Numerical Study of Stud Welding Temperature Fields on Steel–Concrete Composite Bridges
Abstract
1. Introduction
2. Finite Element Simulation
2.1. Theoretical Framework for Welding Temperature Fields
2.1.1. Fundamental Laws of Heat Transfer
- Thermal Conduction
- 2.
- Convective Heat Transfer
- 3.
- Radiative Heat Transfer
2.1.2. Fundamental Equations of Welding Temperature Fields
- Governing Differential Equation for Heat Conduction
- 2.
- Thermal Boundary Conditions
2.2. Heat Source Model
- Point Heat Source Model [28]The point heat source model assumes welding arc energy is concentrated at a single point on the workpiece. This model is typically applied to semi-infinite geometric configurations, where heat propagates in three-dimensional space (x, y, z). It is suitable for simulating surface deposition processes on thick plates.
- Line Heat Source Model [28]The line heat source model distributes energy uniformly along the plate thickness direction, perpendicular to the plate plane. Paired with an infinite plate geometry, this model assumes two-dimensional heat propagation and is ideal for simulating full-penetration welding in thin plates.
- Surface Heat Source Model [28]The surface heat source model, used with infinite rod geometries, assumes uniform heat distribution across the rod’s cross-section and unidirectional propagation. This one-dimensional approach is applicable to processes like electrode tip heating and friction welding.
- 4.
- Gaussian Heat Source Model [29]The Gaussian heat source model distributes energy within a circular area following a Gaussian function. It accounts for heat flux in the x and y directions, assuming symmetry and neglecting thickness-direction effects. While valid for shallow molten pools, this simplification introduces errors in deeper weld pools.
- 5.
- Planar heat source models (e.g., Gaussian) are accurate for shallow welds and low-arc-penetration processes but fail for high-energy welding (e.g., laser, electron beam) due to neglected depth effects. To address this, Goldak et al. proposed the double ellipsoid model, which divides the heat source into front and rear quarter-ellipsoids. Heat flux density follows a Gaussian distribution, peaking at the center and decaying exponentially toward the edges. This formulation better approximates molten pool geometry and energy penetration in thickness-critical applications.
2.3. Finite Element Model Setup
2.3.1. Geometry and Meshing
2.3.2. Material Properties
2.3.3. Boundary Conditions
- Coordinate transfer: ABAQUS passed integration point coordinates via the COORDS array;
- Time parameter: Input current step time was transferred through TIME(2);
- Custom parameters: Heat source power, radius, etc., were incorporated in subroutine or imported via INP files;
- Radial distance calculation: Distance r from each integration point to the heat source center;
- Heat flux update: Gaussian formula computed q(r), assigned to FLUX(1) to update localized heat flux.
2.4. Model Validation
- Preparation: Verify equipment functionality; set parameters (input current, voltage, time) based on stud diameter and base material thickness. Clean welding surfaces to remove contaminants.
- Stud lifting: The gun lifts the stud electromagnetically/pneumatically (2–5 mm height). High voltage ionizes air, generating a 6000–8000 °C arc that melts stud and base metal.
- Fusion: Molten metal forms a pool, shielded by inert gas (e.g., CO2/Ar) to prevent oxidation.
- Plunge: Post-arc extinction, the stud is forced into the molten pool under mechanical pressure (0.1–0.5 s), expelling slag and gases.
- Completion: Power is cut; the weld cools naturally to avoid cracking.
- The high-temperature material properties used in the simulation were extrapolated from lower-temperature data, introducing minor inaccuracies;
- Interference from welding sparks and spatter, as well as the inherent limitations of the temperature measurement equipment.
3. Stud Welding Temperature Field Results and Analysis
3.1. Welding Temperature Field Results
3.2. Effect of Input Current on the Temperature Field
3.3. Effect of Plate Thickness on Temperature Field
3.4. Effect of Group Studs on the Temperature Field
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Radaj, D. Heat Effects of Welding on Temperature Field, Residual Stress and Distortion; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Ma, N.; Deng, D.; Osawa, D.; Sherif, N.; Murakawa, R.; Ueda, Y. Welding Deformation and Residual Stress Prevention; Butterworth-Heinemann: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Feng, Z. Processes and Mechanisms of Welding Residual Stress and Distortion; Woodhead Publishing: Cambridge, UK, 2005; pp. 345–350. [Google Scholar]
- Forcellini, D.; Mitoulis, S.-A. Effect of deterioration on critical infrastructure resilience framework and application on bridges. Results Eng. 2025, 25, 103834. [Google Scholar] [CrossRef]
- Vishwanath, B.S.; Banerjee, S. Life-Cycle Resilience of Aging Bridges under Earthquakes. J. Bridge Eng. 2019, 24, 04019106. [Google Scholar] [CrossRef]
- Choine, M.N.; O’Connor, A.J.; Padgett, J.E. Comparison between the Seismic Performance of Integral and Jointed Concrete Bridges. J. Earthq. Eng. 2015, 19, 172–191. [Google Scholar] [CrossRef]
- Oh, G.; Akiniwa, Y. Residual and assembling stress analyses on fillet welded joints of flange pipes and the fatigue strength prediction. Thin-Walled Struct. 2019, 136, 138–149. [Google Scholar] [CrossRef]
- Kumar Srivastava, H.; Balasubramanian, V.; Malarvizhi, S.; Gourav Rao, A. Notch fatigue behaviour of friction stir welded AA6061-T651 aluminium alloy joints: Role of microstructure, and residual stresses. Eng. Fail. Anal. 2025, 167, 109058. [Google Scholar] [CrossRef]
- Baruah, S.; Tiwari, R.; Vir Singh, I.; Manglik, A. Effect of stress ratio and welding residual stresses on the fatigue crack growth behaviour of Weldox-700 steel using LGDM. Eng. Fract. Mech. 2024, 308, 110368. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Deng, Y.; Cao, Y.; He, Y.; Liu, Y.; Deng, Y. Fatigue behavior of high-strength steel wires considering coupled effect of multiple corrosion-pitting. Corros. Sci. 2025, 244, 112633. [Google Scholar] [CrossRef]
- Xue, J.H.; Cheng, A.; Xia, B.H. Study on the synergistic effect of welding residual stress and hydrogen diffusion on fatigue crack growth of X80 steel pipeline. Int. J. Press. Vessel. Pip. 2024, 212, 105367. [Google Scholar] [CrossRef]
- Chen, F.; Liu, X.; Zhang, H.; Luo, Y.; Lu, N.; Liu, Y.; Xiao, X. Assessment of fatigue crack propagation and lifetime of double-sided U-rib welds considering welding residual stress relaxation. Ocean Eng. 2025, 332, 121400. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, Y.; Chen, F.; Luo, Y.; Xiao, X.; Lu, N.; Liu, Y.; Deng, Y. Fatigue life prediction for orthotropic steel bridge decks welds using a Gaussian variational bayes network and small sample experimental data. Reliab. Eng. Syst. Saf. 2025, 264, 111406. [Google Scholar] [CrossRef]
- Ding, Y.L.; Zhong, W.; Sun, P.; Cao, B.Y.; Song, Y.S. Fatigue life evaluation of welded joints in OSD for railway bridges considering welding residual stress. J. Perform. Constr. Facil. 2019, 33, 04018111. [Google Scholar] [CrossRef]
- Cui, C.; Bu, Y.Z.; Bao, Y.; Zhang, Q.H.; Ye, Z.T. Strain energy-based fatigue life evaluation of deck-to-rib welded joints in OSD considering combined effects of stochastic traffic load and welded residual stress. J. Bridge Eng. 2018, 23, 04017127. [Google Scholar] [CrossRef]
- Qiang, B.; Wang, X. Evaluating stress intensity factors for surface cracks in an orthotropic steel deck accounting for the welding residual stresses. Theor. Appl. Fract. Mech. 2020, 110, 102827. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, F.H.; Lu, N.W.; Wang, L.; Wang, B.W. Fatigue performance of rib-to-deck double-side welded joints in orthotropic steel decks. Eng. Fail. Anal. 2019, 105, 127–142. [Google Scholar] [CrossRef]
- Pavan, M.; Ramkishor, A. Residual stress and strain distributions in P92 and AISI 304L steel weldment. Int. J. Press. Vessel. Pip. 2025, 218, 105587. [Google Scholar] [CrossRef]
- Pang, S.; Wang, W. Experimental investigation and predictive models of residual stresses in HSS welded H-sections at ambient temperature and after exposure to elevated temperature. Eng. Struct. 2025, 332, 120050. [Google Scholar] [CrossRef]
- Hussein, S.K. Thermal finite element analysis and optimization of carbon steel stud arc weld. Eng. J. 2017, 21, 333–345. [Google Scholar] [CrossRef]
- Sun, J.M.; Klassen, J.; Nitschke-Pagel, T. Effects of heat source geometric parameters and arc efficiency on welding temperature field, residual stress, and distortion in thin-plate full-penetration welds. Int. J. Adv. Manuf. Technol. 2018, 99, 497–515. [Google Scholar] [CrossRef]
- Akbari, M.; Saedodin, S.; Toghraie, D.; Shoja-Razavi, R.; Kowsari, F. Experimental and numerical study of temperature field and molten pool dimensions in dissimilar thickness laser welding of Ti6Al4V alloy. J. Manuf. Process. 2020, 49, 438–446. [Google Scholar] [CrossRef]
- Nguyen, Q.Y.; Azadkhou, A.; Akbari, M.; Panjehpour, A.; Karimipour, A. Experimental investigation of temperature field and fusion zone microstructure in dissimilar pulsed laser welding of austenitic stainless steel and copper. J. Manuf. Process. 2020, 56, 206–215. [Google Scholar] [CrossRef]
- Azari, M.; Rasti, E.; Dehkordi, M.H.R.; Azimy, H.; Zarei, A.; Bagherzadeh, S.A. Investigation of temperature distribution and melt pool microstructure in laser fusion welding of Inconel 625 superalloy. J. Laser Appl. 2021, 33, 022015. [Google Scholar] [CrossRef]
- Tlili, I.; Baleanu, D.; Mohammad Sajadi, S. Numerical and experimental analysis of temperature distribution and melt flow in fiber laser welding of Inconel 625. Int. J. Adv. Manuf. Technol. 2022, 121, 765–784. [Google Scholar] [CrossRef]
- Li, D.L.; Sun, X.Y.; Shen, M.M.; Yu, E.L.; Niu, J.C. Study on pulse current auxiliary heating process of submerged arc welding. Heliyon 2024, 10, e26290. [Google Scholar] [CrossRef] [PubMed]
- Fang, H. Welded Structures, 2nd ed.; China Machine Press: Beijing, China, 2017. [Google Scholar]
- Wang, Y.; Fu, P.; Guan, Y.; Lu, Z.; Wei, Y. Research on modeling of heat source for electron beam welding fusion-solidification zone. Chin. J. Aeronaut. 2013, 26, 217–223. [Google Scholar] [CrossRef]
- Li, T.C.; Zhang, L.L.; Chang, C.; Wei, L. A Uniform-Gaussian distributed heat source model for analysis of residual stress field of S355 steel T welding. Adv. Eng. Softw. 2018, 126, 1–8. [Google Scholar] [CrossRef]
- Qu, H.; Cai, Y. Improved semantic segmentation method for weld penetration prediction of TIG welding with dual ellipsoid heat source. Manuf. Lett. 2024, 41, 310–319. [Google Scholar] [CrossRef]
- Schauenberg, A.S.; Rodriguez, R.Q.; Almeida, D.T.; Zanon, J.E.; Cunha, E.; Lopes, A.P.O.; Tonatto, M.L.P. Evaluating thermal gradient in GMAW welding process with a novel heat source model: Numerical and experimental approach. Eng. Struct. 2024, 318, 118724. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, G.; Pu, X.; Deng, D. Influence of welding sequence on residual stress distribution and deformation in Q345 steel H-section butt-welded joint. J. Mater. Res. Technol. 2021, 13, 144–153. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, C.; Dong, J.; Su, J.; Luo, Z. Microstructure and mechanical properties of T-joints in mid-thick Q345 steel plates welded using deep penetration tungsten inert gas welding. Mater. Lett. 2024, 354, 135401. [Google Scholar] [CrossRef]
- Yang, S.; Shen, L.; Li, W.; Zhang, Z.; Yang, Z. Multiscale modelling for the thermal transport behaviour of ceramic matrix composites with hierarchical structures. Compos. Commun. 2024, 46, 101848. [Google Scholar] [CrossRef]
- Kong, W.; Huang, W.; Liu, X.; Wei, Y. Experimental and numerical study on welding temperature field by double-sided submerged arc welding for orthotropic steel deck. Structures 2023, 56, 104943. [Google Scholar] [CrossRef]
- Xie, W.; Fan, C.; Yang, C.; Liu, Y. Comparison of welding temperature fields, residual stress distributions and deformations of Gas Tungsten Arc (GTA) and ultrasonic–wave–assisted gas tungsten pulsed arc (U-GTPA) welded DP780 steel joints. Int. J. Therm. Sci. 2023, 184, 108009. [Google Scholar] [CrossRef]
- Doc88.com Homepage. Available online: https://www.doc88.com/p-309249282077.html (accessed on 11 May 2025).
- BS EN 1994-1-1:2004; Design of Steel-Concrete Composite Structures. BS EN: London, UK, 2004.
Heat Source Model | Applicability | Limitations |
---|---|---|
Point Heat Source | Semi-infinite geometries | Significant errors in weld zone calculations |
Line Heat Source | Infinite plates | |
Surface Heat Source | Infinite rods | |
Gaussian Heat Source | Shallow molten pools | Inaccurate for deep molten pools |
Double Ellipsoid Source | Deep molten pools | Computationally intensive |
Mesh Size (mm) | Peak Temperature (°C) | Computational Cost |
---|---|---|
5 | 1908 | Low |
4 | 1950 | Moderate |
3 | 1979 | Moderate |
2 | 2014 | Moderate |
1 | 2019 | High |
0.5 | 2021 | Very high |
Temperature | Specific Heat Capacity (103 J/kg·°C) | Thermal Conductivity (102 W/m·°C) | Density (104 kg/m3) | Coefficient of Thermal Expansion (10−5/°C) |
---|---|---|---|---|
20 | 0.5 | 0.5 | 0.8 | 1.355 |
150 | 0.5 | 0.5 | 0.8 | 1.355 |
300 | 0.6 | 0.4 | 0.8 | 1.355 |
500 | 0.7 | 0.3 | 0.8 | 1.356 |
800 | 0.7 | 0.3 | 0.8 | 1.352 |
1000 | 0.7 | 0.3 | 0.8 | 1.36 |
1200 | 0.6 | 0.3 | 0.8 | 1.361 |
1500 | 0.6 | 0.3 | 0.8 | 1.362 |
1800 | 0.7 | 1.1 | 0.8 | 1.364 |
2000 | 0.8 | 1.1 | 0.8 | 1.367 |
Property | Temperature (°C) | Value |
---|---|---|
Density (g/cm3) | Ambient–High | 2.14 |
Thermal Conductivity (W/m·°C) | 25 | 2.1 |
700 | 3.13 | |
Specific Heat Capacity (J/kg·°C) | Ambient–High | 26.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Su, H.; Han, X.; Zhou, H.; Liu, S. Numerical Study of Stud Welding Temperature Fields on Steel–Concrete Composite Bridges. Materials 2025, 18, 3491. https://doi.org/10.3390/ma18153491
Wei S, Su H, Han X, Zhou H, Liu S. Numerical Study of Stud Welding Temperature Fields on Steel–Concrete Composite Bridges. Materials. 2025; 18(15):3491. https://doi.org/10.3390/ma18153491
Chicago/Turabian StyleWei, Sicong, Han Su, Xu Han, Heyuan Zhou, and Sen Liu. 2025. "Numerical Study of Stud Welding Temperature Fields on Steel–Concrete Composite Bridges" Materials 18, no. 15: 3491. https://doi.org/10.3390/ma18153491
APA StyleWei, S., Su, H., Han, X., Zhou, H., & Liu, S. (2025). Numerical Study of Stud Welding Temperature Fields on Steel–Concrete Composite Bridges. Materials, 18(15), 3491. https://doi.org/10.3390/ma18153491