Influence of Accelerators on Cement Mortars Using Fluid Catalytic Cracking Catalyst Residue (FCC): Enhanced Mechanical Properties at Early Curing Ages
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study of Mechanical Strengths in Mortars
3.2. Thermogravimetric Analysis in Pastes
4. Discussion
5. Conclusions
- -
- The SKR commercial accelerator is the additive with the best behavior, especially during the first 8 curing hours, and no reduction in strength takes place for long curing ages (28 days). This indicates good compatibility between FCC and SKR.
- -
- KOH appears beneficial in the mortar with FCC, but only for the first curing hours. When approaching 48 h, it exerts no benefit on the FCC mortar.
- -
- Unlike the mortar with KOH, the mortars with SIL containing FCC displayed improved compressive strength from 24 curing hours.
- -
- The mortars containing FCC for the 28-day curing age obtained higher compressive strength values than 88 MPa, except that containing KOH. These values confirm that FCC is an SCM with excellent pozzolanic activity.
- -
- Accelerators influence cement hydration by favoring the formation of Afm phases at early curing ages.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andrew, R. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data 2019, 11, 1675–1710. [Google Scholar] [CrossRef]
- Juenger, M.C.G.; Snellings, R.; Bernal, S.A. Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Teara, A.; Ing, D.S. Mechanical properties of high strength concrete that replace cement partly by using fly ash and eggshell powder. Phys. Chem. Earth 2020, 120, 102942. [Google Scholar] [CrossRef]
- Hoang, K.; Justnes, H.; Geiker, M. Early age strength increase of fly ash blended cement by a ternary hardening accelerating admixture. Cem. Concr. Res. 2016, 81, 59–69. [Google Scholar] [CrossRef]
- Kocak, Y.; Nas, S. The effect of using fly ash on the strength and hydration characteristics of blended cements. Constr. Build. Mater. 2014, 73, 25–32. [Google Scholar] [CrossRef]
- Ashraf, M.; Iqbal, M.F.; Rauf, M.; Ashraf, M.U.; Ulhaq, A.; Muhammad, H.; Liu, Q. Developing a sustainable concrete incorporating bentonite clay and silica fume: Mechanical and durability performance. J. Clean. Prod. 2022, 337, 130315. [Google Scholar] [CrossRef]
- Liu, H.; Sun, X.; Wang, Y.; Lu, X.; Du, H.; Tian, Z. Study on the influence of silica fume (SF) on the rheology, fluidity, stability, time-varying characteristics, and mechanism of cement paste. Materials 2022, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Qiu, J.; Guo, Z.; Zhang, S.; Wan, X.; Sun, X. Microscale and macroscale strength behaviours of blast furnace slag-cement based materials: Modeling and analysis. Constr. Build. Mater. 2023, 376, 131016. [Google Scholar] [CrossRef]
- Kim, J.; Na, S.; Hama, Y. Effect of blast-furnace slag replacement ratio and curing method on pore structure change after carbonation on cement paste. Materials 2020, 13, 4787. [Google Scholar] [CrossRef]
- Al-Jabri, K.; Baawain, M.; Taha, R.; Al-Kamyani, Z.; Al-Shamsi, K.; Isthtieh, A. Potential use of FCC spent catalyst as partial replacement of cement or sand in cement mortars. Constr. Build. Mater. 2013, 39, 77–81. [Google Scholar] [CrossRef]
- Chen, H.; Tseng, Y.; Hsu, K. Spent FCC catalyst as a pozzolanic material for high-performance material for high-performance mortars. Cem. Concr. Compos. 2004, 26, 657–664. [Google Scholar] [CrossRef]
- Payá, J.; Monzó, J.; Borrachero, M. Fluid catalytic cracking catalyst residue (FC3R): An excellent mineral by product for improving early-strength development of cement mixtures. Cem. Concr. Res. 1999, 29, 1773–1779. [Google Scholar] [CrossRef]
- Lu, B.; Li, H.; Li, M.; Wong, T.; Qian, S. Mechanism and design of fluid catalytic cracking ash-blended cementitious composites for high performance printing. Addit. Manuf. 2023, 61, 103286. [Google Scholar] [CrossRef]
- Pacewska, B.; Wilinska, I.; Kubissa, J. Use of spent catalyst from catalytic cracking in fluidized bed as a new concrete additive. Thermochim. Acta 1998, 322, 175–181. [Google Scholar] [CrossRef]
- Serna, P.; López, J.A.; Coll, H.; Camacho, E.; Navarro-Gregori, J.; Galán, F. Ultra-high-performance fiber reinforced concrete footbridge over the Ovejas Ravine (Alicante). Hormig. Acero 2015, 66, 23–42. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, T.; Gao, X. Incorporation of self-ignited coal gangue in steam cured precast concrete. J. Clean. Prod. 2021, 292, 126004. [Google Scholar] [CrossRef]
- Zhao, Z.; Gao, L.; Zuo, J. How national policies facilitate low carbon city development: A China study. J. Clean. Prod. 2019, 234, 743–754. [Google Scholar] [CrossRef]
- Shi, J.; Liu, B.; He, Z.; Wu, X.; Tan, J.; Chen, J.; Jiang, J. Properties evolution of high early strength cement paste and interfacial transition zone during steam curing process. Constr. Build. Mater. 2020, 252, 119095. [Google Scholar] [CrossRef]
- Mustafa, T.Ç.; Mehmet, U. Effects of accelerator type and dosage on the mechanical and durability properties of rapid setting precast concrete. Sigma J. Eng. Nat. Sci. 2022, 40, 685–694. [Google Scholar]
- Tao, Y.; Rahul, A.V.; Lesage, K.; Yuan, Y.; Van Tittelboom, K.; De Schutter, G. Stiffening control of cement-based materials using accelerators in inline mixing processes: Possibilities and challenges. Cem. Com. Compos. 2021, 119, 103972. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, L.; Liu, J.; Ma, Y.; Liu, Y.; Xiao, Z.; Shi, C. Accelerators for normal concrete: A critical review on hydration microstructure and properties of cement-based materials. Cem. Concr. Compos. 2022, 134, 104762. [Google Scholar] [CrossRef]
- Habib Lone, I.; Muneeb, A.; Ahmad, J.; Mohammad Jasmin, S.; Ali, M.; Ahmad Khan, M.; Hussain Malik, A.; Jasmin, M. Experimental study of effect of sodium silicate Na2SiO3 on properties of concrete. Int. J. Civ. Eng. Technol. 2015, 6, 39–47. [Google Scholar]
- Samoui, N.; Bérubé, M.A.; Fournier, B.; Bissonnette, B.; Durand, B. Effects of alkali addition on the mechanical properties and durability of concrete. Cem. Concr. Res. 2005, 35, 203–212. [Google Scholar] [CrossRef]
- Ananyachandran, P.; Vasugi, V. Development of a sustainable high early strength concrete incorporated with pozzolans, calcium nitrate and triethanolamine: An experimental study. Sustain. Energy Technol. Assess. 2022, 54, 102857. [Google Scholar] [CrossRef]
- UNE-EN 197-1; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements. AENOR: Madrid, Spain, 2011.
- UNE-EN 196-1; Methods of Testing Cement—Part 1: Determination of Strength. AENOR: Madrid, Spain, 2018.
- Payá, J.; Borrachero, M.V.; Mónzó, J.; Soriano, L. Studies on the behaviour of different spent fluidized-bed catalytic cracking catalysts on Portland cement. Mater. Constr. 2009, 59, 37–52. [Google Scholar] [CrossRef]
- Soriano, L.; Tashima, M.M.; Bonilla, M.; Payá, J.; Monzó, J.; Borrachero, M.V. Use of high-resolution thermogravimetric analysis (HRTG) technique in spent FCC catalyst/Portland cement pastes. J. Therm. Anal. Calorim. 2015, 120, 1511–1517. [Google Scholar] [CrossRef]
- Wang, K.; Shah, S.P.; Mishulovich, A. Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders. Cem. Concr. Res. 2004, 34, 299–309. [Google Scholar] [CrossRef]
- Coppola, L.; Buoso, A.; Coffetti, D.; Kara, P.; Lorenzi, S.; D’Alessandro, F. The effect of sodium silicate on the behaviour of shotcretes for tunnel lining. Sci. Res. Rep. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Xu, Y.; He, T.; Ma, X. The influence of calcium nitrate/sodium nitrate on the hydration process of cement paste mixed with alkali free liquid accelerator. Constr. Build. Mater. 2022, 347, 128555. [Google Scholar] [CrossRef]
- Wise, T.; Ramachandran, V.S.; Polomark, G.M. The effect of thiocyanates on the hydration of portland cement at low temperatures. Thermochim. Acta 1995, 264, 157–171. [Google Scholar] [CrossRef]
- Salvador, R.P.; Cavalaro, S.H.P.; Cano, M.; Figueiredo, A.D. Influence of spraying on the early hydration of accelerated cement pastes. Cem. Concr. Res. 2016, 88, 7–19. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, T.; Li, H.; Wu, S. Exploring the influence factors of early hydration of ultrafine cement. Materials 2021, 14, 5677. [Google Scholar] [CrossRef] [PubMed]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O + K2O | P2O5 | TiO2 | LOI * | |
---|---|---|---|---|---|---|---|---|---|---|
CEM | 19.29 | 5.22 | 3.51 | 61.75 | 2.07 | 3.55 | 1.23 | 0.26 | 0.27 | 1.96 |
FCC | 47.76 | 49.25 | 0.60 | 0.11 | 0.17 | 0.03 | 0.33 | 0.02 | 1.22 | 0.51 |
Cem (g) | Sand (g) | FCC (g) | Accel. (g) | H2O (g) | Superplast. (g) | Work. (mm) | |
---|---|---|---|---|---|---|---|
CON | 450.0 | 1350.0 | _ | _ | 202.5 | _ | 110 |
FCC | 450.0 | 1215.0 | 135.0 * | _ | 202.5 | 3.2 | 110 |
CON + KOH | 450.0 | 1350.0 | _ | 9.0 | 202.5 | 1.1 | 111 |
FCC + KOH | 450.0 | 1215.0 | 135.0 * | 9.0 | 202.5 | 6.2 | 119 |
CON + SIL | 450.0 | 1350.0 | _ | 9.0 | 202.5 | 1.2 | 112 |
FCC + SIL | 450.0 | 1215.0 | 135.0 * | 9.0 | 202.5 | 5.7 | 113 |
CON + SKR | 450.0 | 1350.0 | _ | 9.0 | 202.5 | _ | 113 |
FCC + SKR | 450.0 | 1215.0 | 135.0 * | 9.0 | 202.5 | 3.2 | 116 |
8 h | 24 h | 48 h | 28 d | |
---|---|---|---|---|
CON | 6.85 ± 0.51 | 29.23 ± 1.17 | 34.47 ± 2.06 | 56.96 ± 1.31 |
FCC | 16.18 ± 1.24 | 39.93 ± 2.15 | 55.44 ± 2.23 | 88.54 ± 2.61 |
CON + KOH | 7.51 ± 0.82 | 24.60 ± 1.76 | 28.86 ± 0.45 | 48.13 ± 0.86 |
FCC + KOH | 17.86 ± 1.05 | 48.13 ± 1.25 | 52.98 ± 1.75 | 68.10 ± 2.05 |
CON + SIL | 7.56 ± 0.79 | 35.42 ± 2.03 | 40.69 ± 0.35 | 61.25 ± 1.67 |
FCC + SIL | 13.83 ± 0.85 | 47.72 ± 0.52 | 60.38 ± 2.10 | 89.30 ± 1.92 |
CON + SKR | 12.76 ± 1.32 | 38.67 ± 1.25 | 40.40 ± 0.97 | 64.16 ± 1.23 |
FCC + SKR | 26.03 ± 0.65 | 50.61 ± 0.79 | 60.43 ± 1.56 | 91.60 ± 1.46 |
8 h | 24 h | 48 h | 28 d | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TML | CH | BW | TML | CH | BW | TML | CH | BW | TML | CH | BW | |
CON | 6.8 | 1.0 | 5.8 | 13.2 | 2.3 | 10.9 | 15.9 | 2.7 | 13.2 | 21.1 | 3.4 | 17.7 |
CON + SIL | 5.4 | 0.7 | 4.7 | 9.6 | 2.2 | 7.4 | 13.8 | 2.0 | 11.8 | 20.2 | 3.5 | 16.7 |
CON + SKR | 8.1 | 0.8 | 7.3 | 15.6 | 1.3 | 14.3 | 16.9 | 2.4 | 14.5 | 22.4 | 3.4 | 19.0 |
FCC | 7.8 | 0.9 | 6.9 | 13.5 | 1.2 | 12.3 | 15.7 | 2.2 | 13.5 | 23.5 | 2.3 | 21.2 |
FCC + SIL | 5.9 | 0.5 | 5.4 | 11.6 | 1.1 | 10.5 | 14.6 | 1.6 | 13.0 | 22.8 | 1.8 | 21.0 |
FCC + SKR | 8.6 | 1.0 | 7.6 | 14.9 | 1.4 | 13.5 | 17.6 | 1.8 | 15.8 | 25.1 | 1.8 | 23.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soriano, L.; Borrachero, M.V.; Giménez-Carbo, E.; Tashima, M.M.; Monzó, J.M.; Payá, J. Influence of Accelerators on Cement Mortars Using Fluid Catalytic Cracking Catalyst Residue (FCC): Enhanced Mechanical Properties at Early Curing Ages. Materials 2024, 17, 1219. https://doi.org/10.3390/ma17051219
Soriano L, Borrachero MV, Giménez-Carbo E, Tashima MM, Monzó JM, Payá J. Influence of Accelerators on Cement Mortars Using Fluid Catalytic Cracking Catalyst Residue (FCC): Enhanced Mechanical Properties at Early Curing Ages. Materials. 2024; 17(5):1219. https://doi.org/10.3390/ma17051219
Chicago/Turabian StyleSoriano, Lourdes, María Victoria Borrachero, Ester Giménez-Carbo, Mauro M. Tashima, José María Monzó, and Jordi Payá. 2024. "Influence of Accelerators on Cement Mortars Using Fluid Catalytic Cracking Catalyst Residue (FCC): Enhanced Mechanical Properties at Early Curing Ages" Materials 17, no. 5: 1219. https://doi.org/10.3390/ma17051219
APA StyleSoriano, L., Borrachero, M. V., Giménez-Carbo, E., Tashima, M. M., Monzó, J. M., & Payá, J. (2024). Influence of Accelerators on Cement Mortars Using Fluid Catalytic Cracking Catalyst Residue (FCC): Enhanced Mechanical Properties at Early Curing Ages. Materials, 17(5), 1219. https://doi.org/10.3390/ma17051219