The Inhibition Action of Some Brij-Type Nonionic Surfactants on the Corrosion of OLC 45 in Various Aggressive Environments
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods and Instruments
3. Results and Discussion
3.1. Electrochemical Studies
3.1.1. Potentiodynamic Polarization Procedures
3.1.2. Influence of Immersion Time
3.1.3. Electrochemical Impedance Spectroscopy (EIS)
3.2. The Influence of Temperature
3.3. Adsorption Isotherm
3.3.1. Mechanism of Inhibition
3.3.2. Comparison of Inhibition Efficiency of Some Nonionic Surfactants with Other Previously Published Corrosion Surfactants
3.4. Examination of the Surface using FT-IR Spectroscopy
3.5. Surface Investigation using SEM (Scanning Electron Microscopy)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasanov, R.; Bilge, S.; Bilgic, S.; Gece, G.; Kılıc, Z. Experimental and theoretical calculations on corrosion inhibition of steel in 1M H2SO4 by crown type polyethers. Corros. Sci. 2010, 52, 984–990. [Google Scholar] [CrossRef]
- Singh, A.; Ansari, K.R.; Quraishi, M.A.; Lgaz, H. Effect of Electron Donating Functional Groups on Corrosion Inhibition of J55 Steel in a Sweet Corrosive Environment: Experimental, Density Functional Theory, and Molecular Dynamic Simulation. Materials 2019, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Shalabi, K.; Abd El-Lateef, H.M.; Hammouda, M.M.; Osman, A.M.A.; Tantawy, A.H.; Abo-Riya, M.A. Perspectives on Corrosion Inhibition Features of Novel Synthesized Gemini-Fluorinated Cationic Surfactants Bearing Varied Spacers for Acid Pickling of X60-Steel: Practical, and In Silico Calculations. Materials 2023, 16, 5192. [Google Scholar] [CrossRef]
- Hegazy, M.A. Novel cationic surfactant based on triazole as a corrosion inhibitor for carbon steel in phosphoric acid produced by dihydrate wet process. J. Mol. Liq. 2015, 208, 227–236. [Google Scholar] [CrossRef]
- Bahrami, M.J.; Hosseini, S.M.A.; Pilvar, P. Experimental and theoretical investigation of organic compounds as inhibitors for mild steel corrosion in sulfuric acid medium. Corros. Sci. 2010, 52, 2793–2803. [Google Scholar] [CrossRef]
- Sastri, V.S. Green Corrosion Inhibitors. In Theory and Practice; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Abd-El-Naby, B.A.; Abdullatef, O.A.; Khamis, E.; El-Mahmody, W.A. Effect of Cetyltrimethylammonium bromide Surfactant as Novel Inhibitor for the Corrosion of Steel in 0.5 M H2SO4. Int. J. Electrochem. Sci. 2016, 11, 1271. [Google Scholar] [CrossRef]
- Abd El-Lateef, H.M.; Soliman, K.A.; Tantawy, A.H. Novel synthesized Schiff base-based cationic gemini surfactants: Electrochemical investigation, theoretical modeling and applicability as biodegradable inhibitors for mild steel against acidic corrosion. J. Mol. Liq. 2017, 232, 478–498. [Google Scholar] [CrossRef]
- Migahed, M.A.; EL-Rabiei, M.M.; Nady, H.; Zaki, E.G. Novel Gemini cationic surfactants as anti-corrosion for X-65 steel dissolution in oilfield produced water under sweet conditions: Combined experimental and computational investigations. J. Mol. Struct. 2018, 1159, 10–22. [Google Scholar] [CrossRef]
- Al-Senani, G.M.; Al-Saeedi, S.I. The Use of Synthesized CoO/Co3O4 Nanoparticles as A Corrosion Inhibitor of Low-Carbon Steel in 1 M HCl. Materials 2022, 15, 3129. [Google Scholar] [CrossRef]
- Qin, J.; Shi, X.; Li, H.; Zhao, R.; Li, G.; Zhang, S.; Ding, L.; Cui, X.; Zhao, Y.; Zhang, R. Performance and failure process of green recycling solutions for preparing high degradation resistance coating on biomedical magnesium alloys. Green Chem. 2022, 24, 8113–8130. [Google Scholar] [CrossRef]
- Li, J.; Shi, H.; Liu, F.; Han, E.-H. Self-healing epoxy coating based on tung oil-containing microcapsules for corrosion protection. Prog. Org. Coat. 2021, 156, 106236. [Google Scholar] [CrossRef]
- Ansari, K.R.; Quraishi, M.A.; Singh, A. Isatin derivatives as a non-toxic corrosion inhibitor for mild steel in 20% H2SO4. Corros. Sci. 2015, 95, 62–70. [Google Scholar] [CrossRef]
- Bouklah, M.; Hammouti, B.; Lagrenée, M.; Bentiss, F. Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium. Corros. Sci. 2006, 48, 2831–2842. [Google Scholar] [CrossRef]
- Branzoi, F.; Branzoi, V. Investigation of Some Nonionic Surfactants as Corrosion Inhibitors for Carbon Steel in Sulfuric Acid Medium. Int. J. Electrochem. Sci. 2017, 12, 7638–7658. [Google Scholar] [CrossRef]
- Sanchez-Salazar, E.; Vazquez-Velez, E.; Uruchurtu, J.; Porcayo-Calderon, J.; Casales, M.; Rosales-Cadena, I.; Lopes-Cecenes, R.; Gonzalez-Rodriguez, J.G. Use of a Gemini-Surfactant Synthesized from the Mango Seed Oil as a CO2-Corrosion Inhibitor for X-120 Steel. Materials 2021, 14, 4206. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.A.; Abd EI-Rehim, S.S.; El-Sherbini, E.E.; Hazzazi, O.A.; Abbas, M.N. Polyacrylic acid as a corrosion inhibitor for aluminium in weakly alkaline solutions. Part I: Weight loss, polarization, impedance EFM and EDX studies. Corros. Sci. 2009, 51, 658–667. [Google Scholar] [CrossRef]
- Chikh, Z.A.; Chebabe, D.; Dermaj, A.; Hajjaji, N.; Srhiri, A.; Montemor, M.F.; Ferreira, M.G.S.; Bastos, A.C. Electrochemical and Analytical Study of Corrosion Inhibition on Carbon Steel in HCl Medium by 1,12-bis(1,2,4-triazolyl)dodecane. Corros. Sci. 2005, 47, 447–459. [Google Scholar] [CrossRef]
- Fouda, A.S.; Ellithy, A.S. Inhibition effect of 4-phenylthiazole derivatives on corrosion of 304L stainless steel in HCl solution. Corros. Sci. 2009, 51, 868–875. [Google Scholar] [CrossRef]
- Gong, W.; Yin, X.; Liu, Y.; Chen, Y.; Yang, W. 2-Amino-4-(4-methoxyphenyl)-thiazole as a novel corrosion inhibitor for mild steel in acidic medium. Prog. Org. Coat. 2019, 126, 150–161. [Google Scholar] [CrossRef]
- Gopi, D.; Govindaraju, K.M.; Kavitha, L. Investigation of triazole derived Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid medium. J. Appl. Electrochem. 2010, 401, 349–1356. [Google Scholar] [CrossRef]
- Hegazy, M.A.; El-Tabei, A.S.; Bedair, A.H.; Sadeq, M.A. An investigation of three novel nonionic surfactants as corrosion inhibitor for carbon steel in 0.5 M H2SO4. Corros. Sci. 2012, 54, 219–230. [Google Scholar] [CrossRef]
- Branzoi, F.; Băran, A. The Inhibition Effect of Some Organic Compounds on Corrosion of Brass and Carbon Steel in Aggressive Medium. Int. J. Electrochem. Sci. 2019, 14, 2780–2803. [Google Scholar] [CrossRef]
- Hejazi, S.; Mohajernia, S.H.; Moayed, M.H.; Davoodi, A.; Rahimizadeh, M.; Momeni, M.; Eslami, A.; Shiri, A.; Kosari, A. Electrochemical and quantum chemical study of Thiazolo-pyrimidine derivatives as corrosion inhibitors on mild steel in 1M H2SO4. J. Ind. Eng. Chem. 2015, 25, 112–121. [Google Scholar] [CrossRef]
- Jyothi, S.; Ravichandran, J. Corrosion Inhibition of Mild Steel in Sulphuric Acid Using Luffa Aegyptiaca Leaves Extract. Acta Metall. Sin. 2014, 27, 969–980. [Google Scholar] [CrossRef]
- Khaled, K.F.; Amin Mohammed, A. Corrosion monitoring of mild steel in sulphuric acid solutions in presence of some thiazole derivatives–molecular dynamics, chemical and electrochemical studies. Corros. Sci. 2009, 51, 1964–1975. [Google Scholar] [CrossRef]
- Labjar, N.; Lebrini, M.; Bentiss, F.; Chihib, N.E.; Hajjaji, S.; El Jama, C. Corrosion inhibition of carbon steel and antibacterial properties of aminotris-(methylenephosphonic) acid. Mater. Chem. Phys. 2010, 119, 330–336. [Google Scholar] [CrossRef]
- Li, X.; Deng, S.; Fu, H.; Mu, G. Inhibition effect of 6-benzylaminopurine on the corrosion of cold rolled steel in H2SO4 solution. Corros. Sci. 2009, 51, 620–634. [Google Scholar] [CrossRef]
- Mobin, M.; Rizvi, M. Inhibitory effect of xanthan gum and synergistic surfactant additives for mild steel corrosion in 1M HCl. Carbohydr. Polym. 2016, 136, 384–393. [Google Scholar] [CrossRef]
- Yilmaz, N.; Fitoz, A.; Ergun, Ü.; Emregül, K. A combined electrochemical and theoretical study into the effect of 2-((thiazole-2-ylimino)methyl)phenol as a corrosion inhibitor for mild steel in a highly acidic environment. Corros. Sci. 2016, 111, 110–120. [Google Scholar] [CrossRef]
- Zhang, J.; Song, W.W.; Shi, D.L. A dissymmetric bis-quaternary ammonium salt gemini surfactant as effective inhibitor for Q235 steel in hydrochloric acid. Prog. Org. Coat. 2012, 75, 284–291. [Google Scholar] [CrossRef]
- Negm, N.A.; Migahed, M.A.; Farag, R.K.; Fadda, A.A.; Awad, M.K.; Shaban, M.M. High performance corrosion inhibition of novel tricationic surfactants on carbon steel in formation water: Electrochemical and computational evaluations. J. Mol. Liq. 2018, 262, 363–375. [Google Scholar] [CrossRef]
- Noor, E.A.; Al-Moubaraki, A.H. Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4[4′(-X)-styryl pyridinium iodides/hydrochloric acid systems. Mater. Chem. Phys. 2008, 110, 145–154. [Google Scholar] [CrossRef]
- Obot, I.B.; Obi-Egbedi, N.O. Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: Experimental and theoretical investigation. Corros. Sci. 2010, 52, 198–204. [Google Scholar] [CrossRef]
- Yadav, D.K.; Quraishi, M.A.; Maiti, B. Inhibition effect of some benzylidenes on mild steel in 1M HCl: An experimental and theoretical correlation. Corros. Sci. 2012, 50, 254–266. [Google Scholar] [CrossRef]
- He, X.; Jiang, Y.; Li, C.; Wang, W.; Hou, B.; Wu, L. Inhibition properties and adsorption behavior of imidazole and 2-phenyl-2-imidazoline on AA5052 in 1.0 M HCl solution. Corros. Sci. 2014, 83, 124–136. [Google Scholar] [CrossRef]
- El Basiony, N.; Badr, E.E.; Baker, S.A.; El-Tabei, A. Experimental and theoretical (DFT&MC) studies for the adsorption of the synthesized Gemini cationic surfactant based on hydrazide moiety as X65 steel acid corrosion inhibitor. Appl. Surf. Sci. 2021, 539, 148246. [Google Scholar]
- Abdulridha, A.A.; Albo Hay Allah, M.A.; Makki, S.Q.; Sert, Y.; Salman, H.E.; Balakit, A.A. Corrosion inhibition of carbon steel in 1 M H2SO4 using new Azo Schiff compound: Electrochemical, gravimetric, adsorption, surface and DFT studies. J. Mol. Liq. 2020, 315, 113690. [Google Scholar] [CrossRef]
- Singh, A.K.; Chugh, B.; Singh, M.; Thakur, S.; Pani, B.; Guo, L.; Kaya, S.; Serdaroglu, G. Hydroxy phenyl hydrazides and their role as corrosion impeding agent: A detail experimental and theoretical study. J. Mol. Liq. 2021, 330, 115605. [Google Scholar] [CrossRef]
- Branzoi, F.; Petrescu, S. The Electrodeposition of Derivatives of Pyrrole and Thiophene on Brass Alloy in the Presence of Dodecane-1-Sulfonic Acid Sodium Salt in Acidic Medium and Its Anti-Corrosive Properties. Coatings 2023, 13, 953. [Google Scholar] [CrossRef]
- Hegazy, M.A.; Rashwan, S.M.; Kamel, M.M.; El Kotb, M.S. Synthesis, surface properties and inhibition behavior of novel cationic gemini surfactant for corrosion of carbon steel tubes in acidic solution. J. Mol. Liq. 2015, 211, 126–134. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Chen, B.; Zhang, L. Novel surfactants as green corrosion inhibitors for mild steel in 15% HCl: Experimental and theoretical studies. Chem. Eng. J. 2020, 402, 126219. [Google Scholar] [CrossRef]
- Al-Masoud, M.A.; Khalaf, M.M.; Gouda, M.; Dao, V.-D.; Mohamed, I.M.A.; Shalabi, K.; Abd El-Lateef, H.M. Synthesis and Characterization of the Mixed Metal Oxide of ZnO-TiO2 Decorated by Polyaniline as a Protective Film for Acidic Steel Corrosion: Experimental, and Computational Inspections. Materials 2022, 15, 7589. [Google Scholar] [CrossRef]
- Habibullah, M.I.; Veawab, A. Cysteine as an Alternative Eco-Friendly Corrosion Inhibitor for Absorption-Based Carbon Capture Plants. Materials 2023, 16, 3496. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Wang, L.; Yang, T.; Qiu, J. Preparation of Bis-Thiophene Schiff Alkali–Copper Metal Complex for Metal Corrosion Inhibition. Materials 2023, 16, 3214. [Google Scholar] [CrossRef]
- Asegbeloyin, J.N.; Ejikeme, P.M.; Olasunkanmi, L.O.; Adekunle, A.S.; Ebenso, E.E. A Novel Schiff Base of 3-acetyl-4-hydroxy-6-methyl-(2H)pyran-2-one and 2,2′-(ethylenedioxy) diethylamine as Potential Corrosion Inhibitor for Mild Steel in Acidic Medium. Materials 2015, 8, 2918–2934. [Google Scholar] [CrossRef]
- Branzoi, F.; Băran, A.; Ludmila, A.; Alexandrescu, E. The inhibition action of some organic polymers on the corrosion carbon steel in acidic media. Chem. Pap. 2020, 74, 4315–4335. [Google Scholar] [CrossRef]
- Boudalia, M.; Fernández-Domene, R.M.; Guo, L.; Echihi, S.; Belghiti, M.E.; Zarrouk, A.; Bellaouchou, A.; Guenbour, A.; García-Antón, J. Experimental and Theoretical Tests on the Corrosion Protection of Mild Steel in Hydrochloric Acid Environment by the Use of Pyrazole Derivative. Materials 2023, 16, 678. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-H.; Deng, S.-D.; Fu, H.; Mu, G.-N. Inhibition by tween-85 of the corrosion of rolled steel in 1.0 M hydrochloric acid solution. J. Appl. Electrochem. 2009, 39, 1125–1135. [Google Scholar] [CrossRef]
- Li, X.; Huang, J.; Yu, G.; Deng, S. Photodestruction of BDE-99 in micellar solutions of nonionic surfactants of Brij 35 and Brij 58. Chemosphere 2010, 78, 752–759. [Google Scholar] [CrossRef]
- Wolf, D.C.; Gan, J. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on 14C-Pyrene mineralization in soil. Environ. Pollut. 2018, 243, 1846–4853. [Google Scholar] [CrossRef]
- Saljoughi, E.; Mousavi, S.M.; Hosseini, S.A. Polysulfone/Brij-58 blend nanofiltration membranes: Preparation, morphology and performance. Polym. Adv. Technol. 2013, 24, 383–390. [Google Scholar] [CrossRef]
- Zhao, B.; Ran, J.; Zhong, J. Simultaneous Cadmium(II)/Phenol Removal from Water by Mixed Micellar-Enhanced Ultrafiltration Using Brij 35/SDS. Asian J. Chem. 2013, 25, 10217–10220. [Google Scholar] [CrossRef]
- Yue, L.; Yan, Z.; Li, H.; Liu, X.; Sun, P. Brij-58, a potential injectable protein-stabilizer used in therapeutic protein formulation. Eur. J. Pharm. Biopharm. 2020, 146, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Zürcher, D.; Caduff, S.; Aurand, L.; Capasso Palmiero, U.; Wuchner, K.; Arosio, P. Comparison of the Protective Effect of Polysorbates, Poloxamer and Brij on Antibody Stability Against Different Interfaces. J. Pharm. Sci. 2023, 112, 2853–2862. [Google Scholar] [CrossRef]
- Çakır, O.; Toksöz, Y.; Güleli, M.; Çalışkan, C. In-vitro release study of Racecadotril from granule sachets: Influence of Brij-35. J. Chem. Metrol. 2023, 17, 1307–6183. [Google Scholar]
- Azum, N.; Rub, M.A.; Asiri, A.M. Micellization and Interfacial Behavior of the Sodium Salt of Ibuprofen–BRIJ-58 in Aqueous/Brine Solutions. J. Solut. Chem. 2016, 45, 791–803. [Google Scholar] [CrossRef]
- Ribeiro, M.E.; de Moura, C.L.; Vieira, M.G.; Gramosa, N.V.; Chaibundit, C.; de Mattos, M.C.; Attwood, D.; Yeates, S.G.; Nixon, S.K.; Ricardo, N.M. Solubilisation capacity of Brij surfactants. Int J Pharm. 2012, 436, 631–635. [Google Scholar] [CrossRef]
- Kapoor, Y.; Thomas, J.C.; Tan, G.; John, V.T.; Chauhan, A. Surfactant-laden soft contact lenses for extended delivery of ophthalmic drugs. Biomaterials 2009, 30, 867–878. [Google Scholar] [CrossRef]
- Dubey, A.K.; Singh, G. Corrosion Inhibition of Mild Steel Using Brij30. Port. Electrochim. Acta 2007, 25, 205–219. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, G. Effect of Brij35 on mild steel corrosion in acidic medium. Indian J. Chem. Technol. 2011, 18, 351–356. [Google Scholar]
- Nallakukkala, S.; Sivabalan, V.; Lal, B.; Ismail, C.; Dang, N. Nonionic Surfactants as Corrosion Inhibitors for Carbon Steel in Hydrochloric acid Medium. Test Eng. Manag. 2019, 81, 5830–5835. [Google Scholar]
Concentration (ppm) | icorr (mAcm−2) | Rp Ωcm−2 | Rmpy | Pmm/year | Kg g/m2h | E (%) | −Ecorr (mV) | ba (mVdec−1) | −bc (mVdec−1) | θ |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.721 | 21 | 337 | 8.54 | 7.66 | - | 482 | 82 | 84 | - |
20 | 0.057 | 105 | 27.55 | 0.69 | 0.49 | 92 | 400 | 40 | 63 | 0.92 |
50 | 0.056 | 106 | 26.13 | 0.66 | 0.59 | 92 | 402 | 39 | 67 | 0.92 |
100 | 0.049 | 125 | 22.86 | 0.58 | 0.52 | 93 | 435 | 40 | 71 | 0.93 |
300 | 0.042 | 130 | 19.6 | 0.49 | 0.44 | 94 | 400 | 41 | 60 | 0.94 |
500 | 0.041 | 110 | 19.13 | 0.48 | 0.43 | 94 | 403 | 43 | 53 | 0.94 |
800 | 0.032 | 196 | 14.93 | 0.38 | 0.34 | 95 | 417 | 47 | 72 | 0.96 |
1000 | 0.027 | 220 | 12.6 | 0.32 | 0.28 | 97 | 414 | 44 | 55 | 0.97 |
Concentration (ppm) | icorr (mAcm−2) | Rp Ωcm−2 | Rmpy | Pmm/year | Kg g/m2h | E (%) | −Ecorr (mV) | ba (mVdec−1) | −bc (mVdec−1) | θ |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.721 | 21 | 337 | 8.54 | 7.66 | - | 482 | 82 | 84 | - |
20 | 0.096 | 164 | 44.8 | 1.14 | 1.01 | 86 | 406 | 51 | 89 | 0.86 |
50 | 0.0955 | 156 | 44.56 | 1.13 | 1.01 | 86 | 402 | 65 | 86 | 0.86 |
100 | 0.047 | 140 | 21.93 | 0.55 | 0.49 | 93 | 405 | 40 | 51 | 0.93 |
300 | 0.037 | 188 | 17.26 | 0.43 | 0.39 | 94 | 422 | 60 | 68 | 0.94 |
500 | 0.031 | 160 | 14.46 | 0.37 | 0.33 | 96 | 403 | 43 | 50 | 0.96 |
800 | 0.023 | 208 | 10.73 | 0.27 | 0.24 | 97 | 402 | 43 | 50 | 0.97 |
1000 | 0.029 | 303 | 13.53 | 0.34 | 0.30 | 96 | 429 | 41 | 75 | 0.96 |
Concentration (ppm) | icorr (mAcm−2) | Rp Ωcm−2 | Rmpy | Pmm/year | Kg g/m2h | E (%) | −Ecorr (mV) | ba (mVdec−1) | −bc (mVdec−1) | θ |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.721 | 21 | 337 | 8.54 | 7.66 | - | 482 | 82 | 84 | - |
20 | 0.091 | 111 | 51.33 | 1.30 | 1.17 | 85 | 460 | 74 | 85 | 0.87 |
50 | 0.087 | 118 | 40.6 | 1.03 | 0.92 | 86 | 460 | 41 | 55 | 0.88 |
100 | 0.057 | 140 | 26.6 | 0.67 | 0.60 | 92 | 402 | 43 | 64 | 0.92 |
300 | 0.031 | 216 | 14.46 | 0.37 | 0.33 | 95 | 420 | 44 | 66 | 0.95 |
500 | 0.025 | 195 | 11.66 | 0.29 | 0.26 | 96 | 398 | 42 | 51 | 0.96 |
800 | 0.022 | 207 | 10.26 | 0.26 | 0.23 | 97 | 387 | 47 | 60 | 0.97 |
1000 | 0.028 | 352 | 13.06 | 0.33 | 0.29 | 97 | 460 | 65 | 64 | 0.97 |
Concentration (ppm) | RS (ohm.cm2) | Q − Yo S·s−n·cm−2 | Q − n | Rct (ohm × cm2) | χ2 | E% |
---|---|---|---|---|---|---|
0 | 0.78 | 0.0065 | 0.78 | 18 | 4.764 × 10−3 | - |
20 | 1.96 | 0.001495 | 0.85 | 137 | 2.347 × 10−3 | 87 |
50 | 2.41 | 0.001022 | 0.91 | 139 | 8.138 × 10−4 | 88 |
100 | 1.97 | 0.000181 | 0.91 | 178 | 2.456 × 10−3 | 90 |
300 | 2.52 | 0.0008204 | 0.92 | 179 | 1.154 × 10−3 | 90 |
500 | 2.2 | 0.0008469 | 0.92 | 187 | 1.649 × 10−3 | 91 |
800 | 2.04 | 0.000133 | 0.92 | 199 | 7.275 × 10−4 | 92 |
1000 | 1.18 | 0.0009295 | 0.93 | 251 | 2.897 × 10−3 | 93 |
Concentration (ppm) | RS (ohm.cm2) | Q − Yo S·s−n·cm−2 | Q − n | Rct (ohm × cm2) | χ2 | E% |
---|---|---|---|---|---|---|
0 | 0.78 | 0.0065 | 0.78 | 18 | 4.764 ×10−3 | - |
20 | 2.81 | 0.00537 | 0.89 | 138 | 2.274 × 10−3 | 87 |
50 | 2.34 | 0.00142 | 0.93 | 152 | 2.299 × 10−3 | 88 |
100 | 3.11 | 0.00167 | 0.89 | 163 | 1.890 × 10−3 | 89 |
300 | 2.12 | 0.001062 | 0.92 | 169 | 9.114 × 10−4 | 89 |
500 | 2.76 | 0.000661 | 0.90 | 231 | 8.436 × 10−4 | 92 |
800 | 3.98 | 0.000591 | 0.88 | 233 | 7.430 × 10−4 | 92 |
1000 | 1.68 | 0.000176 | 0.92 | 241 | 2.988 × 10−3 | 93 |
Concentration (ppm) | RS (ohm.cm2) | Q − Yo S·s−n·cm−2 | Q − n | Rct (ohm × cm2) | χ2 | E% |
---|---|---|---|---|---|---|
0 | 0.78 | 0.0065 | 0.78 | 18 | 4.764 × 10−3 | - |
20 | 2.15 | 0.0003376 | 0.83 | 117 | 8.791 × 10−4 | 85 |
50 | 1.93 | 0.0005022 | 0.88 | 121 | 5.879 × 10−4 | 86 |
100 | 2.37 | 0.0001274 | 0.85 | 125 | 9.0981 × 10−4 | 86 |
300 | 3.08 | 0.000625 | 0.91 | 139 | 7.788 × 10−4 | 87 |
500 | 2.11 | 0.000665 | 0.90 | 179 | 1.117 × 10−3 | 90 |
800 | 1.89 | 0.0002374 | 0.92 | 239 | 2.153 × 10−3 | 92 |
1000 | 2.19 | 0.0001626 | 0.89 | 243 | 5.802 × 10−4 | 93 |
Inhibitor | Ea (KJ/mol) | Δ | ΔS° (J/mol K) |
---|---|---|---|
Brij 35 | 69 | 67 | −48 |
Brij 56 | 52 | 48 | −95 |
Brij 58P | 73 | 76 | −41 |
H2SO4 | 42 | 39 | −113 |
The System | Kads, M−1 | KJmol−1 | The Adsorption |
---|---|---|---|
Brij 35/OLC 45/H2SO4 | 2.19 × 105 | −39.7 | Chemisorptions and physical adsorption |
Brij 56/OLC 45/H2SO4 | 6.3 × 104 | −36.7 | Chemisorptions and physical adsorption |
Brij 58P/OLC 45/H2SO4 | 2.14 × 105 | −39.6 | Chemisorptions and physical adsorption |
Inhibitor | Substrate | Efficiency | References |
---|---|---|---|
2,2’-(1-aminoethane-1,2 diyl)bis(1-(2 aminoethyl)-1-dodecyl-4,5-dihydro-1H-imidazol-1ium)dichloride | X-65 steel | 88% | [9] |
Tween 60 | OL 37 | 96% | [15] |
Tween 80 | OL 37 | 95% | [15] |
Span 60 | OL 37 | 92% | [15] |
Span 80 | OL 37 | 96% | [15] |
Carbon steel | 94% | [22] | |
Triton X100 | Brass/OL 37 | 67%/95% | [23] |
Triton A 20 | Brass/OL 37 | 83%/94% | [23] |
DBBD | Mild steel | 98% | [42] |
QBBD | Mild steel | 98.5% | [42] |
NaPACD | OLC 45 | 97% | [47] |
NaPADH | OLC 45 | 95% | [47] |
NaPADD | OLC 45 | 96% | [47] |
Tween 85 | CRS | 92% | [49] |
Brij 30 | Mild steel | 88% | [59] |
Brij 35 | Mild steel | 89% | [60] |
Brij 35 | OLC 45 | 97% | present work |
Brij 56 | OLC 45 | 96% | present work |
Brij 58P | OLC 45 | 97% | present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branzoi, F.; Băran, A.; Mihai, M.A.; Zaki, M.Y. The Inhibition Action of Some Brij-Type Nonionic Surfactants on the Corrosion of OLC 45 in Various Aggressive Environments. Materials 2024, 17, 1378. https://doi.org/10.3390/ma17061378
Branzoi F, Băran A, Mihai MA, Zaki MY. The Inhibition Action of Some Brij-Type Nonionic Surfactants on the Corrosion of OLC 45 in Various Aggressive Environments. Materials. 2024; 17(6):1378. https://doi.org/10.3390/ma17061378
Chicago/Turabian StyleBranzoi, Florina, Adriana Băran, Marius Alexandru Mihai, and Mohamed Yassine Zaki. 2024. "The Inhibition Action of Some Brij-Type Nonionic Surfactants on the Corrosion of OLC 45 in Various Aggressive Environments" Materials 17, no. 6: 1378. https://doi.org/10.3390/ma17061378
APA StyleBranzoi, F., Băran, A., Mihai, M. A., & Zaki, M. Y. (2024). The Inhibition Action of Some Brij-Type Nonionic Surfactants on the Corrosion of OLC 45 in Various Aggressive Environments. Materials, 17(6), 1378. https://doi.org/10.3390/ma17061378