Controllable Technology for Thermal Expansion Coefficient of Commercial Materials for Solid Oxide Electrolytic Cells
Abstract
:1. Introduction
2. Experimental Materials and Instruments
3. Material Thermal Expansion Coefficient Test
4. Structural Analysis
5. Result Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Basso, G.L.; Mojtahed, A.; Pastore, L.M.; De Santoli, L. High-temperature green hydrogen production: A innovative–application of SOEC coupled with AEC through sCO2 HP. Int. J. Hydrogen Energy 2024, 52, 978–993. [Google Scholar] [CrossRef]
- Wolf, S.E.; Winterhalder, F.E.; Vibhu, V.; de Haart, L.B.; Guillon, O.; Eichel, R.A.; Menzler, N.H. Solid oxide electrolysis cells–current material development and industrial application. J. Mater. Chem. A 2023, 11, 17977–18028. [Google Scholar] [CrossRef]
- Drach, Z.; Hershkovitz, S.; Ferrero, D.; Leone, P.; Lanzini, A.; Santarelli, M.; Tsur, Y. Impedance spectroscopy analysis inspired by evolutionary programming as a diagnostic tool for SOEC and SOFC. Solid State Ion. 2016, 288, 307–310. [Google Scholar] [CrossRef]
- Nejadian, M.M.; Ahmadi, P.; Houshfar, E. Comparative optimization study of three novel integrated hydrogen production systems with SOEC, PEM, and alkaline electrolyzer. Fuel 2023, 336, 126835. [Google Scholar] [CrossRef]
- Biswas, S.; Kaur, G.; Paul, G.; Giddey, S. A critical review on cathode materials for steam electrolysis in solid oxide electrolysis. Int. J. Hydrogen Energy 2023, 48, 12541–12570. [Google Scholar] [CrossRef]
- Shao, Q.; Jin, D.; Lu, Y.; Yu, Y.; Luo, L.; Sun, X.; Guan, C.; Wang, J.Q. Performance evolution analysis of solid oxide electrolysis cells operating at high current densities. Int. J. Hydrogen Energy 2024, 57, 709–716. [Google Scholar] [CrossRef]
- Ghamarinia, M.; Babaei, A.; Zamani, C.; Aslannejad, H. Application of the distribution of relaxation time method in electrochemical analysis of the air electrodes in the SOFC/SOEC devices: A review. Chem. Eng. J. Adv. 2023, 587, 100503. [Google Scholar] [CrossRef]
- Sampathkumar, S.N.; Aubin, P.; Couturier, K.; Sun, X.; Sudireddy, B.R.; Diethelm, S.; Pérez-Fortes, M. Degradation study of a reversible solid oxide cell (rSOC) short stack using distribution of relaxation times (DRT) analysis. Int. J. Hydrogen Energy 2022, 47, 10175–10193. [Google Scholar] [CrossRef]
- Subotić, V.; Königshofer, B.; Juričić, Đ.; Kusnezoff, M.; Schröttner, H.; Hochenauer, C.; Boškoski, P. Detailed insight into processes of reversible solid oxide cells and stacks using DRT analysis. Energy Convers. Manag. 2020, 226, 113509. [Google Scholar] [CrossRef]
- Königshofer, B.; Höber, M.; Menzler, N.H.; Schröttner, H.; Hochenauer, C.; Subotić, V. Experimental investigation of segmented SOECs: Locally-resolved impedance and degradation characteristics. Int. J. Hydrogen Energy 2023, 48, 3740–3758. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Guan, D.; Xu, M.; Ran, R.; Ni, M.; Zhou, W.; O’Hayre, R.; Shao, Z. Thermal-expansion offset for high-performance fuel cell cathodes. Nature 2021, 591, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Tai, L.W.; Nasrallah, M.M.; Anderson, H.U.; Sparlin, D.M.; Sehlin, S.R. Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3. Solid State Ion. 1995, 76, 259–271. [Google Scholar] [CrossRef]
- Ullmann, H.; Trofimenko, N.; Tietz, F.; Stöver, D.; Ahmad-Khanlou, A. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ion. 2000, 138, 79–90. [Google Scholar] [CrossRef]
- Martins, N.R.; Borges, D.D.; Borges, P.D. Computational study of native defects and oxygen diffusion in the YTiO3±δ as cathode materials in SOFCs. J. Solid State Chem. 2023, 325, 124142. [Google Scholar] [CrossRef]
- Manishanma, S.; Dutta, A. Synthesis and characterization of nickel doped LSM as possible cathode materials for LT-SOFC application. Mater. Chem. Phys. 2023, 297, 127438. [Google Scholar] [CrossRef]
- Amira, S.; Ferkhi, M.; Mauvy, F.; Fourcade, S.; Bassat, J.M.; Grenier, J.C. La1.5Nd0.3Pr0.2NiO4.16: A New Cathode Material for IT-Solid Oxide Fuel Cells. Electrocatalysis 2023, 14, 546–560. [Google Scholar] [CrossRef]
- Yurchenko, M.V.; Antonova, E.P.; Tropin, E.S.; Suntsov, A.Y. Adjusting electrochemical properties of PrBaCo2O6−δ as SOFC cathode by controllable Ca3Co4O9 additions. Ceram. Int. 2023, 49, 21485–21491. [Google Scholar] [CrossRef]
- Harzand, A.G.; Golmohammad, M.; Zargar, S.A.; Khachatourian, A.M.; Nemati, A. Study of structural, electrical, and electrochemical properties of Sr3-xPrxFe1.8Co0.2O7-δ cathode for IT-SOFCs. Solid State Ion. 2024, 404, 116421. [Google Scholar] [CrossRef]
- Tsekouras, G.; Neagu, D.; Irvine, J.T. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ. Sci. 2013, 6, 256–266. [Google Scholar] [CrossRef]
- Zhou, W.; Ran, R.; Shao, Z.; Jin, W.; Xu, N. Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ (x > 0) perovskite as a solid-oxide fuel cell cathode. J. Power Sources 2008, 182, 24–31. [Google Scholar] [CrossRef]
- Kim, Y.M.; Kim-Lohsoontorn, P.; Bae, J.M. Characterization and electrochemical performance of composite BSCF cathode for intermediate-temperature solid oxide fuel cell. J. Electrochem. Sci. Technol. 2011, 2, 32–38. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kagomiya, I.; Minami, S.; Shimada, H.; Sumi, H.; Ogura, Y.; Mizutani, Y. La0.65Ca0.35FeO3-δ as a novel Sr-and Co-free cathode material for solid oxide fuel cells. J. Power Sources 2020, 448, 227426. [Google Scholar] [CrossRef]
- Fu, P.; Yan, M.; Zeng, M.; Wang, Q. Sintering process simulation of a solid oxide fuel cell anode and its predicted thermophysical properties. Appl. Therm. Eng. 2017, 125, 209–219. [Google Scholar] [CrossRef]
- Bian, W.; Wu, W.; Wang, B.; Tang, W.; Zhou, M.; Jin, C.; Ding, H.; Fan, W.; Dong, Y.; Li, J.; et al. Revitalizing interface in protonic ceramic cells by acid etch. Nature 2022, 604, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Mary, T.A.; Evans, J.S.; Vogt, T.; Sleight, A.W. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 1996, 272, 90–92. [Google Scholar] [CrossRef]
- Chen, J.; Xing, X.; Sun, C.; Hu, P.; Yu, R.; Wang, X.; Li, L. Zero thermal expansion in PbTiO3-based perovskites. J. Am. Chem. Soc. 2008, 130, 1144–1145. [Google Scholar] [CrossRef]
- Goodwin, A.L.; Kepert, C.J. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials. Phys. Rev. B 2005, 71, 140301. [Google Scholar] [CrossRef]
- Ye, C.; Liu, J.; Zhang, Q.; Jin, X.; Zhao, Y.; Pan, Z.; Chen, G.; Qiu, Y.; Ye, D.; Gu, L.; et al. Activating metal oxides nanocatalysts for electrocatalytic water oxidation by quenching-induced near-surface metal atom functionality. J. Am. Chem. Soc. 2021, 143, 14169–14177. [Google Scholar] [CrossRef]
- Suksamai, W.; Metcalfe, I.S. Measurement of proton and oxide ion fluxes in a working Y-doped BaCeO3 SOFC. Solid State Ion. 2007, 178, 627–634. [Google Scholar] [CrossRef]
- Silva, E.D.; Curi, M.; Nicolini, J.V.; Furtado, J.G.; Secchi, A.R.; Ferraz, H.C. Effect of doping concentration and sintering atmosphere on the microstructural and electrical characteristics of Y-doped SrTiO3 perovskite anode for SOFC. Ceram. Int. 2021, 47, 13331–13338. [Google Scholar] [CrossRef]
- Singh, S.; Jha, P.A.; Presto, S.; Viviani, M.; Sinha, A.S.; Varma, S.; Singh, P. Structural and electrical conduction behaviour of yttrium doped strontium titanate: Anode material for SOFC application. J. Alloys Compd. 2018, 748, 637–644. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Shen, W.; Gao, F.; Huang, X.; Li, Y.; Zhu, Z. Synthesis and properties of Y-doped SrTiO3 as an anode material for SOFCs. J. Power Sources 2007, 166, 47–52. [Google Scholar] [CrossRef]
- Tahini, H.A.; Tan, X.; Zhou, W.; Zhu, Z.; Schwingenschlögl, U.; Smith, S.C. Sc and Nb dopants in SrCoO3 modulate electronic and vacancy structures for improved water splitting and SOFC cathodes. Energy Storage Mater. 2017, 9, 229–234. [Google Scholar] [CrossRef]
- Zhang, W.; Meng, J.; Zhang, X.; Zhang, L.; Liu, X.; Meng, J. Co-incorporating enhancement on oxygen vacancy formation energy and electrochemical property of Sr2Co1+xMo1−xO6−δ cathode for intermediate-temperature solid oxide fuel cell. Solid State Ion. 2018, 316, 20–28. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X.; Xu, S.; Wei, W.; Zeng, G.; Yuan, H.; Gao, Q.; Guo, J.; Chao, M.; Liang, E. Improving the thermal expansion and capacitance properties of MoO3 by introducing oxygen vacancies. J. Phy. Chem. C 2021, 125, 10817–10823. [Google Scholar] [CrossRef]
- Niu, Y.; Yin, X.; Sun, C.; Song, X.; Zhang, N. Adjusting surface oxygen vacancies prompted perovskite as high performance cathode for solid oxide fuel cell. J. Alloys Compd. 2021, 865, 158746. [Google Scholar] [CrossRef]
Serial Number | Improvement Methods | Disadvantages or Advantages | Reference |
---|---|---|---|
1 | Element doping | Disadvantages: The experimental methods are cumbersome. | [19] |
2 | Introduction of A-site defects into perovskite | Disadvantages: The experimental methods are cumbersome. | [20] |
3 | Composite of perovskite electrode materials and electrolyte materials | Disadvantages: The problem of mismatch in material thermal expansion has not been fundamentally solved. | [21] |
4 | Developing new sintering processes for cells | Disadvantages: Long experimental cycle, high cost, and low success rate. | [22] |
5 | New material development | Disadvantages: Long experimental cycle, high cost, and low success rate. | [23] |
6 | Acid-treated electrolyte | Disadvantages: By increasing the contact area of materials, there is no fundamental solution to the problem of the mismatched thermal expansion of materials. | [24] |
7 | Introducing materials with negative thermal expansion coefficients | Disadvantages: Suitable for special types of materials, unable to modify commercial materials, and the method is not universal. | [11] |
8 | Quenching process | Advantages: The method is simple, universal, and effectively regulates the thermal expansion coefficient of materials. | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Jin, D.; Zhang, X.; Shao, Q.; Guan, C.; Li, R.; Cheng, F.; Lin, X.; Xiao, G.; Wang, J. Controllable Technology for Thermal Expansion Coefficient of Commercial Materials for Solid Oxide Electrolytic Cells. Materials 2024, 17, 1216. https://doi.org/10.3390/ma17051216
Sun Y, Jin D, Zhang X, Shao Q, Guan C, Li R, Cheng F, Lin X, Xiao G, Wang J. Controllable Technology for Thermal Expansion Coefficient of Commercial Materials for Solid Oxide Electrolytic Cells. Materials. 2024; 17(5):1216. https://doi.org/10.3390/ma17051216
Chicago/Turabian StyleSun, Ya, Dun Jin, Xi Zhang, Qing Shao, Chengzhi Guan, Ruizhu Li, Fupeng Cheng, Xiao Lin, Guoping Xiao, and Jianqiang Wang. 2024. "Controllable Technology for Thermal Expansion Coefficient of Commercial Materials for Solid Oxide Electrolytic Cells" Materials 17, no. 5: 1216. https://doi.org/10.3390/ma17051216
APA StyleSun, Y., Jin, D., Zhang, X., Shao, Q., Guan, C., Li, R., Cheng, F., Lin, X., Xiao, G., & Wang, J. (2024). Controllable Technology for Thermal Expansion Coefficient of Commercial Materials for Solid Oxide Electrolytic Cells. Materials, 17(5), 1216. https://doi.org/10.3390/ma17051216