanh, N.; Quan, T.Q.; Duc, N.D. Nonlinear forced vibration of sandwich cylindrical panel with negative Poisson’s ratio auxetic honeycombs core and CNTRC face sheets. Thin-Walled Struct. 2021, 162, 107571. [Google Scholar] [CrossRef]
- Abbadi, A.; Tixier, C.; Gilgert, J.; Azari, Z. Experimental study on the fatigue behavior of honeycomb sandwich panels with artificial defects. Compos. Struct. 2015, 120, 394–405. [Google Scholar] [CrossRef]
- Sezgin, F.E.; Tanoğlu, M.; Eğilmez, O.Ö.; Dönmez, C. Mechanical Behavior of Polypropylene-based Honeycomb-Core Composite Sandwich Structures. J. Reinf. Plast. Compos. 2010, 29, 1569–1579. [Google Scholar] [CrossRef]
- Baştürk, S.; Tanoğlu, M.; Çankaya, M.; Eğilmez, O. Dynamic behavior predictions of fiber-metal laminate/aluminum foam sandwiches under various explosive weights. J. Sandw. Struct. Mater. 2016, 18, 321–342. [Google Scholar] [CrossRef]
- Rejab MR, M.; Cantwell, W.J. The mechanical behavior of corrugated-core sandwich panels. Compos. Part B 2013, 47, 267–277. [Google Scholar] [CrossRef]
- Sun, Z.; Shi, S.S.; Guo, X.; Hu, X.Z.; Chen, H.R. On compressive properties of composite sandwich structures with grid reinforced honeycomb core. Compos. Part B-Eng. 2016, 94, 245–252. [Google Scholar] [CrossRef]
- Lan, X.K.; Feng, S.S.; Qi, H.; Zhou, T. A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores. Aerosp. Sci. Technol. 2019, 87, 37–47. [Google Scholar] [CrossRef]
- Mcshane, G.; Deshpande, V.; Fleck, N. The underwater blast resistance of metallic sandwich beams with prismatic lattice core. J. Appl. Mech. 2007, 72, 352–367. [Google Scholar] [CrossRef]
- Sun, G.Y.; Huo, X.T.; Wang, H.X.; Hazell, P.J.; Li, Q. On the structural parameters of honeycomb-core sandwich panels against low-velocity impact. Compos. Part B 2021, 216, 108881. [Google Scholar] [CrossRef]
- Zhang, D.H.; Fei, Q.G.; Zhang, P.W. Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor. Compos. Struct. 2017, 168, 633–645. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, D.; Fei, Q.; Wu, S. Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low velocity impact. Finite Elem. Anal. Des. 2016, 117–118, 21–30. [Google Scholar] [CrossRef]
- Liu, J.F.; Chen, W.S.; Hao, H.; Wang, Z.G. Numerical study of low-speed impact response of sandwich panel with tube filled honeycomb core. Compos. Struct. 2019, 220, 736–748. [Google Scholar] [CrossRef]
- Reyes, A.; Børvik, T. Low velocity impact on crash components with steel skins and polymer foam cores. Int. J. Impact Eng. 2019, 132, 1879–3509. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Jia, K.C.; Wang, X.J.; Xiong, M.-X.; Wang, Y. Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs. Thin-Walled Struct. 2020, 154, 106898. [Google Scholar] [CrossRef]
- Dhanarasu, M.; Vm, S. Structural response of sandwich structures with CFRP face sheets under quasi-static indentation and high velocity impact: An experimental and numerical study. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2023, 237, 737–752. [Google Scholar] [CrossRef]
- Sabah SH, A.; Kueh AB, H.; Al-Fasih, M.Y. Bio-inspired vs. conventional sandwich beams: A low-velocity repeated impact behavior exploration. Constr. Build. Mater. 2018, 169, 193–204. [Google Scholar] [CrossRef]
- Akatay, A.; Bora, M.; Çoban, O.; Fidan, S.; Tuna, V. The influence of low velocity repeated impacts on residual compressive properties of honeycomb sandwich structures. Compos. Struct. 2015, 125, 425–433. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, L.; Zhang, C.; Guo, S. Low-velocity impact response of tube-reinforced honeycomb sandwich structure. Thin-Walled Struct. 2021, 158, 107188. [Google Scholar] [CrossRef]
- Al Antali, A.; Umer, R.; Zhou, J.; Cantwell, W.J. The energy-absorbing properties of composite tube-reinforced aluminum honeycomb. Compos. Struct. 2017, 176, 630–639. [Google Scholar] [CrossRef]
- Hundley, J.M.; Clough, E.C.; Jacobsen, A.J. The low velocity impact response of sandwich panels with lattice core reinforcement. Int. J. Impact Eng. 2015, 84, 64–77. [Google Scholar] [CrossRef]
- Baran, T.; Öztürk, M. In-plane elasticity of a strengthened re-entrant honeycomb cell. Eur. J. Mech.-A/Solids 2020, 83, 104037. [Google Scholar] [CrossRef]
- Hassan, M.Z.; Cantwell, W.J. The influence of core properties on the perforation resistance of sandwich structures—An experimental study. Compos. Part B-Eng. 2012, 43, 3231–3238. [Google Scholar] [CrossRef]
- Tatlıer, M.S.; Öztürk, M.; Baran, T. Linear and non-linear in-plane behaviour of a modified re-entrant core cell. Eng. Struct. 2021, 234, 111984. [Google Scholar] [CrossRef]
- San Ha, N.; Pham, T.M.; Tran, T.T.; Hao, H.; Lu, G. Mechanical properties and energy absorption of bio-inspired hierarchical circular honeycomb. Compos. Part B Eng. 2022, 236, 109818. [Google Scholar]
- Al-Dhaheri, M.; Khan, K.A.; Umer, R.; van Liempt, F.; Cantwell, W.J. Process-induced Deformation in U-shaped Honeycomb Aerospace Composite Structures. Compos. Struct. 2020, 248, 112503. [Google Scholar] [CrossRef]
- Ha, N.S.; Jin, T.L.; Goo, N.S.; Park, H.C. Anisotropy and non-homogeneity of an Allomyrina Dichotoma beetle hind wing membrane. Bioinspir. Biomim. 2011, 6, 046003. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.S.; Le, V.T.; Goo, N.S. Investigation of punch resistance of the Allomyrira dichtoloma beetle forewing. J. Bionic Eng. 2018, 15, 57–68. [Google Scholar] [CrossRef]
- San Ha, N.; Lu, G.; Shu, D.W.; Yu, T.X. Mechanical properties and energy absorption characteristics of tropical fruit durian (Durio zibethinus). J. Mech. Behav. Biomed. Mater. 2020, 104, 103603. [Google Scholar]
- San Ha, N.; Pham, T.M.; Hao, H.; Lu, G. Energy absorption characteristics of bio-inspired hierarchical multi-cell square tubes under axial crushing. Int. J. Mech. Sci. 2021, 201, 106464. [Google Scholar]
- San Ha, N.; Pham, T.M.; Chen, W.; Hao, H.; Lu, G. Crashworthiness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing. Thin-Walled Struct. 2021, 169, 108315. [Google Scholar]
- Song, J.F.; Xu, S.C.; Liu, S.F.; Huang, H.; Zou, M. Design and numerical study on bionic columns with grooves under lateral impact. Thin-Walled Struct. 2020, 148, 106546. [Google Scholar] [CrossRef]
- Zou, M.; Xu, S.C.; Wei, C.G.; Wang, H.; Liu, Z. A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo. Thin-Walled Struct. 2016, 101, 222–230. [Google Scholar] [CrossRef]
- Palombini, F.L.; Araujo Mariathb, J.E.; Oliveiraa, B.F. Bionic design of thin-walled structure based on the geometry of the vascular bundles of bamboo. Thin-Walled Struct. 2020, 155, 106936. [Google Scholar] [CrossRef]
- He, Q.; Wang, Y.; Gu, H.; Feng, J.; Zhou, H. Dynamic crushing analysis of a circular honeycomb with leaf vein branched characteristic. Mech. Mater. 2021, 153, 103566. [Google Scholar] [CrossRef]
- Kazemi, M.; Serpoush, J. Energy absorption parameters of multi-cell thin-walled structure with various thicknesses under lateral loading. Mater. Des. Appl. 2021, 235, 513–526. [Google Scholar] [CrossRef]
- Li, L.H.; Guo, C.; Chen, Y.T.; Chen, Y.H. Optimization design of lightweight structure inspired by glass sponges (Porifera, Hexacinellida) and its mechanical properties. Bioinspir. Biomim. 2020, 15, 036006. [Google Scholar] [CrossRef]
- Liu, X.; Liang, R.; Hu, Y.Z. Body optimization approach of sedan structure for improving small overlap impact rating. Int. J. Crashworthiness 2019, 26, 182–190. [Google Scholar] [CrossRef]
- Rathod, S.; Tiwari, G. Structural analysis of cylindrical composite structures for high velocity applications: A parametric optimization study. Thin-Walled Struct. 2023, 192, 111178. [Google Scholar]
- Benyounis, K.Y.; Olabi, A.G.; Hashmi, M.S.J. Ulti-response optimization of CO2 laser-welding process of austenitic stainless steel. Opt. Laser Technol. 2008, 40, 76–87. [Google Scholar] [CrossRef]
- Johnson, W.R.; Zhu, X.-K.; Sindelar, R.; Wiersma, B. A parametric finite element study for determining burst strength of thin andthick-walled pressure vessels. Constr. Build. Mater. 2023, 204, 104968. [Google Scholar]
- Rajput, A.; Sunny, M.R.; Sarkar, A. Optimization of honeycomb parameters of sandwich composites for energy and specific energy absorption using particle swarm optimization. Mar. Struct. 2023, 92, 103498. [Google Scholar] [CrossRef]
Face-Sheets (AL5083) | BIH Core (AL3003) | ||
---|---|---|---|
Dimension | Thickness | K | γ |
0.4; 0.6; 0.8; 1; 3; 5; 7 | 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7 |
(MPa) | (MPa) | ||||
---|---|---|---|---|---|
AL5083 (face-sheets) | 2700 | 72 | 0.33 | 280 | 933 |
AL3003 (BIH core) | 2700 | 70 | 0.33 | 185 | 720 |
Hexagonal Honeycomb Core | BIH Core | ||||
---|---|---|---|---|---|
Cell wall length | Wall thickness | Φb | tb | K | γ |
6 mm | 0.193 mm | 12 mm | 0.075 mm | 1 | 0.5 |
Optimal Solution | FEM | Error | |
---|---|---|---|
U (mm) | 4.135 | 4.246 | 2.61% |
M (g) | 97.286 | 98 | 0.729% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, T.; Li, L.; He, Q.; Wang, Y.; Guo, J. Mechanical Behavior of Bio-Inspired Honeycomb–Core Composite Sandwich Structures to Low-Velocity Dynamic Loading. Materials 2024, 17, 1191. https://doi.org/10.3390/ma17051191
Tao T, Li L, He Q, Wang Y, Guo J. Mechanical Behavior of Bio-Inspired Honeycomb–Core Composite Sandwich Structures to Low-Velocity Dynamic Loading. Materials. 2024; 17(5):1191. https://doi.org/10.3390/ma17051191
Chicago/Turabian StyleTao, Tao, Lizheng Li, Qiang He, Yonghui Wang, and Junlan Guo. 2024. "Mechanical Behavior of Bio-Inspired Honeycomb–Core Composite Sandwich Structures to Low-Velocity Dynamic Loading" Materials 17, no. 5: 1191. https://doi.org/10.3390/ma17051191
APA StyleTao, T., Li, L., He, Q., Wang, Y., & Guo, J. (2024). Mechanical Behavior of Bio-Inspired Honeycomb–Core Composite Sandwich Structures to Low-Velocity Dynamic Loading. Materials, 17(5), 1191. https://doi.org/10.3390/ma17051191