Preparation and Performance Study of n-Undecane Phase Change Cold Storage Material
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of MEPCMs
2.3. Characterizations
2.3.1. Microscopic Surface Morphology
2.3.2. Differential Scanning Calorimetry (DSC)
2.3.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.4. Particle Size Distribution
2.3.5. Encapsulation Ratio
3. Results and Discussion
3.1. Effect of Emulsifiers on Phase Change Materials of n-Undecane Microcapsules
3.1.1. Effect of Different Emulsifiers on the Microscopic Morphology of n-Undecane Microencapsulated Phase Change Materials
3.1.2. Effect of the Dosage of Emulsifier on the Microscopic Morphology of n-Undecane Microencapsulated Phase Change Materials
3.1.3. Effect of Emulsifier Dosage on Thermal Properties of n-Undecane Microencapsulated Phase Change Materials
3.2. Effect of Core-to-Wall Ratio on Phase Change Materials of n-Undecane Microcapsules
3.2.1. Effect of Core-to-Wall Ratio on the Microscopic Morphology of n-Undecane Microencapsulated Phase Change Materials
3.2.2. Effect of Core-to-Wall Ratio on the Thermal Properties of n-Undecane Microencapsulated Phase Change Materials
3.3. Effect of Emulsification Speed on Phase Change Materials of n-Undecane Microcapsules
3.3.1. Effect of Emulsification Speed on the Microscopic Surface Morphology of n-Undecane Microencapsulated Phase Change Materials
3.3.2. Effect of Emulsification Speed on the Thermal Properties of n-Undecane Microencapsulated Phase Change Materials
3.3.3. Particle Size Analysis of n-Undecane Microencapsulated Phase Change Materials
3.4. FTIR Analysis of n-Undecane Microencapsulated Phase Change Materials
3.5. Recycle Stability Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Guo, H.; Zhao, Y.; Hu, B.; Shi, L.; Lang, L.; Huang, B. Research on the optimized route of cold chain logistics transportation of fresh products in context of energy-saving and emission reduction. Math. Biosci. Eng. 2021, 18, 1926–1940. [Google Scholar] [CrossRef] [PubMed]
- Qi, T.; Ji, J.; Zhang, X.; Liu, L.; Xu, X.; Ma, K.; Gao, Y. Research progress of cold chain transport technology for storage fruits and vegetables. J. Energy Storage 2022, 56, 105958. [Google Scholar] [CrossRef]
- Beyne, W.; Couvreur, K.; Lecompte, S.; De Paepe, M. A technical, financial and CO2 emission analysis of the implementation of metal foam in a thermal battery for cold chain transport. J. Energy Storage 2021, 35, 102324. [Google Scholar] [CrossRef]
- Ochoa, H.J.J.; Pena, R.; Mezquita, Y.L.; Gonzalez, E.; Camacho-Leon, S. Comparative Analysis of Power Consumption between MQTT and HTTP Protocols in an IoT Platform Designed and Implemented for Remote Real-Time Monitoring of Long-Term Cold Chain Transport Operations. Sensors 2023, 23, 4896. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, D.; Tezel, F.H. A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications. Renew. Sustain. Energy Rev. 2017, 67, 116–125. [Google Scholar] [CrossRef]
- Sari, A.; Karaipekli, A.; Eroglu, R.; Bicer, A. Erythritol Tetra Myristate and Erythritol Tetra Laurate as Novel Phase Change Materials for Low Temperature Thermal Energy Storage. Energy Sources Part A Recovery Util. Environ. Eff. 2013, 35, 1285–1295. [Google Scholar] [CrossRef]
- Zhao, L.; Yu, Q.; Li, M.; Zhang, Y.; Wang, Y.; Zhan, D.; Jin, S.; Huang, Y. Preparation and thermal properties of low-temperature composite phase-change materials based on a binary eutectic mixture with expanded graphite: Effect of particle size and mass fraction. J. Energy Storage 2021, 40, 102778. [Google Scholar] [CrossRef]
- Aziz, M.A.; Khan, M.I.H.; Afroz, H.M.M.; Hossain, M.M.; Talukdar, S.; Masud, M.A.A. The development and performance evaluation of an alternative energy-based hybrid cold storage system. J. Clean. Prod. 2024, 434, 140394. [Google Scholar] [CrossRef]
- Sha, Y.; Hua, W.; Cao, H.; Zhang, X. Properties and encapsulation forms of phase change material and various types of cold storage box for cold chain logistics: A review. J. Energy Storage 2022, 55, 105426. [Google Scholar] [CrossRef]
- Pielichowska, K.; Nowicka-Dunal, K.; Pielichowski, K. Bio-Based Polymers for Environmentally Friendly Phase Change Materials. Polymers 2024, 16, 328. [Google Scholar] [CrossRef]
- Karimi, Y.; Nazar, A.R.S.; Molla-Abbasi, P. Synthesis, characterization and application of a magnetic nanoencapsulated PCM in enhancing the natural convection in a cube cavity. Therm. Sci. Eng. Prog. 2024, 47, 102342. [Google Scholar] [CrossRef]
- Aiswarya, V.; Das, S.; Watmode, P.D.; Gajghate, S.S. Development of hybrid MgO/GO modified microencapsulated phase change material for thermal energy management: An experimental approach. J. Clean. Prod. 2024, 434, 140399. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Jeem, M.; Kurniawan, A.; Dong, K.; Kondo, M.; Sato, Y.; Nakamura, T.; Nomura, T. Composite phase change material based on Al alloy with durability of over 10,000 cycles for high-temperature heat utilization. J. Energy Storage 2024, 75, 109635. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Z.; Jiang, T.; Chen, Z. Impact Evaluation of Cold Heat Transfer Fluid Temperature on Heat Storage and Mechanical Behaviours of an Energy Storage System Using Phase-Change Material. Int. J. Thermophys. 2021, 42, 64. [Google Scholar] [CrossRef]
- Salunkhe, P.B.; Shembekar, P.S. A review on effect of phase change material encapsulation on the thermal performance of a system. Renew. Sustain. Energy Rev. 2012, 16, 5603–5616. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Xu, X.; Zhang, S. Development of composite phase change cold storage material and its application in vaccine cold storage equipment. J. Energy Storage 2020, 30, 101455. [Google Scholar] [CrossRef]
- Venkatakrishnan, P.; Palanisamy, P. A state-of-the-art review on advancements in phase change material encapsulation techniques for electronics cooling. Phys. Scr. 2023, 98, 112001. [Google Scholar] [CrossRef]
- Amberkar, T.; Mahanwar, P. Microencapsulation study of bioderived phase change material beeswax with ethyl cellulose shell for thermal energy storage applications. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 11803–11818. [Google Scholar] [CrossRef]
- Dey, A.; Mahakul, A.J.; Ganguly, S. Microencapsulation of a salt hydrate phase change material by resorcinol formaldehyde through electrohydrodynamic disintegration of coaxially layered filament. J. Energy Storage 2023, 73, 109298. [Google Scholar] [CrossRef]
- Alkan, C.; Alakara, E.H.; Aksoy, S.A.; Demir, I. Cement mortar composites including 1-tetradecanol@PMMA Pickering emulsion particles for thermal energy management of buildings. Chem. Eng. J. 2023, 476, 146843. [Google Scholar] [CrossRef]
- Rostamian, F.; Etesami, N.; Haghgoo, M. Management of electronic board temperature using heat sink containing pure and microencapsulated phase change materials. Int. Commun. Heat Mass Transf. 2021, 126, 105407. [Google Scholar] [CrossRef]
- Waghmare, B.V.; Mahanwar, P.A.A. Fabrication and characterization of microencapsulated dimethyl adipate phase change material with melamine-formaldehyde shell for cold thermal energy storage in coating. J. Polym. Eng. 2023, 43, 602–612. [Google Scholar] [CrossRef]
- Aiswarya, V.; Das, S. Magnetized graphene oxide-Modified microencapsulated phase change material for enhanced heat transfer performance with reduced leakage. Therm. Sci. Eng. Prog. 2023, 41, 101807. [Google Scholar] [CrossRef]
- Ozsevinc, A.; Alkan, C. Polyurethane shell medicinal lavender release microcapsules for textile materials: An environmentally friendly preparation. Ind. Crop. Prod. 2023, 192, 116131. [Google Scholar] [CrossRef]
- Phoungtawee, P.; Crespy, D. Shining a new light on the structure of polyurea/polyurethane materials. Polym. Chem. 2021, 12, 3893. [Google Scholar] [CrossRef]
- Ozkayalar, S.; Alay-Aksoy, S. Developing of thermoregulating cotton fabric by incorporating of the poly(methyl methacrylate-co-methacrylamide)/fatty alcohol latent heat storing nanocapsules. J. Text. Inst. 2022, 113, 2585–2601. [Google Scholar] [CrossRef]
- Uyar, M.N.; Sariisik, A.M.; Kartal, G.E. Examination of the Coating Method in Transferring Phase -Changing Materials Heat regulation in heat storage microencapsulated fabrics. Johns. Matthey Technol. Rev. 2022, 66, 177–185. [Google Scholar] [CrossRef]
- Tanwar, S.; Kaur, R. Development and investigation of microencapsulated caprylic acid-based phase change materials for thermal energy storage applications. Int. J. Energy Res. 2021, 45, 17302–17314. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, J. Phase change microcapsules with high encapsulation efficiency using Janus silica particles as stabilizers and their application in cement. Constr. Build. Mater. 2021, 307, 124971. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, G.; Cen, J.; Li, L. Preparation and performance of chlorfenapyr microcapsules with a degradable polylactide-based polyurethane wall material. RSC Adv. 2022, 12, 16918–16926. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, L.; Shi, X.; Guo, Z.; Cheng, J. Preparation and Performance of n -Dodecane Microencapsulated Phase Change Cold Storage Materials. J. Renew. Mater. 2023, 11, 689–705. [Google Scholar] [CrossRef]
- Ikutegbe, C.A.; Al-Shannaq, R.; Farid, M.M. Microencapsulation of low melting phase change materials for cold storage applications. Appl. Energy 2022, 321, 119347. [Google Scholar] [CrossRef]
- Wu, Z.; Zhai, X.; Rui, Z.; Xu, X.; Wang, C.; Peng, H. Thermochromic microencapsulated phase change materials for cold energy storage application in vaccine refrigerator. J. Energy Storage 2023, 73, 109027. [Google Scholar] [CrossRef]
- Hajba-Horvath, E.; Nemeth, B.; Trif, L.; May, Z.; Jakab, M.; Fodor-Kardos, A.; Feczko, T. Low temperature energy storage by bio-originated calcium alginate-octyl laurate microcapsules. J. Therm. Anal. Calorim. 2022, 147, 13151–13160. [Google Scholar] [CrossRef]
- Zhu, K.; Qi, H.; Wang, S.; Zhou, J.; Zhao, Y.; Su, J.; Yuan, X. Preparation and Characterization of Melamine-Formaldehyde Resin Micro- and Nanocapsules Filled with n-Dodecane. J. Macromol. Sci. Part B Phys. 2012, 51, 1976–1990. [Google Scholar] [CrossRef]
- Phan, T.M.; Park, D.; Le, T.H.M. Improvement on rheological property of asphalt binder using synthesized micro-encapsulation phase change material. Constr. Build. Mater. 2021, 287, 123021. [Google Scholar] [CrossRef]
- Chen, X.; Wang, R.; Li, T.T.; Wu, B.Y.; Liu, X. Synthesis of N-Alkane Mixture Microcapsule and Its Application in Low-Temperature Protective Fabric. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2017, 32, 525–531. [Google Scholar] [CrossRef]
- Ertugral, T.G.; Danisman, M.; Oral, A. Microencapsulation of n-tridecane/n-tetradecane eutectic mixture with poly (methyl methacrylate) shell for candidate for food packaging thermal energy storage material. Polym.-Plast. Technol. Mater. 2023, 62, 554–562. [Google Scholar]
- Li, F.; Zhou, S.; Chen, S.; Yang, J.; Zhu, X.; Du, Y.; Yang, Z. Low-temperature organic phase change material microcapsules for asphalt pavement: Preparation, characterisation and application. J. Microencapsul. 2018, 35, 635–642. [Google Scholar] [CrossRef]
Types of Emulsifiers | Emulsifier Dosage (%) | Core–Wall Ratio | Crosslinking Agent Dosage (%) | Elicitor Dosage (g) |
---|---|---|---|---|
SMA | 5 | 3:1 | 30 | 0.3 |
Tween-80 | 5 | 3:1 | 30 | 0.3 |
Tween-80/span-80(70/30) | 5 | 3:1 | 30 | 0.3 |
Emulsifier Type | Emulsifier Dosage (%) | Core–Wall Ratio | Crosslinking Agent Dosage (%) | Elicitor Dosage (g) |
---|---|---|---|---|
SMA | 1 | 3:1 | 30 | 0.3 |
SMA | 3 | 3:1 | 30 | 0.3 |
SMA | 5 | 3:1 | 30 | 0.3 |
SMA | 7 | 3:1 | 30 | 0.3 |
SMA | 9 | 3:1 | 30 | 0.3 |
SMA Dosage (%) | Onset (°C) | End (°C) | Peak (°C) | Latent Heat (kJ/kg) | Encapsulation Ratio (%) |
---|---|---|---|---|---|
1 | −22.5 | −17.3 | −22.0 | 43.65 | 30.3 |
3 | −25.4 | −16.6 | −21.7 | 63.92 | 44.4 |
5 | −25.4 | −17.4 | −22.3 | 86.03 | 59.7 |
7 | −25.5 | −16.7 | −21.8 | 90.73 | 63.0 |
9 | −25.4 | −16.9 | −22.4 | 82.07 | 56.9 |
Core-to-Wall Ratio | Emulsifier Dosage (%) | Crosslinking Agent Dosage (%) | Emulsification Speed (rpm) | Elicitor Dosage (g) |
---|---|---|---|---|
1:1 | 7 | 30 | 1500 | 0.3 |
1.5:1 | 7 | 30 | 1500 | 0.3 |
2:1 | 7 | 30 | 1500 | 0.3 |
2.5:1 | 7 | 30 | 1500 | 0.3 |
3:1 | 7 | 30 | 1500 | 0.3 |
Core-to-Wall Ratio | Onset (°C) | End (°C) | Peak (%) | Latent Heat (kJ/kg) | Encapsulation Ratio (%) |
---|---|---|---|---|---|
1:1 | −25.8 | −15.7 | −22.0 | 65.58 | 45.5 |
1.5:1 | −24.6 | −17.1 | −22.1 | 81.36 | 56.5 |
2:1 | −25.7 | −13.0 | −22.3 | 93.98 | 59.7 |
2.5:1 | −25.6 | −13.7 | −22.9 | 103.9 | 65.3 |
3:1 | −25.5 | −16.7 | −21.8 | 90.73 | 63.0 |
Core-to-Wall Ratio | Emulsifier Dosage (%) | Crosslinking Agent Dosage (%) | Emulsification Speed (rpm) | Elicitor Dosage (g) |
---|---|---|---|---|
2.5:1 | 7 | 30 | 1250 | 0.3 |
2.5:1 | 7 | 30 | 1500 | 0.3 |
2.5:1 | 7 | 30 | 1750 | 0.3 |
2.5:1 | 7 | 30 | 2000 | 0.3 |
Core | Wall Material | Hm (kJ/kg) | References |
---|---|---|---|
Tetradecane | Calcium carbonate (CaCO3) and silicate (SiO2) | 71.8/99.9 | Phan et al. [36] |
Normal alkane mixture | Melamine–urea–formaldehyde | 110.0 | Chen et al. [37] |
Mixture of n-tridecane/n-tetradecane | PMMA | 89.63 | Ertugral et al. [38] |
N-decanol–lauric acid | Polypropylene-reinforced MF | 15.4 | Li et al. [39] |
n-Undecane | PMMA | 120.3 | This work |
Emulsification Speed (rpm) | D (0.5) (μm) | Span | Uniformity |
---|---|---|---|
1250 | 28.64 | 4.36 | 1.38 |
1500 | 22.47 | 3.88 | 1.02 |
1750 | 12.68 | 2.26 | 0.76 |
2000 | 10.25 | 1.68 | 0.52 |
Cycle (Times) | Tm (°C) | ΔHm (kJ/kg) | Encapsulation Ratio (%) |
---|---|---|---|
0 | −25.6 | 120.3 | 83.5 |
50 | −25.4 | 118.5 | 82.3 |
100 | −25.2 | 109.4 | 75.9 |
200 | −25.2 | 101.7 | 70.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Wang, Y.; Lu, S.; Zhu, Z.; Xu, L. Preparation and Performance Study of n-Undecane Phase Change Cold Storage Material. Materials 2024, 17, 1570. https://doi.org/10.3390/ma17071570
Yan L, Wang Y, Lu S, Zhu Z, Xu L. Preparation and Performance Study of n-Undecane Phase Change Cold Storage Material. Materials. 2024; 17(7):1570. https://doi.org/10.3390/ma17071570
Chicago/Turabian StyleYan, Luchao, Yang Wang, Shijian Lu, Zhipeng Zhu, and Lingling Xu. 2024. "Preparation and Performance Study of n-Undecane Phase Change Cold Storage Material" Materials 17, no. 7: 1570. https://doi.org/10.3390/ma17071570
APA StyleYan, L., Wang, Y., Lu, S., Zhu, Z., & Xu, L. (2024). Preparation and Performance Study of n-Undecane Phase Change Cold Storage Material. Materials, 17(7), 1570. https://doi.org/10.3390/ma17071570