Hygrothermal Properties and Performance of Bio-Based Insulation Materials Locally Sourced in Sweden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insulation Materials
2.2. DVS—Dynamic Vapour Sorption
2.3. Sorption Calorimetry
2.4. MBV—Moisture Buffer Value
2.5. TPS—Transient Plane Source
2.6. Hot Box
3. Results and Discussion
3.1. DVS—Dynamic Vapour Sorption
3.2. Sorption Calorimetry
3.3. MBV—Moisture Buffer Value
3.4. TPS—Transient Plane Source
3.5. Hot Box
4. Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Environment Programme. 2022 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; United Nations Environment Programme: Nairobi, Kenya, 2022. [Google Scholar]
- Mouton, L.; Allacker, K.; Rock, M. Bio-Based Building Material Solutions for Environmental Benefits over Conventional Construction Products-Life Cycle Assessment of Regenerative Design Strategies (1/2). Energy Build. 2023, 282, 112767. [Google Scholar] [CrossRef]
- European Commission Directorate-General for Research and Innovation. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment: Updated Bioeconomy Strategy; Publications Office: Brussel, Belgium, 2018. [Google Scholar]
- NEPD-3414-2027-EN; Environmental Product Declaration. ROCKWOOL Nordics: Oslo, Norway, 2022. Available online: https://p-cdn.rockwool.com/syssiteassets/o2-rockwool/dokumentation-och-certifikat/dokumentation/epd-miljoedeklaration/epdnordicsgbi-se_v4_21_03_withfacings_annex.pdf?f=202304121001541 (accessed on 29 February 2024).
- NEPD-4340-3565-EN; Environmental Product Declaration. Paroc Group Oy: Oslo, Norway, 2024. Available online: https://www.epd-norge.no/getfile.php/1331837-1709551087/EPDer/Byggevarer/Isolasjon/NEPD-4340-3565_PAROC-SE-Produced-Stone-Wool-Thermal-Insulation.pdf1 (accessed on 29 February 2024).
- NEPD-2796-1492-EN; Environmental Product Declaration. BEWI ASA: Oslo, Norway, 2021. Available online: https://epd-global.com/getfile.php/1318376-1624610290/EPDer/Byggevarer/Isolasjon/NEPD-2796-1492_BEWi-EPS-80---EPS-Insulation-Boards.pdf (accessed on 29 February 2024).
- Boverket. Regulation on Climate Declarations for Buildings [Internet]; Boverket (Swedish National Board of Housing Building and Planning): Karlskrona, Sweden, 2020; Report No.: REPORT 2020:28; ISBN 978-91-7563-731-0. Available online: https://www.boverket.se/globalassets/publikationer/dokument/2020/regulation-on-climate-declarations-for-buildings.pdf (accessed on 29 February 2024).
- EN 15978; Sustainability of Construction Works-Assessment of Environmental Performance of Buildings-Calculation Method. European Union: Brussels, Belgium, 2011.
- The European Parliament and the Council of the European Union Regulation (EU). 2020/852 of the European Parliament and of the Council of 18 June 2020 on the Establishment of a Framework to Facilitate Sustainable Investment, and Amending Regulation (EU) 2019/2088; The European Parliament and the Council of the European Union Regulation (EU): Brussels, Belgium, 2020; p. 31. [Google Scholar]
- Boverket. Boverket’s Mandatory Provisions and General Recommendations, BBR BFS 2011:6 with Amendments Up to BFS 2018:4 [Internet]; Boverket (Swedish National Board of Housing Building and Planning): Karlskrona, Sweden, 2019; p. 154. Available online: https://www.boverket.se/globalassets/publikationer/dokument/2019/bbr-2011-6-tom-2018-4-english-2.pdf (accessed on 29 February 2024).
- Erlandsson, M. Minskad Klimatpåverkan Från Flerbostadshus; C-Rapport; IVL Svenska Miljöinstitutet: Stockholm, Sweden, 2018. [Google Scholar]
- Korjenic, A.; Petránek, V.; Zach, J.; Hroudová, J. Development and Performance Evaluation of Natural Thermal-Insulation Materials Composed of Renewable Resources. Energy Build. 2011, 43, 2518–2523. [Google Scholar] [CrossRef]
- Palumbo, M.; Lacasta, A.M.; Holcroft, N.; Shea, A.; Walker, P. Determination of Hygrothermal Parameters of Experimental and Commercial Bio-Based Insulation Materials. Constr. Build. Mater. 2016, 124, 269–275. [Google Scholar] [CrossRef]
- Volf, M.; Diviš, J.; Havlík, F. Thermal, Moisture and Biological Behaviour of Natural Insulating Materials. Energy Procedia 2015, 78, 1599–1604. [Google Scholar] [CrossRef]
- Collet, F.; Achchaq, F.; Djellab, K.; Marmoret, L.; Beji, H. Water Vapor Properties of Two Hemp Wools Manufactured with Different Treatments. Constr. Build. Mater. 2011, 25, 1079–1085. [Google Scholar] [CrossRef]
- Latif, E.; Tucker, S.; Ciupala, M.A.; Wijeyesekera, D.C.; Newport, D. Hygric Properties of Hemp Bio-Insulations with Differing Compositions. Constr. Build. Mater. 2014, 66, 702–711. [Google Scholar] [CrossRef]
- Ranefjärd, O.; Hansson, E.F.; Rosenkilde, A. Development of a Dynamic Hot Box Test Setup with Variable Outdoor Climate. In Thermal Performance of the Exterior Envelopes of Whole Buildings; ASHRAE: Atlanta, GA, USA, 2019. [Google Scholar]
- TMF, (data from SCB). Andel Lägenheter i Flerbostadshus med Stomme av trä [Internet]; Stockholm, Sweden. 2022. Available online: https://www.tmf.se/imagevault/publishedmedia/b0ppnr8w4gqsblywrs89/Andel_nybyggda_l-genheter_med_stomme_av_tr-_-_2010-2021.pdf?download=0 (accessed on 29 February 2024).
- Schulte, M.; Jonsson, R.; Eggers, J.; Hammar, T.; Stendahl, J.; Hansson, P.-A. Demand-Driven Climate Change Mitigation and Trade-Offs from Wood Product Substitution: The Case of Swedish Multi-Family Housing Construction. J. Clean. Prod. 2023, 421, 138487. [Google Scholar] [CrossRef]
- Søuld Søuld Acoustic Mats. Available online: https://www.sould.dk/acoustic-mats#Performance (accessed on 29 February 2024).
- Deutsche Institut für Bautechnik. GRAMITHERM: Insulation Material Made from Grass [Internet]; Berlin, Germany. May 2021; (EAD 040005-00-1201). Available online: https://www.dibt.de/pdf_storage/2021/ETA-21%210260%288.12.01-41%2120%29e.pdf (accessed on 29 February 2024).
- Sintef. SINTEF Teknisk Godkjenning—Hunton Nativo [Internet]; SINTEF Certification: Trondheim, Norway, 2021; Report No.: TG 20440; Available online: https://hunton.se/wp-content/uploads/sites/17/2021/02/SINTEF-20440g_NO.pdf (accessed on 29 February 2024).
- Rockwool Flexibatts Nr DOP-510956-02. Available online: https://www.rockwool.com/se/produkter-och-konstruktioner/produktoversikt/byggisolering/flexibatts-1/#Tekniskaegenskaper&sortiment (accessed on 29 February 2024).
- Moksnes, P.-O.; Röhr, M.E.; Holmer, M.; Eklöf, J.S.; Eriander, L.; Infantes, E.; Boström, C. Major Impacts and Societal Costs of Seagrass Loss on Sediment Carbon and Nitrogen Stocks. Ecosphere 2021, 12, e03658. [Google Scholar] [CrossRef]
- Staehr, P.A.; Göke, C.; Holbach, A.M.; Krause-Jensen, D.; Timmermann, K.; Upadhyay, S.; Ørberg, S.B. Habitat Model of Eelgrass in Danish Coastal Waters: Development, Validation and Management Perspectives. Front. Mar. Sci. 2019, 6, 175. [Google Scholar] [CrossRef]
- Adell, A.; Almström, B.; Kroon, A.; Larson, M.; Uvo, C.B.; Hallin, C. Spatial and Temporal Wave Climate Variability along the South Coast of Sweden during 1959–2021. Reg. Stud. Mar. Sci. 2023, 63, 103011. [Google Scholar] [CrossRef]
- Federal Public Service (FPS) of Health, Food Chain Safety and Environment. Gramitherm® 100 [Internet]. Brussels, Belgium; 2023 Apr. Report No.: EPD 23.0183.001-01. 00.01. Available online: https://gramitherm.eu/wp-content/uploads/2023/05/BE-EPD-23.0183.001_00.01-EN-Gramitherm.pdf (accessed on 29 February 2024).
- Oreholm, F. Wood-Based Insulation—Inhibit Moisture and Store Energy; Wood Magazine; Swedish Wood: Stockholm, Sweden, 2016; Available online: https://www.swedishwood.com/siteassets/5.5-tidningen-tra/2016-nummer-2/tra-216-final.pdf (accessed on 29 February 2024).
- Cetiner, I.; Shea, A.D. Wood Waste as an Alternative Thermal Insulation for Buildings. Energy Build. 2018, 168, 374–384. [Google Scholar] [CrossRef]
- Kanters, J.; Kulsomboon, M.; Strandberg-de Bruijn, P. The Potential of Agricultural Residual Waste as Building Material in South Sweden. J. Phys. Conf. Ser. 2023, 2600, 162005. [Google Scholar] [CrossRef]
- Williams, D.R. The Characterisation of Powders by Gravimetric Water Vapour Sorption. Int. Labmate 1995, 20, 40–42. [Google Scholar]
- Fredriksson, M.; Thybring, E.E. Scanning or Desorption Isotherms? Characterising Sorption Hysteresis of Wood. Cellulose 2018, 25, 4477–4485. [Google Scholar] [CrossRef]
- Wadsö, L.; Anderberg, A.; Åslund, I.; Söderman, O. An Improved Method to Validate the Relative Humidity Generation in Sorption Balances. Eur. J. Pharm. Biopharm. 2009, 72, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Glass, S.V.; Boardman, C.R.; Thybring, E.E.; Zelinka, S.L. Quantifying and Reducing Errors in Equilibrium Moisture Content Measurements with Dynamic Vapor Sorption (DVS) Experiments. Wood Sci. Technol. 2018, 52, 909–927. [Google Scholar] [CrossRef]
- Sonderegger, W.; Niemz, P. Thermal and Moisture Flux in Soft Fibreboards. Eur. J. Wood Wood Prod. 2012, 70, 25–35. [Google Scholar] [CrossRef]
- Nopens, M.; Wadsö, L.; Ortmann, C.; Fröba, M.; Krause, A. Measuring the Heat of Interaction between Lignocellulosic Materials and Water. Forests 2019, 10, 674. [Google Scholar] [CrossRef]
- Wadsö, L.; Markova, N. A Method to Simultaneously Determine Sorption Isotherms and Sorption Enthalpies with a Double Twin Microcalorimeter. Rev. Sci. Instrum. 2002, 73, 2743–2754. [Google Scholar] [CrossRef]
- Wadsö, L.; Markova, N. A Double Twin Isothermal Microcalorimeter. Thermochim. Acta 2000, 360, 101–107. [Google Scholar] [CrossRef]
- Kocherbitov, V.; Wadsö, L. A Desorption Calorimetric Method for Use at High Water Activities. Thermochim. Acta 2004, 411, 31–36. [Google Scholar] [CrossRef]
- Markova, N.; Sparr, E.; Wadsö, L. On Application of an Isothermal Sorption Microcalorimeter. Thermochim. Acta 2001, 374, 93–104. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, M.; Rode, C.; Chen, Z. Moisture Buffering Phenomenon and Its Impact On Building Energy Consumption. Appl. Therm. Eng. 2017, 124, 337–345. [Google Scholar] [CrossRef]
- Rode, C.; Peuhkuri, R.H.; Mortensen, L.H.; Hansen, K.K.; Time, B.; Gustavsen, A.; Ojanen, T.; Ahonen, J.; Svennberg, K.; Arfvidsson, J.; et al. Moisture Buffering of Building Materials; Rode, C., Ed.; BYG Report; Technical University of Denmark, Department of Civil Engineering: Lyngby, Denmark, 2005; ISBN 87-7877-195-1. [Google Scholar]
- Rode, C.; Peuhkuri, R.; Hansen, K.K.; Time, B.; Svennberg, K.; Arfvidsson, J.; Ojanen, T. Nordtest Project on Moisture Buffer Value of Materials. In Proceedings of the AIVC Conference ‘Energy Performance Regulation’: Ventilation in Relation to the Energy Performance of Buildings, Brussels, Belgium, 21–23 September 2005; INIVE EEIG: Brussels, Belgium, 2005. [Google Scholar]
- Colinart, T.; Pajeot, M.; Vinceslas, T.; Menibus, A.H.D.; Lecompte, T. Thermal Conductivity of Biobased Insulation Building Materials Measured by Hot Disk: Possibilities and Recommendation. J. Build. Eng. 2021, 43, 102858. [Google Scholar] [CrossRef]
- Gustafsson, S.E. Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials. Rev. Sci. Instrum. 1991, 62, 797–804. [Google Scholar] [CrossRef]
- Bouguerra, A.; Laurent, J.P.; Goual, M.S.; Queneudec, M. The Measurement of the Thermal Conductivity of Solid Aggregates Using the Transient Plane Source Technique. J. Phys. Appl. Phys. 1997, 30, 2900–2904. [Google Scholar] [CrossRef]
- Gourlay, E.; Glé, P.; Marceau, S.; Foy, C.; Moscardelli, S. Effect of Water Content on the Acoustical and Thermal Properties of Hemp Concretes. Constr. Build. Mater. 2017, 139, 513–523. [Google Scholar] [CrossRef]
- de Bruijn, P.; Johansson, P. Moisture Fixation and Thermal Properties of Lime–Hemp Concrete. Constr. Build. Mater. 2013, 47, 1235–1242. [Google Scholar] [CrossRef]
- Hot Disk. Hot Disk Thermal Constants Analyser TPS 2500 S [Internet]. Hot Disk AB. Göteborg, Sweden; 290224. Available online: https://www.hotdiskinstruments.com/content/uploads/2022/01/TPS2500S.pdf (accessed on 29 February 2024).
- Pavlik, Z.; Pavlik, J.; Jirickova, M.; Cerny, R. System for Testing the Hygrothermal Performance of Multi-Layered Building Envelopes. J. Therm. Envel. Build. Sci. 2002, 25, 239–249. [Google Scholar] [CrossRef]
- Vereecken, E.; Roels, S. A Comparison of the Hygric Performance of Interior insulation Systems: A Hot Box–Cold Box Experiment. Energy Build. 2014, 80, 37–44. [Google Scholar] [CrossRef]
- Pavlík, Z.; Černý, R. Experimental Assessment of Hygrothermal Performance of an Interior Thermal Insulation System Using a Laboratory Technique Simulating On-Site Conditions. Energy Build. 2008, 40, 673–678. [Google Scholar] [CrossRef]
- ISO 8990:1994; Thermal Insulation—Determination of Steady-State Thermal Transmission Properties—Calibrated and Guarded Hot Box 1994. ISO: Geneve, Switzerland, 1994.
- Thybring, E.E.; Fredriksson, M. Wood and Moisture. In Springer Handbook of Wood Science and Technology; Niemz, P., Teischinger, A., Sandberg, D., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 355–397. ISBN 978-3-030-81315-4. [Google Scholar]
- Pidgeon, L.M.; Maass, O. The Adsorption of Water by Wood. J. Am. Chem. Soc. 1930, 52, 1053–1069. [Google Scholar] [CrossRef]
- Glass, S.; Zelinka, S. Moisture Relations and Physical Properties of Wood; Chapter 4 FPL-GTR-282; Forest Products Laboratory: Madison, WI, USA, 2021; pp. 4–22. [Google Scholar]
- Christensen, G.N.; Kelsey, K.E. Die Geschwindigkeit der Wasserdampfsorption Durch Holz. Holz Als Roh-Werkst. 1959, 17, 178–188. [Google Scholar] [CrossRef]
- Wadsö, L. Describing Non-Fickian Water-Vapour Sorption in Wood. J. Mater. Sci. 1994, 29, 2367–2372. [Google Scholar] [CrossRef]
- Rode, C.; Peuhkuri, R.; Time, B.; Svennberg, K.; Ojanen, T. Moisture Buffer Value of Building Materials. J. ASTM Int. 2007, 4, 5. [Google Scholar] [CrossRef]
- Strandberg-de Bruijn, P.; Balksten, K. Moisture Buffering of Hemp-Lime with Biochar and Rape Straw-Lime as Surface Materials for a Stable Indoor Climate. In Proceedings of the Bio-Based Building Materials; Amziane, S., Merta, I., Page, J., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 144–157. [Google Scholar]
- Hill, C.; Norton, A.; Dibdiakova, J. A Comparison of The Environmental Impacts of Different Categories of Insulation Materials. Energy Build. 2018, 162, 12–20. [Google Scholar] [CrossRef]
- Asdrubali, F.; Ferracuti, B.; Lombardi, L.; Guattari, C.; Evangelisti, L.; Grazieschi, G. A Review of Structural, Thermo-Physical, Acoustical, and Environmental Properties of Wooden Materials for Building Applications. Build. Environ. 2017, 114, 307–332. [Google Scholar] [CrossRef]
- ISO 6946:2017; ISO Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Methods. ISO: Geneve, Switzerland, 2017.
- Ranefjärd, O.; Hansson, E.F.; Rosenkilde, A.; Niklewski, J.; Strandberg-de Bruijn, P. Investigating the Potential of Latent Heat in Hygroscopic Insulating Materials. In Proceedings of the 15th International Conference on Thermal Performance of the Exterior Envelopes of Whole Buildings 2022, Clearwater Beach, FL, USA, 5–8 December 2022; ASHRAE: Atlanta, GA, USA, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranefjärd, O.; Strandberg-de Bruijn, P.B.; Wadsö, L. Hygrothermal Properties and Performance of Bio-Based Insulation Materials Locally Sourced in Sweden. Materials 2024, 17, 2021. https://doi.org/10.3390/ma17092021
Ranefjärd O, Strandberg-de Bruijn PB, Wadsö L. Hygrothermal Properties and Performance of Bio-Based Insulation Materials Locally Sourced in Sweden. Materials. 2024; 17(9):2021. https://doi.org/10.3390/ma17092021
Chicago/Turabian StyleRanefjärd, Oskar, Paulien B. Strandberg-de Bruijn, and Lars Wadsö. 2024. "Hygrothermal Properties and Performance of Bio-Based Insulation Materials Locally Sourced in Sweden" Materials 17, no. 9: 2021. https://doi.org/10.3390/ma17092021
APA StyleRanefjärd, O., Strandberg-de Bruijn, P. B., & Wadsö, L. (2024). Hygrothermal Properties and Performance of Bio-Based Insulation Materials Locally Sourced in Sweden. Materials, 17(9), 2021. https://doi.org/10.3390/ma17092021