Waste Cooking Oil as Eco-Friendly Rejuvenator for Reclaimed Asphalt Pavement
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Remarks
2.2. Cooking Oil Purification and Chemical Modification
2.2.1. Transesterification of WCO
2.2.2. Purified WCO Hydrolysis
2.2.3. Amidation Reactions
2.2.4. Asphaltene Dispersant Test (ADT)
2.2.5. Heithaus Parameter Measurement
3. Results and Discussion
3.1. WCO Chemical Modification
3.2. Asphaltene Dispersant Test (ADT)
3.3. Calculation of the Heithaus Parameter
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iglesias, L.; Laca, A.; Herrero, M.; Díaz, M. A life cycle assessment comparison between centralized and decentralized biodiesel production from raw sunflower oil and waste cooking oils. J. Clean. Prod. 2012, 37, 162–171. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Q.; Mortimer, S.R. Waste cooking oil as an energy resource: Review of Chinese policies. Renew. Sustain. Energ. Rev. 2012, 16, 5225–5231. [Google Scholar] [CrossRef]
- Shahbandeh, M. Vegetable Oils and Fats—Statistics & Facts, Statista 2024. Available online: https://www.statista.com/topics/2025/us-vegetable-oils-and-fats/#editorsPicks (accessed on 14 March 2024).
- Frota De Albuquerque Landi, F.; Fabiani, C.; Castellani, B.; Cotana, F.; Pisello, A.L. Environmental assessment of four waste cooking oil valorisation pathways. Waste Manag. 2022, 138, 219–233. [Google Scholar] [CrossRef]
- Used Cooking Oil. Available online: https://www.eubia.org/cms/wiki-biomass/biomass-resources/challenges-related-to-biomass/used-cooking-oil-recycling/ (accessed on 14 March 2024).
- Awogbemi, O.; Idoko, E.O.; Inambao, F.L. Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. Int. J. Low-Carbon Technol. 2019, 14, 417–425. [Google Scholar] [CrossRef]
- Awogbemi, O.; Von Kallon, D.V.; Aigbodion, V.S. Advances in biotechnological applications of waste cooking oil. Case Stud. Chem. Environ. Eng. 2021, 4, 100158. [Google Scholar] [CrossRef]
- Foo, W.H.; Koay, S.S.N.; Chia, S.R.; Chia, W.Y.; Tang, D.Y.Y.; Nomanbhay, S.; Chew, K.W. Recent advances in the conversion of waste cooking oil into value added products: A review. Fuel 2022, 324, 124539. [Google Scholar] [CrossRef]
- Mannu, A.; Ferro, M.; Di Pietro, M.E.; Mele, A. Innovative applications of waste cooking oil as raw material. Sci. Prog. 2019, 102, 153–160. [Google Scholar] [CrossRef]
- Goh, B.H.H.; Chong, C.T.; Ge, Y.; Ong, H.C.; Ng, H.; Tian, B.; Ashokkumar, V.; Lim, S.; Seljak, T.; Józsa, V. Progress in utilization of waste cooking oil for sustainable biodiesel and biojet fuel production. Energy Convers. Manag. 2020, 223, 113296. [Google Scholar] [CrossRef]
- Special Report 29/2023: The EU’s Support for Sustainable Biofuels in Transport—An Unclear Route ahead. Available online: http://data.europa.eu/eli/C/2023/1598/oj (accessed on 12 February 2024).
- CONOE. Available online: https://www.conoe.it/chi-siamo-2/ (accessed on 12 February 2024).
- Ibrahim, S.M.A.; Abed, K.A.; Gad, M.S.; Abu Hashish, H.M. A semi-industrial reactor for producing biodiesel from waste cooking oil. Biofuels 2023, 14, 393–403. [Google Scholar] [CrossRef]
- Biundo, A.; Stamm, A.; Gorgoglione, R.; Syrén, P.O.; Curia, S.; Hauer, B.; Capriati, V.; Vitale, P.; Perna, F.; Agrimi, G. Regio- and stereoselective biocatalytic hydration of fatty acids from waste cooking oils en route to hydroxy fatty acids and bio-based polyesters. Enzyme Microb. Technol. 2023, 163, 110164. [Google Scholar] [CrossRef]
- Sole, R.; Buranello, C.; Di Michele, A.; Beghetto, V. Boosting physical-mechanical properties of adipic acid/chitosan films by DMTMM cross-linking. Int. J. Biol. Macromol. 2022, 209, 2009–2019. [Google Scholar] [CrossRef]
- Cayzer, S.; Griffiths, P.; Beghetto, V. Design of indicators for measuring product performance in the circular economy. Int. J. Sustain. Eng. 2017, 10, 289–298. [Google Scholar] [CrossRef]
- Beghetto, V.; Sole, R.; Buranello, C.; Al-Abkal, M.; Facchin, M. Recent advancements in plastic packaging recycling: A mini-review. Materials 2021, 14, 4782. [Google Scholar] [CrossRef]
- Kümmerer, K.; Clark, J.H.; Zuin, V.G. Rethinking chemistry for a circular economy. Science 2020, 367, 6476. [Google Scholar] [CrossRef]
- Beghetto, V.; Gatto, V.; Samiolo, R.; Scolaro, C.; Brahimi, S.; Facchin, M.; Visco, A. Plastics today: Key challenges and EU strategies towards carbon neutrality: A review. Environ. Pollut. 2023, 334, 122102. [Google Scholar] [CrossRef]
- Scrivanti, A.; Sole, R.; Bortoluzzi, R.; Beghetto, V.; Bardella, N.; Dolmella, A. Synthesis of new triazolyl-oxazoline chiral ligands and study of their coordination to Pd(II) metal centers. Inorg. Chim. Acta 2019, 498, 119129. [Google Scholar] [CrossRef]
- Uz, V.E.; Gökalp, I. Sustainable recovery of waste vegetable cooking oil and aged bitumen: Optimized modification for short and long term aging cases. Waste Manag. 2020, 110, 1–9. [Google Scholar] [CrossRef]
- Xu, N.; Wang, H.; Chen, Y.; Hossiney, N.; Ma, Z.; Wang, H. Insight into the effects of waste vegetable oil on self-healing behavior of bitumen binder. Constr. Build. Mater. 2023, 363, 129888. [Google Scholar] [CrossRef]
- Sun, Z.; Yi, J.; Huang, Y.; Feng, D.; Guo, C. Properties of asphalt binder modified by bio-oil derived from waste cooking oil. Constr. Build. Mater. 2016, 102, 496–504. [Google Scholar] [CrossRef]
- Asli, H.; Ahmadinia, E.; Zargar, M.; Karim, M.R. Investigation on physical properties of waste cooking oil—Rejuvenated bitumen binder. Constr. Build. Mater. 2012, 37, 398–405. [Google Scholar] [CrossRef]
- Wan Azahar, W.N.A.; Bujang, M.; Ramadhansyah, P.J.; Hainin, M.R.; Ngadi, N.; Al Bakri Abdullah, M.M. Performance of waste cooking oil in asphalt binder modification. Key Eng. Mater. 2016, 700, 216–226. [Google Scholar] [CrossRef]
- Oldham, D.; Rajib, A.; Dandamudi, K.P.R.; Liu, Y.; Deng, S.; Fini, E.H. Transesterification of waste cooking oil to produce a sustainable rejuvenator for aged asphalt. Resour. Conserv. Recycl. 2021, 168, 105297. [Google Scholar] [CrossRef]
- Wan Azahar, W.N.A.; Jaya, R.P.; Hainin, M.R.; Bujang, M.; Ngadi, N. Mechanical performance of asphaltic concrete incorporating untreated and treated waste cooking oil. Constr. Build. Mater. 2017, 150, 653–663. [Google Scholar] [CrossRef]
- Vyas, A.P.; Verma, J.L.; Subrahmanyam, N. A review on FAME production processes. Fuel 2010, 89, 1–9. [Google Scholar] [CrossRef]
- Boiling Point Determination. Available online: https://www.jove.com/it/science-education/11192/determination-of-boiling-points-by-capillary-method-concept (accessed on 12 February 2024).
- Miskah, S.; Aprianti, T.; Agustien, M.; Utama, Y.; Said, M. Purification of used cooking oil using activated carbon adsorbent from durian peel. IOP Conf. Ser. Earth Environ. Sci. 2019, 396, 012003. [Google Scholar] [CrossRef]
- Matteoli, U.; Beghetto, V.; Scrivanti, A.; Aversa, M.; Bertoldini, M.; Bovo, S. An alternative stereoselective synthesis of (R)- and (S)-Rosaphen® via Asymmetric Catalytic Hydrogenation. Chirality 2011, 23, 779–783. [Google Scholar] [CrossRef]
- Dean, E.W.; Stark, D.D. A convenient method for the determination of water in petroleum and other organic emulsions. J. Ind. Eng. Chem. 1920, 12, 486–490. [Google Scholar] [CrossRef]
- Yadykova, A.Y.; Strelets, L.A.; Ilyn, S.O. Infrared spectral classification of natural bitumens for their rheological and thermophysical characterization. Molecules 2023, 28, 2065. [Google Scholar] [CrossRef]
- Yang, F.; Duan, Z.; Liu, D.; Li, C.; Sun, G.; Zhang, H. Multi-alkylated aromatic amides amphiphiles effectively stabilize the associated asphaltene particles in crude oil. J. Pet. Sci. Eng. 2022, 212, 100204. [Google Scholar] [CrossRef]
- Mendelez-Alvarez, A.A.; Garcia-Bermudes, M.; Tavakkoli, M.; Doherty, R.H.; Meng, S.; Abdallah, D.S.; Vargas, F.M. On the evaluation of the performance of asphaltene dispersants. Fuel 2016, 179, 210–220. [Google Scholar] [CrossRef]
- Guzmán, R.; Ancheyta, J.; Trejo, F.; Rodríguez, S. Methods for determining asphaltene stability in crude oils. Fuel 2017, 188, 530–543. [Google Scholar] [CrossRef]
- Heithaus, J. Measurement and significance of asphaltene peptization. J. Inst. Petrol 1962, 48, 45–53. [Google Scholar]
- Schermer, W.E.M.; Melein, P.M.J.; Van den Berg, F.G.A. Simple techniques for evaluation of crude oil compatibility. Petrol Sci. Technol. 2004, 22, 1045–1054. [Google Scholar]
- Ujong, A.E.; Emelike, N.J.T.; Owuno, F.; Okiyi, P.N. Effect of frying cycles on the physical, chemical and antioxidant properties of selected plant oils during deep-fat frying of potato chips. Food Chem. Adv. 2023, 3, 100338. [Google Scholar] [CrossRef]
- Niyas, M.M.; Shaija, A. Effect of fatty acid profiles of waste cooking oil biodiesels on their thermal and physical properties. J. Therm. Anal. Calorim. 2023, 148, 9225–9235. [Google Scholar] [CrossRef]
- Chuah, L.F.; Klemeš, J.J.; Yusup, S.; Bokhari, A.; Akbar, M.M. Influence of fatty acids in waste cooking oil for cleaner biodiesel. Clean. Technol. Environ. Policy 2017, 19, 859–868. [Google Scholar] [CrossRef]
- Putraa, R.S.; Juliantoa, T.S.; Hartonoa, P.; Puspitasaria, R.D.; Kurniawan, A. Pre-treatment of Used-Cooking Oil as Feed Stocks of Biodiesel Production by Using Activated Carbon and Clay Minerals. Int. J. Renew. Energy Dev. 2014, 3, 33–35. [Google Scholar] [CrossRef]
- Rahayu, S.; Supriyatin, S.; Bintari, A. Activated carbon-based bio-adsorbent for reducing free fatty acid number of cooking oil. AIP Conf. Proc. 2018, 2019, 050004. [Google Scholar]
- Wan Azahar, W.N.A.; Ramadhansyah, P.J.; Hainin, M.R.; Bujang, M.; Ngadi, N. Chemical modification of waste cooking oil to improve the physical and rheological properties of asphalt binder. Constr. Build. Mater. 2016, 126, 218–226. [Google Scholar] [CrossRef]
- Rahayu, S.; Pambudi, K.A.; Afifah, A.; Fitriani, S.R.; Tasyari, S.; Zaki, M.; Djamahar, R. Environmentally safe technology with the conversion of used cooking oil into soap. J. Phys. Conf. Ser. 2021, 1869, 012044. [Google Scholar] [CrossRef]
- Allen, C.L.; Chhatwala, A.R.; Williams, J.M.J. Direct amide formation from unactivated carboxylic acids and amines. Chem. Commun. 2012, 48, 666–668. [Google Scholar] [CrossRef]
- Smith, M.E.; Adkins, H. The relative reactivity of amines in the aminolysis of amides. J. Am. Chem. Soc. 1938, 60, 657–663. [Google Scholar] [CrossRef]
- Sole, R.; Gatto, V.; Conca, S.; Bardella, N.; Morandini, A.; Beghetto, V. Sustainable triazine-based dehydro-condensation agents for amide synthesis. Molecules 2021, 26, 191. [Google Scholar] [CrossRef]
- Liu, Y.; Su, P.; Li, M.; You, Z.; Zhao, M. Review on evolution and evaluation of asphalt pavement structures and materials. J. Traffic Transp. Eng. 2020, 7, 573–599. [Google Scholar] [CrossRef]
- Beghetto, V.; Bardella, N.; Samiolo, R.; Gatto, V.; Conca, S.; Sole, R.; Molin, G.; Gattolin, A.; Ongaro, N. By-products from mechanical recycling of polyolefins improve hot mix asphalt performance. J. Clean. Prod. 2021, 318, 128627. [Google Scholar] [CrossRef]
- Jain, S.; Singh, B. Cold mix asphalt: An overview. J. Clean. Prod. 2021, 280, 124378. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 12 February 2024).
- Hidalgo, A.E.; Moreno-Navarro, F.; Tauste, R.; Rubio-Gámez, M.C. The Influence of Reclaimed Asphalt Pavement on the Mechanical Performance of Bituminous Mixtures. An Analysis at the Mortar Scale. Sustainability 2020, 12, 8343. [Google Scholar] [CrossRef]
- Milad, A.; Taib, A.M.; Ahmeda, A.G.F.; Solla, M.; Yusoff, N.I.M. A review of the use of reclaimed asphalt pavement for road paving applications. J. Teknol. 2020, 82, 35–44. [Google Scholar] [CrossRef]
- Babashamsi, P.; Yusoff, N.I.M.; Ceylan, H.; Ghani, N.; Nor, M. Recycling toward sustainable pavement development: End-of-life considerations in asphalt pavement. J. Teknol. 2016, 78, 25–32. [Google Scholar]
- Tarsi, G.; Tataranni, P.; Sangiorgi, C. The challenges of using reclaimed asphalt pavement for new asphalt mixtures: A review. Materials 2020, 13, 4052. [Google Scholar] [CrossRef]
- Sakthivel, S.N.; Kathuria, A.; Singh, B. Utilization of inferior quality aggregates in asphalt mixes: A systematic review. J. Traffic Transp. Eng. 2022, 9, 864–879. [Google Scholar] [CrossRef]
- Lesuer, D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 2009, 145, 42–82. [Google Scholar] [CrossRef]
- Holý, M.; Remišová, E. Analysis of influence of bitumen composition on the properties represented by empirical and viscosity test. Transp. Res. Procedia 2019, 40, 34–41. [Google Scholar] [CrossRef]
- Loise, V.; Caputo, P.; Porto, M.; Calandra, P.; Angelico, R.; Rossi, C.O. A review on bitumen rejuvenation: Mechanisms, materials, methods and perspectives. Appl. Sci. 2019, 9, 4316. [Google Scholar] [CrossRef]
- Fini, E.H.; Buabeng, F.S.; Abu-Lebdeh, T.; Awadallah, F. Effect of introduction of furfural on asphalt binder ageing characteristics. Road Mater. Pavement Des. 2016, 17, 638–657. [Google Scholar] [CrossRef]
- Pahlavan, F.; Rajib, A.; Deng, S.; Lammers, P.; Fini, E.H. Investigation of balanced feedstocks of lipids and proteins to synthesize highly effective rejuvenators for oxidized asphalt. ACS Sustain. Chem. Eng. 2020, 8, 7656–7667. [Google Scholar] [CrossRef]
- Loise, V.; Calandra, P.; Abe, A.A.; Porto, M.; Rossi, C.O.; Davoli, M.; Caputo, P. Additives on aged bitumen: What probe to distinguish between rejuvenating and fluxing effects? J. Mol. Liq. 2021, 339, 116742. [Google Scholar] [CrossRef]
- ASTM D4124-09; Standard Test Method for Separation of Asphalt into Four Fractions. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2018.
- Prosperi, E.; Bocci, E. A review on bitumen aging and rejuvenation chemistry: Processes, materials and analyses. Sustainability 2021, 13, 6523. [Google Scholar] [CrossRef]
- Remišová, E.; Holý, M. Changes of properties of bitumen binders by additives application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 032003. [Google Scholar] [CrossRef]
Product | Optimum Reaction Condition | Yield (%) | b.p. (°C) | m.p. (°C) | |
---|---|---|---|---|---|
Esters a | |||||
CH3OH | I | 65 °C, 2 h | 72 | >200 | 0.6 |
n-C4H5OH | II | 118 °C, 4 h | 50 | >200 | 0.6 |
C8H17OH | III | 188 °C, 48 h | 58 | >200 | 0.4 |
C10H21OH | IV | 235 °C, 24 h | 34 | >200 | 0.4 |
C12H25OH | V | 250 °C, 24 h | 34 | >200 | 0.3 |
PhCH2OH | VI | 205 °C, 24 h | 36 | >200 | 0.2 |
PhCH2CH2OH | VII | 225 °C, 24 h | 34 | >200 | 0.2 |
Amides b | |||||
n-C4H5NH2 | VIII | 110 °C, 48 h | 69 | >200 | 48 |
C12H25NH2 | IX | 44 | >200 | 73 | |
PhCH2NH2 | X | 92 | >200 | 90 | |
PhCH2CH2NH2 | XI | 54 | >200 | 92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bardella, N.; Facchin, M.; Fabris, E.; Baldan, M.; Beghetto, V. Waste Cooking Oil as Eco-Friendly Rejuvenator for Reclaimed Asphalt Pavement. Materials 2024, 17, 1477. https://doi.org/10.3390/ma17071477
Bardella N, Facchin M, Fabris E, Baldan M, Beghetto V. Waste Cooking Oil as Eco-Friendly Rejuvenator for Reclaimed Asphalt Pavement. Materials. 2024; 17(7):1477. https://doi.org/10.3390/ma17071477
Chicago/Turabian StyleBardella, Noemi, Manuela Facchin, Eleonora Fabris, Matteo Baldan, and Valentina Beghetto. 2024. "Waste Cooking Oil as Eco-Friendly Rejuvenator for Reclaimed Asphalt Pavement" Materials 17, no. 7: 1477. https://doi.org/10.3390/ma17071477
APA StyleBardella, N., Facchin, M., Fabris, E., Baldan, M., & Beghetto, V. (2024). Waste Cooking Oil as Eco-Friendly Rejuvenator for Reclaimed Asphalt Pavement. Materials, 17(7), 1477. https://doi.org/10.3390/ma17071477