Synthesis, Characterization, and Properties of a Novel Hyperbranched Polymers with Polyacrylamide Side Chains
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis Processes
2.2.1. Synthesis of Modified-M2.0
2.2.2. Synthesis of HAPAM and PAM
2.3. Characterization
2.4. Performance-Evaluation
3. Results and Discussion
3.1. Infrared Spectrum of M0.5, M1.0, M1.5, M2.0, and HAPAM
3.2. H-NMR Spectrum of HAPAM
3.3. Determination of Intrinsic Viscosity and Molecular Weight
Mass Concentrations | 1st (s) | 2nd (s) | 3rd (s) | taverage (s) |
---|---|---|---|---|
1 mol/L of NaCl | 112.9 | 112.6 | 112.7 | 112.7 |
500 mg/L of PAM + 1 mol/L of NaCl | 167.2 | 167.3 | 167.5 | 167.3 |
500 mg/L of HAPAM + 1 mol/L of NaCl | 143.5 | 143.8 | 143.6 | 143.6 |
3.4. Thickening Capacity of HAPAM
3.5. Shear-Resistance of HAPAM
3.6. Temperature-Resistance of HAPAM
3.7. Salt-Resistance of HAPAM
3.8. Interfacial Tension of HAPAM
3.9. Resistance-Coefficient and Residual-Resistance-Coefficient of HAPAM
3.10. EOR of HAPAM Solutions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shuker, M.T.; Buriro, M.A.; Hamza, M.M. Enhanced oil recovery: A future for Pakistan. In Proceedings of the SPE/PAPG Annual Technical Conference, Islamabad, Pakistan, 3–5 December 2012; OnePetro: Richardson, TX, USA, 2012. [Google Scholar]
- Gbadamosi, A.O.; Kiwalabye, J.; Junin, R.; Augustine, A. A review of gas enhanced oil recovery schemes used in the North Sea. J. Pet. Explor. Prod. Technol. 2018, 8, 1373–1387. [Google Scholar] [CrossRef]
- Gbadamosi, A.; Patil, S.; Kamal, M.S.; Adewunmi, A.A.; Yusuff, A.S.; Agi, A.; Oseh, J. Application of polymers for chemical enhanced oil recovery: A review. Polymers 2022, 14, 1433. [Google Scholar] [CrossRef] [PubMed]
- Agi, A.; Junin, R.; Jaafar, M.Z.; Sidek, M.A.; Yakasai, F.; Gbadamosi, A.; Oseh, J. Laboratory evaluation to field application of ultrasound: A state-of-the-art review on the effect of ultrasonication on enhanced oil recovery mechanisms. J. Ind. Eng. Chem. 2022, 110, 100–119. [Google Scholar] [CrossRef]
- Malozyomov, B.V.; Martyushev, N.V.; Kukartsev, V.V.; Tynchenko, V.S.; Bukhtoyarov, V.V.; Wu, X.; Tyncheko, Y.A.; Kukartsev, V.A. Overview of methods for enhanced oil recovery from conventional and unconventional reservoirs. Energies 2023, 16, 4907. [Google Scholar] [CrossRef]
- Sikiru, S.; Soleimani, H.; Yusuf, J.Y.; Hassan, Y.M.; Hamza, M.F.; Singh, R. Recent advance and prospect of enhanced oil recovery mech-anisms in reservoir sandstone. Preprints 2023, 2023091654. [Google Scholar]
- Tahir, M.U.; Zhou, H.; Memon, B.S.; Liu, W.D.; Memon, A.; Khan, D.; Bakhsh, A. Comparative studies of enhancing oil recovery optimization for optimum oil field development. Model. Earth Syst. Environ. 2023, 9, 1477–1503. [Google Scholar] [CrossRef]
- Gbadamosi, A.; Patil, S.; Al Shehri, D.; Kamal, M.S.; Hussain, S.S.; Al-Shalabi, E.W.; Hassan, A.M. Recent advances on the application of low salinity waterflooding and chemical enhanced oil recovery. Energy Rep. 2022, 8, 9969–9996. [Google Scholar] [CrossRef]
- Jain, S.; Pachisia, H.; Sharma, A.; Patel, S.; Patel, S.; Ragunathan, B. A systematic review—Chemical EOR using surfactants and polymers. Mater. Today Proc. 2022, 62, 7220–7223. [Google Scholar] [CrossRef]
- Mokheimer, E.M.; Hamdy, M.; Abubakar, Z.; Shakeel, M.R.; Habib, M.A.; Mahmoud, M. A comprehensive review of thermal enhanced oil recovery: Techniques evaluation. J. Energy Resour. Technol. 2019, 141, 030801. [Google Scholar] [CrossRef]
- Hazarika, K. Chapter-8 classification of EOR technologies. In Oil Recovery Principles & Practices; CIIR Scientific Publications: Taipei, Taiwan, 2023; Volume 21. [Google Scholar]
- Gray, L.; Goodyear, S. Overcoming the CO2 supply challenge for CO2 EOR. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 10–13 November 2014; SPE: Kuala Lumpur, Malaysia, 2014; p. D021S032R005. [Google Scholar]
- Núñez-López, V.; Moskal, E. Potential of CO2-EOR for near-term decarbonization. Front. Clim. 2019, 1, 5. [Google Scholar] [CrossRef]
- Khan, A.; Saxena, S.; Baloni, S.; Sharma, M.; Kodavaty, J. Overview and methods in enhanced oil recovery. J. Phys. Conf. Ser. 2021, 2070, 012061. [Google Scholar]
- Abbas, A.H.; Sulaiman, W.R.W.; Jaafar, M.Z.; Gbadamosi, A.O.; Ebrahimi, S.S.; Elrufai, A. Numerical study for continuous surfactant flooding considering adsorption in heterogeneous reservoir. J. King Saud Univ. Eng. Sci. 2020, 32, 91–99. [Google Scholar] [CrossRef]
- Levitt, D.B.; Pope, G.A. Selection and screening of polymers for enhanced-oil recovery. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 20–23 April 2008; SPE: Kuala Lumpur, Malaysia, 2008; p. SPE–113845-MS. [Google Scholar]
- Pope, G.A. Recent developments and remaining challenges of enhanced oil recovery. J. Pet. Technol. 2011, 63, 65–68. [Google Scholar] [CrossRef]
- Ayirala, S.; Sofi, A.; Li, Z.; Xu, Z. Surfactant and surfactant-polymer effects on wettability and crude oil liberation in carbonates. J. Pet. Sci. Eng. 2021, 207, 109117. [Google Scholar] [CrossRef]
- Caili, D.; Qing, Y.; Fulin, Z.; Hanqiao, J. Residual polymer reutilization for IOR after polymer flooding: From laboratory to field application in daqing oilfield. Pet. Sci. Technol. 2011, 29, 2441–2449. [Google Scholar] [CrossRef]
- Viken, A.L.; Spildo, K.; Reichenbach-Klinke, R.; Djurhuus, K.; Skauge, T. Influence of weak hydrophobic interactions on in situ viscosity of a hydrophobically modified water-soluble polymer. Energy Fuels 2018, 32, 89–98. [Google Scholar] [CrossRef]
- Wang, S.; Shi, L.; Ye, Z.; Zhang, X.; Zhang, L.; Li, X. Experimental study on improving oil recovery in fluvial reservoir with polymer solutions. AIP Adv. 2021, 11, 055121. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Shi, L.; Liang, X.; Wang, X.; Zhang, Y.; Wu, X.; Gong, Y.; Shi, X.; Qin, G. Application of a novel amphiphilic polymer for enhanced offshore heavy oil recovery: Mechanistic study and core displacement test. J. Pet. Sci. Eng. 2022, 215, 110626. [Google Scholar] [CrossRef]
- Lei, T.; Wang, Y.; Zhang, H.; Cao, J.; Xiao, C.; Ding, M.; Chen, W.; Chen, M.; Zhang, Z. Preparation and performance evaluation of a branched functional polymer for heavy oil recovery. J. Mol. Liq. 2022, 363, 119808. [Google Scholar] [CrossRef]
- Yao, T.; Liu, Q.; Liu, W.; Liu, F. Structural images of partially hydrolyzed polyacrylamide. Acta Pet. Sin. 2005, 26, 81. [Google Scholar]
- Wenli, L.; Dong, H.; Li, W.; Qingxia, L.; Jian, F. Synthesis and property evaluation of a salt-and alkali-resistant star-polymer. Pet. Explor. Dev. 2010, 37, 477–482. [Google Scholar] [CrossRef]
- Pu, W.-F.; Liu, R.; Li, B.; Jin, F.-Y.; Peng, Q.; Sun, L.; Du, D.-J.; Yao, F.-S. Amphoteric hyperbranched polymers with multistimuli-responsive behavior in the application of polymer flooding. RSC Adv. 2015, 5, 88002–88013. [Google Scholar] [CrossRef]
- Lai, N.; Guo, X.; Zhou, N.; Xu, Q. Shear resistance properties of modified nano-SiO2/aa/am copolymer oil displacement agent. Energies 2016, 9, 1037. [Google Scholar] [CrossRef]
- Lai, N.; Zhang, Y.; Xu, Q.; Zhou, N.; Wang, H.; Ye, Z. A water-soluble hyperbranched copolymer based on a dendritic structure for low-to-moderate permeability reservoirs. RSC Adv. 2016, 6, 32586–32597. [Google Scholar] [CrossRef]
- Duan, M.; Fang, S.; Zhang, L.; Wang, F.; Zhang, P.; Zhang, J. Shear degradation resistance of star poly(ethyleneimine)-polyacrylamides during elongational flow. e-Polymers 2011, 11, 86–99. [Google Scholar] [CrossRef]
- Chen, Q.; Ye, Z.; Tang, L.; Wu, T.; Jiang, Q.; Lai, N. Synthesis and solution properties of a novel hyperbranched polymer based on chitosan for enhanced oil recovery. Polymers 2020, 12, 2130. [Google Scholar] [CrossRef]
- Dong, L.; Li, Y.; Wen, J.; Gao, W.; Tian, Y.; Deng, Q.; Liu, Z. Functional characteristics and dominant enhanced oil recovery mechanism of polymeric surfactant. J. Mol. Liq. 2022, 354, 118921. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, J.; Liao, Y.; Xu, T.; Zhang, H.; Du, A.; Yang, X.; Lin, C.; Mao, J. Evaluation of temperature resistance of non chemical crosslinked double-tailed hydrophobically associating polymer fracturing fluid. React. Funct. Polym. 2022, 175, 105268. [Google Scholar] [CrossRef]
- Zhi, J.; Liu, Y.; Chen, J.; Jiang, N.; Xu, D.; Bo, L.; Qu, G. Performance evaluation and oil displacement effect of amphiphilic polymer heavy oil activator. Molecules 2023, 28, 5257. [Google Scholar] [CrossRef]
- Zhu, Z.; Kang, W.; Sarsenbekuly, B.; Yang, H.; Dai, C.; Yang, R.; Fan, H. Preparation and solution performance for the amphiphilic polymers with different hydrophobic groups. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Zhao, Y.; Ke, Y.; Hu, X.; Peng, F. Synthesis, characterization and emulsification properties of an amphiphilic copolymer for enhanced oil recovery. IOP Conf. Ser. Mater. Sci. Eng. 2019, 493, 012121. [Google Scholar] [CrossRef]
- Sui, Y.; Cao, G.; Guo, T.; Zhang, Z.; Zhang, Z.; Xiao, Z. Synthesis and mechanism study of temperature- and salt-resistant amphoteric polyacrylamide with MAPTAC and DTAB as monomers. Processes 2022, 10, 1666. [Google Scholar] [CrossRef]
- Qin, X.; Zhu, S.; Shi, Q.; Li, C. Synthesis and properties of a dendrimer amphiphilic polymer as enhanced oil recovery chemical. J. Chem. 2023, 2023, 4271446. [Google Scholar] [CrossRef]
- Shi, L.; Zhu, S.; Ye, Z.; Zhang, J.; Xue, X.; Zhao, W. The seepage flow characteristics of hydrophobically associated polymers with different aggregation behaviours in porous media. R. Soc. Open Sci. 2020, 7, 191270. [Google Scholar] [CrossRef]
- Quan, H.; Li, Z.; Huang, Z. Self-assembly properties of a temperature- and salt-tolerant amphoteric hydrophobically associating polyacrylamide. RSC Adv. 2016, 6, 49281–49288. [Google Scholar] [CrossRef]
- Shi, J.; Wu, Z.; Deng, Q.; Liu, L.; Zhang, X.; Wu, X.; Wang, Y. Synthesis of hydrophobically associating polymer: Temperature resistance and salt tolerance properties. Polym. Bull. 2022, 79, 4581–4591. [Google Scholar] [CrossRef]
- Lai, N.; Qin, X.; Ye, Z.; Peng, Q.; Zhang, Y.; Ming, Z. Synthesis and evaluation of a water-soluble hyperbranched polymer as enhanced oil recovery chemical. J. Chem. 2013, 2013, 824785. [Google Scholar] [CrossRef]
- Peng, H. Development and Performance Evaluation of a New Type of Low-Damage Fracturing Fluid. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 2014. [Google Scholar]
- Izadi, M.; Mardani, H.; Roghani-Mamaqani, H.; Salami-Kalajahi, M.; Khezri, K. Hyperbranched poly (amidoamine)-grafted graphene oxide as a multifunctional curing agent for epoxy-terminated polyurethane composites. ChemistrySelect 2021, 6, 2692–2699. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Chu, H.-L. Fourier transform infrared spectroscopy used to evidence the prevention of β-sheet formation of amyloid β (1–40) peptide by a short amyloid fragment. Int. J. Biol. Macromol. 2003, 32, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Georges, R.; Freytes, M.; Hurtmans, D.; Kleiner, I.; Vander Auwera, J.; Herman, M. Jet-cooled and room temperature FTIR spectra of the dimer of formic acid in the gas phase. Chem. Phys. 2004, 305, 187–196. [Google Scholar] [CrossRef]
- Yamamoto, M.; Sakurai, Y.; Hosoi, Y.; Ishii, H.; Kajikawa, K.; Ouchi, Y.; Seki, K. Softened CH stretching vibration of a long-chain n-alkane, n-C44H90, physisorbed on a Ag (111) surface: An infrared reflection absorption spectroscopic study. J. Phys. Chem. B 2000, 104, 7370–7376. [Google Scholar] [CrossRef]
- Ahmad, H.; Hossain, M.E.; Rahman, M.A.; Rahman, M.M.; Miah, M.J.; Tauer, K. Carboxyl functionalized poly (methyl methacrylate-acrylic acid-ethylene glycol dimethacrylate) copolymer particles and their amination with amine-nucleophiles. e-Polymers 2008, 8, 96. [Google Scholar] [CrossRef]
- Yilmaz, M.K. Palladium (II) complexes with new bidentate phosphine-imine ligands for the Suzuki CC coupling reactions in supercritical carbon dioxide. J. Supercrit. Fluids 2018, 138, 221–227. [Google Scholar] [CrossRef]
- Lv, J.; Liu, S.; Feng, J.; Liu, Y.; Zhou, S.; Chen, R. Effective identification of paints pigments in hit-and-run cases with confocal Raman microscope. Pigment Resin Technol. 2016, 45, 294–300. [Google Scholar] [CrossRef]
- Shanmugasundaram, A.; Krishnamoorthy, S. A systematically evolved method for the effective use of essential oil blends for the structural maintenance of palm leaf manuscripts. J. Inst. Conserv. 2024, 47, 82–98. [Google Scholar] [CrossRef]
- Girma, W.; Diaz, I. Encapsulation of Co (II) complex with a schiff base ligands derived from 1, 10- phenantroline-5, 6-dione and o-phenylene diamine in zeolite y. Int. J. Basic Appl. Sci. 2015, 1, 35–41. [Google Scholar] [CrossRef]
- Podstawka, E.; Światłowska, M.; Borowiec, E.; Proniewicz, L.M. Food additives characterization by infrared, Raman, and surface-enhanced Raman spectroscopies. J. Raman Spectrosc. 2007, 38, 356–363. [Google Scholar] [CrossRef]
- Bahadur, A.; Shoaib, M.; Saeed, A.; Iqbal, S. FT-IR spectroscopic and thermal study of waterborne polyurethane-acrylate leather coatings using tartaric acid as an ionomer. e-Polymers 2016, 16, 463–474. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Chen, W.; Xu, W.W.; Han, Z.-k.; Waheed, A.; Ye, Z.; Li, G.; Baiker, A. Continuous dimethyl carbonate synthesis from CO2 and methanol over BixCe1−xOδ monoliths: Effect of bismuth do** on population of oxygen vacancies, activity, and reaction pathway. Nano Res. 2022, 15, 1366–1374. [Google Scholar] [CrossRef]
- Fourneta, I.; Gall, E.A.; Deslandes, E.; Huvenne, J.-P.; Sombret, B.; Floc’h, J. In situ measurements of cell wall components in the red alga Solieria chordalis (Solieriaceae, Rhodophyta) by FTIR microspectrometry. Bot. Mar. 1997, 40, 45–48. [Google Scholar] [CrossRef]
- Paradkar, M.; Irudayaraj, J. A rapid FTIR spectroscopic method for estimation of caffeine in soft drinks and total methylxanthines in tea and coffee. J. Food Sci. 2002, 67, 2507–2511. [Google Scholar] [CrossRef]
- Ramis, G.; Larrubia, M.; Busca, G. On the chemistry of ammonia over oxide catalysts: Fourier transform infrared study of ammonia, hydrazine and hydroxylamine adsorption over iron–titania catalyst. Top. Catal. 2000, 11, 161–166. [Google Scholar] [CrossRef]
- Yahaya, N.P.; Ali, I.; Modu, K.A.; Adamu, S. Adsorption study of methylene blue onto power activated carbon prepared from ananas comosus peels. Nanochemistry Res. 2023, 8, 231–242. [Google Scholar]
- Huang, X.; Huang, D.; Ou, X.; Ding, F.; Chen, Z. Synthesis and properties of side-chain-type ion exchange membrane PEEK-g-StSO3Na for bipolar membranes. Appl. Surf. Sci. 2012, 258, 2312–2318. [Google Scholar] [CrossRef]
- Zhuang, J.; Li, M.; Pu, Y.; Ragauskas, A.J.; Yoo, C.G. Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Appl. Sci. 2020, 10, 4345. [Google Scholar] [CrossRef]
- Bahraeian, S.; Abron, K.; Pourjafarian, F.; Majid, R.A. Study on synthesis of polypyrrole via chemical polymerization method. Adv. Mater. Res. 2013, 795, 707–710. [Google Scholar] [CrossRef]
- Quan, H.; Lu, Q.; Chen, Z.; Huang, Z.; Jiang, Q. Adsorption–desorption behavior of the hydrophobically associating copolymer AM/APEG/C-18/SSS. RSC Adv. 2019, 9, 12300–12309. [Google Scholar] [CrossRef] [PubMed]
- Salih, N.A. Synthesis of new heterocyclic compounds derived from anthrone and evaluation of their biological activity. Synthesis 2008, 12, 13. [Google Scholar] [CrossRef]
- Sun, J.; Du, W.; Pu, X.; Zou, Z.; Zhu, B. Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery. Chem. Pap. 2015, 69, 1598–1607. [Google Scholar] [CrossRef]
- Jadhawar, P.; Saeed, M. Low salinity water and polymer flooding in sandstone reservoirs: Upscaling from nano-to macro-scale using the maximum energy barrier. J. Pet. Sci. Eng. 2023, 220, 111247. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, D.; Cao, X.; Guo, L.; Zhu, Y. Both-branch amphiphilic polymer oil displacing system: Molecular weight, surfactant interactions and enhanced oil recovery performance. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 440–448. [Google Scholar] [CrossRef]
- González Coronel, V.J.; Jiménez-Regalado, E.J. Rheological properties of three different microstructures of water-soluble polymers prepared by solution polymerization. Polym. Bull. 2011, 67, 251–262. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, H.; Zheng, W.; Li, X.; Wang, F.; Li, X.; Zhang, D.; Turtabayev, S.; Kang, W. Research on synthesis and salt thickening behavior of a binary copolymer amphiphilic polymer. J. Pet. Sci. Eng. 2021, 204, 108713. [Google Scholar] [CrossRef]
- Jin, Z.; Shan, G.; Pan, P. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer. CIESC J. 2023, 74, 916–923. [Google Scholar] [CrossRef]
- Wang, D.; Tan, J.; Han, Y.; Guo, Y.; An, H. Synthesis and properties of temperature-resistant and salt-tolerant tetra-acrylamide copolymer. J. Macromol. Sci. Part A 2019, 56, 1148–1155. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, H.; Li, Y.; Li, Y.; Chen, X.; Zhuang, Y. Experimental investigation of synergy of components in surfactant/polymer flooding using three-dimensional core model. Transp. Porous Media 2019, 126, 317–335. [Google Scholar] [CrossRef]
- Liang, K.; Han, P.; Chen, Q.; Su, X.; Feng, Y. Comparative study on enhancing oil recovery under high temperature and high salinity: Polysaccharides versus synthetic polymer. ACS Omega 2019, 4, 10620–10628. [Google Scholar] [CrossRef]
- Bhatkar, S.; Kshirsagar, L.; Wadgaonkar, V.; Dulakhe, P.; Jhamtani, V. Application of chemical eor in viscous, heavy crude in thin stacked heterogeneous reservoirs using CMG simulator. Pet. Coal 2022, 64, 1000. [Google Scholar]
Ions | Na+ | K+ | Ca2+ | Mg2+ | HCO3− | SO42− | Cl− |
---|---|---|---|---|---|---|---|
Concentrations (mg/L) | 667 | 28 | 20 | 13 | 379 | 68 | 870 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Peaks (wavelength/cm−1) of M 0.5 | 3315 | 2951 | 2837 | 1734 | 1662 | 1442 | 1361 | 1199 | 1126 | 1043 | ||||
Peaks (wavelength/cm−1) of M 1.0 | 3290 | 3078 | 2943 | 2845 | 1727 | 1644 | 1561 | 1473 | 1321 | 1194 | 1120 | 1039 | ||
Peaks (wavelength/cm−1) of M 1.5 | 3295 | 3068 | 2946 | 2844 | 1731 | 1652 | 1549 | 1446 | 1360 | 1194 | 1127 | 1044 | ||
Peaks (wavelength/cm−1) of M 2.0 | 3288 | 3074 | 2943 | 2847 | 1729 | 1644 | 1556 | 1459 | 1359 | 1196 | 1123 | 1036 | ||
Peaks (wavelength/cm−1) of HAPAM | 3433 | 2928 | 2860 | 1635 | 1577 | 1416 | 1319 | 1175 | 1123 | 1042 |
Mass Concentrations | PAM | HAPAM |
---|---|---|
Interfacial Tension (mN/m) ± Standard Deviations | ||
500 mg/L | 22.94 ± 0.05 | 19.95 ± 0.02 |
750 mg/L | 21.45 ± 0.05 | 18.64 ± 0.03 |
1000 mg/L | 19.87 ± 0.03 | 15.84 ± 0.03 |
Pressure in Water-Driving-Stage (MPa) | Pressure in Polymer-Flooding-Stage (MPa) | Pressure in Subsequent-Water-Driving-Stage (MPa) | RF | RFF | |
---|---|---|---|---|---|
2000 mg/L of PAM | 0.0094 | 0.1057 | 0.0137 | 11.22 | 1.45 |
2000 mg/L of HAPAM | 0.0122 | 0.2049 | 0.0342 | 16.77 | 2.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Wang, Q.; Tang, P.; Yang, H.; Li, C.; Yang, X.; Peng, T. Synthesis, Characterization, and Properties of a Novel Hyperbranched Polymers with Polyacrylamide Side Chains. Materials 2024, 17, 1619. https://doi.org/10.3390/ma17071619
Qin X, Wang Q, Tang P, Yang H, Li C, Yang X, Peng T. Synthesis, Characterization, and Properties of a Novel Hyperbranched Polymers with Polyacrylamide Side Chains. Materials. 2024; 17(7):1619. https://doi.org/10.3390/ma17071619
Chicago/Turabian StyleQin, Xiaoping, Qianwen Wang, Peng Tang, Hui Yang, Cuixia Li, Xiaoliang Yang, and Tong Peng. 2024. "Synthesis, Characterization, and Properties of a Novel Hyperbranched Polymers with Polyacrylamide Side Chains" Materials 17, no. 7: 1619. https://doi.org/10.3390/ma17071619
APA StyleQin, X., Wang, Q., Tang, P., Yang, H., Li, C., Yang, X., & Peng, T. (2024). Synthesis, Characterization, and Properties of a Novel Hyperbranched Polymers with Polyacrylamide Side Chains. Materials, 17(7), 1619. https://doi.org/10.3390/ma17071619