Failure Mechanism and Thermal Runaway in Batteries during Micro-Overcharge Aging at Different Temperatures
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Micro-Overcharging Failure Behavior of the Battery
3.2. Micro-Overcharging Failure Mechanisms of Battery
3.3. Thermal Runaway after Micro-Overcharging of Battery
4. Conclusions
- (1)
- Failure can occur at any stage of the charging and discharging process, including constant current charging, resting after charging, and constant current discharging, covering the entire cycle.
- (2)
- After battery failure, the anode’s electrode material experiences fracturing and pulverization, with the formation of sludgy substances, dendritic lithium, and mossy lithium on the anode material. Additionally, the structure of the cathode material becomes increasingly damaged with ongoing micro-overcharge, resulting in an increasing number of cracks.
- (3)
- In extreme temperature conditions, both at −20 °C and 55 °C, the temperatures at which thermal runaway begins and is triggered are reduced, while the rate of mass loss increases.
- (4)
- With a decreasing SOH, the temperatures that trigger thermal runaway and initiate it also tend to decrease, while the mass loss rate escalates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanfélix, J.; Messagie, M.; Omar, N.; Van Mierlo, J.; Hennige, V. Environmental performance of advanced hybrid energy storage systems for electric vehicle applications. Appl. Energy 2015, 137, 925–930. [Google Scholar] [CrossRef]
- Said, A.O.; Lee, C.; Stoliarov, S.I.; Marshall, A.W. Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays. Appl. Energy 2019, 248, 415–428. [Google Scholar] [CrossRef]
- Said, A.O.; Lee, C.; Liu, X.; Wu, Z.; Stoliarov, S.I. Simultaneous measurement of multiple thermal hazards associated with a failure of prismatic lithium ion battery. Proc. Combust. Inst. 2019, 37, 4173–4180. [Google Scholar] [CrossRef]
- Sasaki, T.; Ukyo, Y.; Novák, P. Memory effect in a lithium-ion battery. Nat. Mater. 2013, 12, 569–575. [Google Scholar] [CrossRef]
- Dubarry, M.; Truchot, C.; Liaw, B.Y. Synthesize battery degradation modes via a diagnostic and prognostic model. J. Power Source 2012, 219, 204–216. [Google Scholar] [CrossRef]
- Mei, W.; Zhang, L.; Sun, J.; Wang, Q. Experimental and numerical methods to investigate the overcharge caused lithium plating for lithium ion battery. Energy Storage Mater. 2020, 32, 91–104. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Z.; Wang, Y.; Wang, H.; Wang, C.; Tong, L.; Yi, M. Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method. Energy 2019, 169, 868–880. [Google Scholar] [CrossRef]
- Liu, J.; Peng, W.; Yang, M.; Jin, K.; Liu, P.; Sun, J.; Wang, Q. Quantitative analysis of aging and detection of commercial 18650 lithium-ion battery under slight overcharging cycling. J. Clean. Prod. 2022, 340, 130756. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Bai, J.; Gao, T.; Mao, N. Heat generation and thermal runaway mechanisms induced by overcharging of aged lithium-ion battery. Appl. Therm. Eng. 2022, 212, 118565. [Google Scholar] [CrossRef]
- Juarez-Robles, D.; Vyas, A.A.; Fear, C.; Jeevarajan, J.A.; Mukherjee, P.P. Overcharge and Aging Analytics of Li-Ion Cells. J. Electrochem. Soc. 2020, 167, 090547. [Google Scholar] [CrossRef]
- Shahid, S.; Agelin-Chaab, M. A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries. Energy Convers. Manag. X 2022, 16, 100310. [Google Scholar] [CrossRef]
- Fernandes, Y.; Bry, A.; de Persis, S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery. J. Power Sources 2018, 389, 106–119. [Google Scholar] [CrossRef]
- Wang, G.; Gao, Q.; Yan, Y.; Zhang, Y. Transient process optimization of battery cooling on heat transfer enhancement structure. Appl. Therm. Eng. 2021, 182, 115897. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Q.; Peng, W.; Feng, L.; Ma, M.; Hu, S.; Sun, J.; Wang, Q. Slight overcharging cycling failure of commercial lithium-ion battery induced by the jelly roll destruction. Process Saf. Environ. Prot. 2022, 160, 695–703. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, X.; Meng, N.; Yu, Z.; Yang, H. Study of thermal runaway and the combustion behavior of lithium-ion batteries overcharged with high current rates. Thermochim. Acta 2022, 715, 179276. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, S.; Qin, P.; Li, C.; Song, L.; Cheng, Z.; Jin, K.; Sun, J.; Wang, Q. Comparative investigation of the thermal runaway and gas venting behaviors of large-format LiFePO4 batteries caused by overcharging and overheating. J. Energy Storage 2023, 61, 106791. [Google Scholar] [CrossRef]
- Li, K.; Li, Y.; Shen, W.; Zhang, Y.; Qu, X.; Huang, J.; Yang, G.; Lin, Y. Mitigation strategy for Li-ion battery module thermal runaway propagation triggered by overcharging. Int. J. Therm. Sci. 2024, 198, 108880. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Z.; Sun, J.; Wang, Q. Heat generation and thermal runaway of lithium-ion battery induced by slight overcharging cycling. J. Power Sources 2022, 526, 231136. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Scheikl, S.; Planteu, R.; Voitic, G.; Wiltsche, H.; Stangl, C.; Fauler, G.; Thaler, A.; Hacker, V. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes—Impact of state of charge and overcharge. RSC Adv. 2015, 5, 57171–57186. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Bai, J.; Zhou, L.; Wang, Z. Influence of lithium plating on lithium-ion battery aging at high temperature. Electrochim. Acta 2023, 454, 142362. [Google Scholar] [CrossRef]
- Gao, T.; Bai, J.; Ouyang, D.; Wang, Z.; Bai, W.; Mao, N.; Zhu, Y. Effect of aging temperature on thermal stability of lithium-ion batteries: Part A—High-temperature aging. Renew. Energy 2023, 203, 592–600. [Google Scholar] [CrossRef]
- Maher, K.; Yazami, R. Effect of overcharge on entropy and enthalpy of lithium-ion batteries. Electrochim. Acta 2013, 101, 71–78. [Google Scholar] [CrossRef]
- Feng, X.; Fang, M.; He, X.; Ouyang, M.; Lu, L.; Wang, H.; Zhang, M. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sources 2014, 255, 294–301. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, J. Failure Study of Commercial LiFePO4Cells in Overcharge Conditions Using Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2015, 162, A2208–A2217. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Q.; Ma, M.; Zhao, C.; Sun, J.; Wang, Q. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling. J. Power Sources 2020, 445, 227263. [Google Scholar] [CrossRef]
- Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C.; Möller, K.-C.; Besenhard, J.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281. [Google Scholar] [CrossRef]
- Hitt, A.; Wang, F.; Li, Z.; Ge, M.; Zhang, Y.; Savsatli, Y.; Xiao, X.; Lee, W.-K.; Stephens, R.; Tang, M. Nanotomographic observation and statistical analysis of overcharging induced cracks in LiCoO2 single crystalline particles. Energy Storage Mater. 2022, 52, 320–328. [Google Scholar] [CrossRef]
- Minakshi, M.; Singh, P.; Issa, T.B.; Thurgate, S.; De Marco, R. Lithium insertion into manganese dioxide electrode in MnO2/Zn aqueous battery. J. Power Sources 2006, 153, 165–169. [Google Scholar] [CrossRef]
- Fleischhammer, M.; Waldmann, T.; Bisle, G.; Hogg, B.-I.; Wohlfahrt-Mehrens, M. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries. J. Power Sources 2015, 274, 432–439. [Google Scholar] [CrossRef]
- Friesen, A.; Horsthemke, F.; Mönnighoff, X.; Brunklaus, G.; Krafft, R.; Börner, M.; Risthaus, T.; Winter, M.; Schappacher, F.M. Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis. J. Power Sources 2016, 334, 1–11. [Google Scholar] [CrossRef]
Items | Descriptions |
---|---|
Positive/negative-electrode materials | NCA/graphite |
Diameter/height | 18 mm/65 mm |
Weight | 46.9 ± 0.1 g |
Rated capacity/voltage (0.3 C, 25 °C) | 3.042 ± 0.045 mAh/3.6 V |
The upper limit of charging voltage | 4.20 ± 0.05 V |
Discharge cut-off voltage | 2.5 V |
Maximum discharge current | 60 A |
Discharge temperature range | −20~+60 |
Strategy | Charging Rate/C | Discharging Rate/C | Discharging Cut-Off Rate/C | Charging Cut-Off Voltage/V | Discharging Cut-Off Voltage/V | Temperature /°C |
---|---|---|---|---|---|---|
1 | 0.5 | 0.5 | 0.01 | 4.3 | 2.50 | −20 |
2 | 0.5 | 0.5 | 0.01 | 4.3 | 2.50 | −10 |
3 | 0.5 | 0.5 | 0.01 | 4.3 | 2.50 | 0 |
4 | 0.5 | 0.5 | 0.01 | 4.3 | 2.50 | 10 |
5 | 0.5 | 0.5 | 0.01 | 4.3 | 2.50 | 25 |
6 | 0.5 | 0.5 | 0.01 | 4.3 | 2.50 | 35 |
7 | 0.5 | 0.5 | 0.01 | 4.3 | 2.50 | 45 |
8 | 0.5 | 0.5 | 0.01 | 4.3 | 2.50 | 55 |
Procedure | Content |
---|---|
1 | Charge the battery at 0.3 C by CC-CV to 100% SOC. |
2 | Fixed the battery on a tripod and heat it to an initial temperature of 40 °C. |
3 | Set the initial calibration time to 180 min, with each subsequent calibration step lasting 20 min. |
4 | Heat the battery in increments of 5 °C per step. |
5 | Wait for 20 min until the battery surface temperature reaches equilibrium. |
6 | When the heat release rate exceeds 0.02 °C/min, proceed to the tracking program; otherwise, return to step 3 for further thermal searching at a higher temperature. |
7 | Upon reaching a heat release rate greater than 0.02 °C/min, enter the adiabatic tracking program, where the battery is maintained in an adiabatic environment; however, if the temperature change rate falls below 0.01 °C/min, return to step 2. |
8 | The experiment is concluded when the battery temperature exceeds 350 °C. |
Strategy | Charging Current Rate/A | Discharging Current Rate/A | Theoretical Capacity of Charging /Ah | Theoretical Capacity of Discharging /Ah | Temperature /°C |
---|---|---|---|---|---|
1 | 1.5 | 1.5 | 2.98 | 2.79 | −20 |
2 | 1.5 | 1.5 | 3.01 | 2.84 | −10 |
3 | 1.5 | 1.5 | 3.06 | 2.99 | 0 |
4 | 1.5 | 1.5 | 3.11 | 3.10 | 10 |
5 | 1.5 | 1.5 | 3.15 | 3.17 | 25 |
6 | 1.5 | 1.5 | 3.16 | 3.20 | 35 |
7 | 1.5 | 1.5 | 3.18 | 3.18 | 45 |
8 | 1.5 | 1.5 | 3.15 | 3.15 | 55 |
SOH | C | O | F | P | S | Al |
---|---|---|---|---|---|---|
100 | 23 | 7 | 12 | 34 | 24 | 0 |
90 | 5 | 26 | 8 | 36 | 25 | 0 |
0 | 5 | 16 | 7 | 39 | 32 | 1 |
T1 (°C) | T2 (°C) | T3 (°C) | Mass Loss Rate (%) |
---|---|---|---|
107.2 | 174.5 | 614.9 | 54.0 |
Temperature (°C) | T1 (°C) | T2 (°C) | T3 (°C) | Mass Loss Rate (%) |
---|---|---|---|---|
−20 | 106.4 | 176.9 | 614.3 | 47.5 |
−10 | 83.0 | 172.4 | 546.9 | 63.8 |
0 | 106.4 | 177.2 | 614.2 | 59.6 |
10 | 105.3 | 172.4 | 614.2 | 62.6 |
25 | 99.7 | 175.3 | 613.8 | 51.6 |
35 | 106.1 | 172.7 | 614.8 | 60.4 |
45 | 102.4 | 173.3 | 1177.3 | 57.1 |
55 | 106.4 | 169.8 | 614.9 | 63.1 |
Temperature (°C) | T1 (°C) | T2 (°C) | T3 (°C) | Mass Loss Rate (%) |
---|---|---|---|---|
−20 | 102.2 | 176.6 | 525.6 | 59.5 |
−10 | 97.6 | 173.9 | 600.1 | 77.3 |
0 | 69.8 | 166.2 | 614.6 | 41.8 |
10 | 76.6 | 166.6 | 492.6 | 77.5 |
25 | 80.7 | 173.8 | 612.6 | 53.4 |
35 | 94.5 | 179.5 | 613.5 | 51.3 |
45 | 102.7 | 172.5 | 577.6 | 62.6 |
55 | 105 | 171.1 | 508.2 | 63.1 |
T1 (°C) | T2 (°C) | T3 (°C) | Mass Loss Rate (%) |
---|---|---|---|
55.8 | 171.9 | 613.5 | 73.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Ji, C.; Wang, Y. Failure Mechanism and Thermal Runaway in Batteries during Micro-Overcharge Aging at Different Temperatures. Materials 2024, 17, 2125. https://doi.org/10.3390/ma17092125
Zhang Z, Ji C, Wang Y. Failure Mechanism and Thermal Runaway in Batteries during Micro-Overcharge Aging at Different Temperatures. Materials. 2024; 17(9):2125. https://doi.org/10.3390/ma17092125
Chicago/Turabian StyleZhang, Zhizu, Changwei Ji, and Yanan Wang. 2024. "Failure Mechanism and Thermal Runaway in Batteries during Micro-Overcharge Aging at Different Temperatures" Materials 17, no. 9: 2125. https://doi.org/10.3390/ma17092125
APA StyleZhang, Z., Ji, C., & Wang, Y. (2024). Failure Mechanism and Thermal Runaway in Batteries during Micro-Overcharge Aging at Different Temperatures. Materials, 17(9), 2125. https://doi.org/10.3390/ma17092125