Synergistic Effects of Boron and Rare Earth Elements on the Microstructure and Stress Rupture Properties in a Ni-Based Superalloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effects of B and RE Elements on Microstructure
3.2. Effects of B and RE Elements on Stress Rupture Properties
4. Discussion
4.1. Effects of Microstructure on Stress Rupture Properties
4.2. Effects of B and RE Elements on Stress Rupture Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osada, T.; Nagashima, N.; Gu, Y.F.; Yuan, Y.; Yokokawa, T.; Harada, H. Factors contributing to the strength of a polycrystalline nickel-cobalt base superalloy. Scr. Mater. 2011, 64, 892–895. [Google Scholar] [CrossRef]
- Utada, S.; Sasaki, R.; Reed, R.C.; Tang, Y.T. Overheating of Waspaloy: Effect of cooling rate on flow stress behavior. J. Mater. Design 2022, 221, 110911. [Google Scholar] [CrossRef]
- Amiri, A.; Bruschi, S.; Sadeghi, M.H.; Bariani, P. Investigation on hot deformation behavior of Waspaloy. Mater. Sci. Eng. A 2013, 562, 77–82. [Google Scholar] [CrossRef]
- Devaux, A.; Georges, E.; Heritier, P. Development of New C&W Superalloys for High Temperature Disk Applications. Adv. Mater. Res. 2011, 278, 405–410. [Google Scholar]
- Kong, W.W.; Wang, Y.Q.; Chen, Y.P.; Liu, X.; Yuan, C. Investigation of uniaxial ratcheting fatigue behaviours and fracture mechanism of GH742 superalloy at 923K. Mater. Sci. Eng. A 2022, 831, 142173. [Google Scholar] [CrossRef]
- Zhang, F.Z.; Wang, C.S.; Wu, Y.S.; Zhou, L.Z.; Tian, Q. Microstructural stability and mechanical properties of GH742 Ni-based wrought superalloy for turbine disk applications. Mater. Sci. Eng. A 2022, 832, 142488. [Google Scholar] [CrossRef]
- Sharma, J.; Nicolaÿ, A.; Graef, M.D.; Bozzolo, B. Phase discrimination between δ and η phases in the new nickel-based superalloy VDM Alloy 780 using EBSD. Mater. Charact. 2021, 176, 111105. [Google Scholar] [CrossRef]
- Sharghi-Moshtaghin, R.; Asgari, S. The influence of thermal exposure on the γ’ precipitates characteristics and tensile behavior of superalloy IN-738LC. J. Mater. Process. Technol. 2004, 147, 343–350. [Google Scholar] [CrossRef]
- Theska, F.; Street, S.R.; Lison-Pick, M.; Primig, S. Grain boundary microstructure-property relationships in the cast & wrought Ni-based superalloy René 41 with boron and carbon additions. Acta Mater. 2023, 258, 119235. [Google Scholar]
- Zheng, L.; Xu, T.D.; Deng, Q.; Dong, J.X. Experimental study on the characteristic of grain-boundary segregation of phosphorus in Ni-base superalloy. Mater. Lett. 2008, 62, 54–56. [Google Scholar] [CrossRef]
- Wang, C.S.; Guo, Y.A.; Guo, J.T.; Zhou, L.Z. Investigation and improvement on structural stability and stress rupture properties of a Ni-Fe based alloy. Mater. Sci. Eng. A 2015, 88, 790–798. [Google Scholar] [CrossRef]
- Antonov, S.; Després, A.; Mayer, C.; Martin, G.; Kontis, P. Boron trapping at dislocations in an additively manufactured polycrystalline superalloy. J. Mater. Eng. Perform. 2023, 30, 101801. [Google Scholar] [CrossRef]
- Stinville, J.C.; Gallup, K.; Pollock, T.M. Transverse Creep of Nickel-Base Superalloy Bicrystals. Metall. Mater. Trans. A 2015, 46, 2516–2529. [Google Scholar] [CrossRef]
- Sanyal, S.; Waghmare, U.V.; Subramanian, P.R.; Gigliotti, M.F.X. Effect of dopants on grain boundary decohesion of Ni: A first-principles study. Appl. Phys. Lett. 2008, 93, 223113. [Google Scholar] [CrossRef]
- Zhou, P.J.; Yu, J.J.; Sun, X.F.; Guan, H.R.; Hu, Z.Q. The role of boron on a conventional nickel-based superalloy. Mater. Sci. Eng. A 2008, 491, 159–163. [Google Scholar] [CrossRef]
- Kontis, P.; Mohd Yusof, H.A.; Pedrazzini, S.; Danaie, M.; Moore, K.L.; Bagot, P.A.J.; Moody, M.P.; Grovenor, C.R.M.; Reed, R.C. On the effect of boron on grain boundary character in a new polycrystalline superalloy. Acta Mater. 2016, 103, 688–699. [Google Scholar] [CrossRef]
- Dhakar, B.M.; Dwivedi, D.K.; Sharma, S.P. Studies on remelting of tungsten carbide and rare earth modified nickel base alloy composite coating. Surf. Eng. 2012, 28, 73–80. [Google Scholar] [CrossRef]
- Palleda, T.N.; Chowdhury, H.T.; Banoth, S.; Murakami, H.; Kakehi, K. Effects of yttrium content on solidification, microstructure, and mechanical properties of laser powder bed fused IN718 superalloy. J. Alloys Compd. 2022, 918, 165763. [Google Scholar] [CrossRef]
- Park, C.W.; Byun, J.M.; Choi, W.J.; Lee, S.Y.; Kim, Y.D. Improvement of high temperature mechanical properties of Ni-based oxide dispersion strengthened alloys by preferential formation of Y-Ti-O complex oxide. Mater. Sci. Eng. A 2019, 740–741, 363–367. [Google Scholar] [CrossRef]
- Oh, Y.; Han, C.H.; Wang, M.; Chun, Y.B.; Han, H.N. Effect of rare earth oxide addition on microstructure and mechanical properties of Ni-based alloy. J. Alloys Compd. 2021, 853, 156980. [Google Scholar] [CrossRef]
- Ding, M.Q.; Hu, P.; Ru, Y.; Zhao, W.Y.; Pei, Y.L.; Li, S.S.; Gong, S.K. Effects of rare-earth elements on the oxidation behavior of γ-Ni in Ni-based single crystal superalloys: A first principles study from a perspective of surface adsorption. Appl. Surf. Sci. 2021, 547, 149173. [Google Scholar] [CrossRef]
- Guimarães, A.V.; Silveira, R.M.S.; Jaffrezou, N.; Mendes, M.C.; Santos, D.S.; Almeida, L.H.; Araujo, L.S. Influence of yttrium alloying on improving the resistance to hydrogen embrittlement of superalloy 718. Int. J. Hydrogen Energy 2024, 58, 479–484. [Google Scholar] [CrossRef]
- Rong, L.R.; Wang, M.; Xing, W.W.; Hao, X.C.; Ma, Y.C. Effects of cerium addition on the microstructure and stress rupture properties of a new nickel-based cast superalloy. J. Mater. Sci. Technol. 2023, 159, 112–124. [Google Scholar] [CrossRef]
- GB/T 2039-2012; Metallic Materials—Uniaxial Creep Testing Method in Tension. Standards Press of China: Beijing, China, 2012.
- Liu, Z.; Lian, X.T.; Liu, T.S.; Yang, Y.D.; Zhu, J.N.; Dong, H. Effects of rare earth elements on corrosion behaviors of low-carbon steels and weathering steels. Mater. Corros. 2020, 71, 258–266. [Google Scholar] [CrossRef]
- Lian, X.T.; Zhu, J.N.; Wang, R.Q.; Liu, T.S.; Xu, J.; Xu, D.X.; Dong, H. Effects of Rare Earth (Ce and La) on Steel Corrosion Behaviors under Wet-Dry Cycle lmmersion Conditions. Metals 2020, 71, 1174. [Google Scholar] [CrossRef]
- McGuire, G. Cesium. In Auger Electron Spectroscopy Reference Manual; Springer: Boston, MA, USA, 1979; pp. 114–116. [Google Scholar]
- Guo, Y.; Sun, S.F.; Song, S.H. Effect of minor rare earth cerium addition on the hot ductility of a reactor pressure vessel steel. Results Phys 2019, 15, 102746. [Google Scholar] [CrossRef]
- Barrett, G.E.; Imandoust, A.; Kadiri, H.E. The effect of rare earth element segregation on grain boundary energy and mobility in magnesium and ensuing texture weakening. Scr. Mater. 2018, 146, 46–50. [Google Scholar] [CrossRef]
- Deng, X.X.; Jiang, M.; Wang, X.H. Mechanisms of inclusion evolution and intra-granular acicular ferrite formation in steels containing rare earth elements. Acta Metall. Sin. (Engl. Lett.) 2012, 25, 241–248. [Google Scholar]
- Wu, Y.M.; Wang, L.M.; Du, T. Thermodynamics of rare earth elements in liquid iron. J. Less-Common Met. 1985, 110, 187–193. [Google Scholar] [CrossRef]
- Hou, D.W.; Fang, F.; Wang, Y.; Zhang, Y.X.; Zhang, X.M.; Misra, R.D.K.; Yuan, G. Nanoprecipitation behavior and resultant mechanical and magnetic properties in Fe-Si-Ni-Al-Mn high strength non-oriented silicon steel. Mater. Sci. Eng. A 2021, 819, 141529. [Google Scholar] [CrossRef]
- Hu, J.; Du, L.X.; Xu, W.; Zhai, J.H.; Dong, Y.; Liu, Y.J.; Misra, R.D.K. Ensuring combination of strength, ductility and toughness in medium manganese steel through optimization of nano-scale metastable austenite. Mater. Charact. 2018, 136, 20–28. [Google Scholar] [CrossRef]
- Lian, X.T.; Chen, L.; Fan, Z.W.; Liu, T.S.; Xu, D.X.; Dong, H. Effects of Modified Inclusions and Precipitates Alloyed by Rare Earth Element on Corrosion and lmpact Properties in Low Alloy Steel. Acta Metall. Sin. (Engl. Lett.) 2022, 35, 1719–1730. [Google Scholar] [CrossRef]
- Wang, L.M.; Lin, Q.; Yue, L.J.; Liu, L.; Guo, F.; Wang, F.M. Study of application of rare earth elements in advanced low alloy steels. J. Alloys Compd. 2008, 451, 534–537. [Google Scholar] [CrossRef]
- Gibson, M.A.; Schuh, C.A. Segregation-induced changes in grain boundary cohesion and embrittlement in binary alloys. Acta Mater. 2015, 95, 145–155. [Google Scholar] [CrossRef]
- Tervo, H.; Kaijalainen, A.; Pikkarainen, T.; Mehtonen, S.; Porter, D. Effect of impurity level and inclusions on the ductility and toughness of an ultra-high-strength steel. Mater. Sci. Eng. A 2017, 697, 184–193. [Google Scholar] [CrossRef]
- Song, X.; Wang, L.; Liu, Y.; Ma, H.P. Effects of temperature and rare earth content on oxidation resistance of Ni-based superalloy. Prog. Nat. Sci. 2011, 21, 227–235. [Google Scholar] [CrossRef]
- Garosshen, T.J.; Tillman, T.D.; McCarthy, G.P. Effects of B, C, and Zr on the structure and properties of a P/M nickel base superalloy. Metall. Trans. A 1987, 18, 69–77. [Google Scholar] [CrossRef]
Sample | Cr | Co | Mo | Al | Nb | Ti | Fe | C | B | La | Ce | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alloy 1 | 14.09 | 9.82 | 5.04 | 2.73 | 2.75 | 2.71 | 0.031 | 0.059 | 0.0005 | 0.009 | 0.001 | Bal. |
Alloy 2 | 14.04 | 9.78 | 5.00 | 2.71 | 2.72 | 2.72 | 0.065 | 0.048 | 0.004 | 0.009 | 0.001 | Bal. |
Alloy 3 | 13.99 | 9.90 | 5.02 | 2.72 | 2.66 | 2.68 | 0.064 | 0.048 | 0.007 | 0.007 | 0.001 | Bal. |
Alloy 4 | 14.05 | 9.84 | 5.06 | 2.72 | 2.73 | 2.68 | 0.069 | 0.052 | 0.007 | 0.016 | 0.002 | Bal. |
Alloy 5 | 14.03 | 9.84 | 5.07 | 2.76 | 2.73 | 2.69 | 0.078 | 0.055 | 0.008 | 0.034 | 0.005 | Bal. |
Sample | Stress Rupture Life (h) | Elongation (%) |
---|---|---|
Alloy 1 | 8 | 2.8 |
Alloy 2 | 123 | 2.9 |
Alloy 3 | 189 | 2.3 |
Alloy 4 | 237 | 2.7 |
Alloy 5 | 303 | 2.7 |
Element | C | B | Mo | Ti | Nb | Al | Cr | Co | Ni |
---|---|---|---|---|---|---|---|---|---|
Area 1 | 13.33 | 6.02 | 3.43 | 1.24 | 5.17 | 0.93 | 4.61 | 4.56 | Bal. |
Area 2 | 10.49 | 4.89 | 3.56 | 2.33 | 4.45 | 1.61 | 6.57 | 5.70 | Bal. |
Area 3 | 0.57 | 0.70 | 3.60 | 2.34 | 2.45 | 1.89 | 8.83 | 9.49 | Bal. |
Area 4 | 0.12 | 0.01 | 4.11 | 2.24 | 2.41 | 2.77 | 13.76 | 9.20 | Bal. |
Area 5 | 0.093 | 0.01 | 4.20 | 2.51 | 2.65 | 2.65 | 13.58 | 9.06 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Q.; Huang, S.; Qin, H.; Duan, R.; Wang, C.; Lian, X. Synergistic Effects of Boron and Rare Earth Elements on the Microstructure and Stress Rupture Properties in a Ni-Based Superalloy. Materials 2024, 17, 2007. https://doi.org/10.3390/ma17092007
Tian Q, Huang S, Qin H, Duan R, Wang C, Lian X. Synergistic Effects of Boron and Rare Earth Elements on the Microstructure and Stress Rupture Properties in a Ni-Based Superalloy. Materials. 2024; 17(9):2007. https://doi.org/10.3390/ma17092007
Chicago/Turabian StyleTian, Qiang, Shuo Huang, Heyong Qin, Ran Duan, Chong Wang, and Xintong Lian. 2024. "Synergistic Effects of Boron and Rare Earth Elements on the Microstructure and Stress Rupture Properties in a Ni-Based Superalloy" Materials 17, no. 9: 2007. https://doi.org/10.3390/ma17092007
APA StyleTian, Q., Huang, S., Qin, H., Duan, R., Wang, C., & Lian, X. (2024). Synergistic Effects of Boron and Rare Earth Elements on the Microstructure and Stress Rupture Properties in a Ni-Based Superalloy. Materials, 17(9), 2007. https://doi.org/10.3390/ma17092007