Advanced Materials for Solar Energy Utilization
Author Contributions
Funding
Conflicts of Interest
References
- Dong, H.; Zhao, J.; Lu, Y.; Tian, Z.; Wang, S.; Bai, X.; Gong, G.; Wang, J.; Wang, L.; Chen, S. Construction of supramolecular metal-halogen bonded organic frameworks for efficient solar energy conversion. J. Energy Chem. 2025, 108, 527–535. [Google Scholar] [CrossRef]
- Chung, H.Y.; Wong, R.J.; Wu, H.; Gunawan, D.; Amal, R.; Ng, Y.H. Scalable and Integrated Photocatalytic Reactor Systems for Solar-to-Fuel Production: Photoredox and Photoreforming Processes. Adv. Energy Mater. 2025, 15, 2404956. [Google Scholar] [CrossRef]
- Lyu, W.; Liu, Y.; Chen, D.; Wang, F.; Li, Y. Engineering the electron localization of metal sites on nanosheets assembled periodic macropores for CO2 photoreduction. Nat. Commun. 2024, 15, 10589. [Google Scholar] [CrossRef]
- Wang, J.; Liao, W.; Tan, Y.; Henrotte, O.; Kang, Y.; Liu, K.; Fu, J.; Lin, Z.; Chai, L.; Cortes, E.; et al. Transfer dynamics of photo-generated carriers in catalysis. Chem. Soc. Rev. 2025, 54, 6553–6596. [Google Scholar] [CrossRef]
- Jia, P.; Yu, Y.; Chen, T.; Huang, H. “Electricity”-Assisted Catalytic Solar-to-Fuel Processes. Angew. Chem. Int. Ed. 2025, 64, e202508809. [Google Scholar] [CrossRef]
- Huang, Z.-J.; Liu, Y.-L.; Yang, J.-H.; Sun, D.-X.; Qi, X.-D.; Wang, Y. Pine needle-like hierarchical copper foam-based high-performance phase change composites for all-weather solar-thermal-electric conversion. Chem. Eng. J. 2025, 514, 163268. [Google Scholar] [CrossRef]
- Chen, K.; Li, Y.; Feng, Y.; Li, X.; Li, Z.; Liu, S.; Ge, C.; Chen, X. In situ vertical alignment of MoS2 on Co/C dodecahedron boosting phase change materials for solar-thermoelectric generation. J. Energy Chem. 2025, 107, 548–557. [Google Scholar] [CrossRef]
- Hernandez, R.R.; Armstrong, A.; Burney, J.; Ryan, G.; Moore-O’Leary, K.; Diédhiou, I.; Grodsky, S.M.; Saul-Gershenz, L.; Davis, R.; Macknick, J.; et al. Techno–ecological synergies of solar energy for global sustainability. Nat. Sustain. 2019, 2, 560–568. [Google Scholar] [CrossRef]
- Suo, J.; Dai, Y.; Yin, L.; Hua, Q. Stable cobalt-doped MOF/PAN electrospun membrane: Enhanced tetracycline degradation via adsorption and dual free radical pathways. Chem. Eng. J. 2025, 519, 164956. [Google Scholar] [CrossRef]
- Sambyal, S.; Sharma, R.; Priye, A.; Kumar, M.; Chauhan, V.; Shandilya, P. Nanocellulose supported ZnWO4/SrTiO3/MoO3 heterojunction: Highly efficient visible light photocatalyst for ciprofloxacin degradation. Chem. Eng. J. 2025, 516, 164167. [Google Scholar] [CrossRef]
- Pan, M.; Gao, R.; Liang, S.; Hu, X.; Xie, M.; Chen, W.; Wang, S. Oxygen vacancies-rich bimetallic Zr/Co-UiO-66 materials for bifunctional adsorption-photodegradation of tetracycline antibiotics in water. Chem. Eng. J. 2025, 517, 164397. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Liu, Y.; Zhang, P.; Zhang, J.; Zhang, B. Interfacial engineering of a plasmonic Ag/Ag2CO3/C3N5 S-scheme heterojunction for high-performance photocatalytic degradation of antibiotics. Chin. J. Catal. 2025, 72, 130–142. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Chu, R.; Zhang, Z.; Hou, W.; Wang, L.; Li, L.; Zhang, P. Engineered an organic Z-scheme heterojunction of cu porphyrin-COF/g-C3N4 with planar covalent interaction for sustainable solar energy conversion. Chem. Eng. J. 2025, 519, 164922. [Google Scholar] [CrossRef]
- Wang, C.; Xie, Z.; Xie, P.; Liang, H.; Ding, Y.; Wang, Y.; Leung, M.K.H.; Zeng, G.; Ho, J.C.; Bandaru, S.; et al. Phase Transition in Halide Double Perovskites for Solar-To-Chemical Energy Conversion. Adv. Energy Mater. 2025, 15, 2500921. [Google Scholar] [CrossRef]
- Rath, B.B.; Fuchs, L.; Stemmler, F.; Rodríguez-Camargo, A.; Wang, Y.; Dorfner, M.F.X.; Olbrich, J.; van Slageren, J.; Ortmann, F.; Lotsch, B.V. Insights into Decoupled Solar Energy Conversion and Charge Storage in a 2D Covalent Organic Framework for Solar Battery Function. J. Am. Chem. Soc. 2025, 147, 18492–18503. [Google Scholar] [CrossRef]
- Jiao, F.; Yang, S.; Weng, Y.; Mei, L.; Shi, X.; Yu, H.; Liu, Q. Solar methane carbon cyclic reforming with over 40% solar-to-fuel efficiency and nearly 100% selectivity in kWth scale solar fuel production prototype. Chem. Eng. J. 2025, 512, 162435. [Google Scholar] [CrossRef]
- Feng, C.; Raziq, F.; Huang, H.; Wu, Z.P.; Alqahtani, H.S.; Alqahtani, R.; Rahman, M.Z.; Chang, B.; Gascon, J.; Zhang, H. Shining Light on Hydrogen: Solar-Powered Catalysis with Transition Metals. Adv. Mater. 2025, 37, 2410387. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, G.; Wang, Z.; Zhang, S.; Zheng, X.; Meng, S.; Chen, S. Cu–S Covalent Bonds Enable the Anchoring of Single-atom Cu on Layered MoS2 for Highly Selective and Active Photothermal Catalytic Conversion of CO2−H2O to Ethanol. Adv. Sci. 2025, e04167. [Google Scholar] [CrossRef]
- Ding, C.; Yang, L.; Lu, X.; Chi, H.; Yang, Y.; Zhang, Y.; Yuan, J.; Wang, X.; Zhou, Y.; Zou, Z. Synergistic effect of asymmetric Ru-Pd dual single-atom-sites and Pd nanoparticles on carbon nitride for efficient CO2 photoreduction. Appl. Catal. B Environ. 2025, 365, 124917. [Google Scholar] [CrossRef]
- Silerio-Vázquez, F.D.J.; Kakavandi, B.; Tayyab, M.; Baigenzhenov, O.; Hosseini-Bandegharaei, A.; Proal-Nájera, J.B. Sustainability insights into photocatalytic CO2-to-CH4 conversion utilizing g-C3N4-based photocatalysts: Flaws, progress, and prospectives. Coord. Chem. Rev. 2025, 542, 216901. [Google Scholar] [CrossRef]
- Guan, Q.; Ran, W.; Zhang, D.; Li, W.; Li, N.; Huang, B.; Yan, T. Non-Metal Sulfur Doping of Indium Hydroxide Nanocube for Selectively Photocatalytic Reduction of CO2 to CH4: A “One Stone Three Birds” Strategy. Adv. Sci. 2024, 11, 2401990. [Google Scholar] [CrossRef]
- Xu, H.; Song, H.; Wang, X.; Zhu, X. Oxygen Vacancy Modification MIL-125(Ti) Promotes CO2 Photoreduction to CO with Near 100% Selectivity. Materials 2025, 18, 1343. [Google Scholar] [CrossRef]
- Li, C.; Lu, X.; Chen, L.; Xie, X.; Qin, Z.; Ji, H.; Su, T. WO3/BiOBr S-Scheme Heterojunction Photocatalyst for Enhanced Photocatalytic CO2 Reduction. Materials 2024, 17, 3199. [Google Scholar] [CrossRef]
- Sun, X.; Cao, X.; Zhou, G.; Lv, T.; Xu, J.; Zhou, Y.; Wang, Z.; Yi, J. Phase-Controlled Synthesis of Ru Supported on Carbon Nitride and the Application in Photocatalytic H2 Evolution. Materials 2025, 18, 1259. [Google Scholar] [CrossRef]
- Li, H.; He, J.; Wang, X.; Liu, Q.; Luo, X.; Wang, M.; Liu, J.; Liu, C.; Liu, Y. Synthesis of Size-Adjustable CsPbBr3 Perovskite Quantum Dots for Potential Photoelectric Catalysis Applications. Materials 2024, 17, 1607. [Google Scholar] [CrossRef]
- Su, Y.; Zeng, Z.; Chen, H.; Lv, Z.; Tan, C.; Chen, C. Preparation and Photocatalytic Degradation Performance of C@CdxMn1-xS to Tetracycline Hydrochloride. Materials 2025, 18, 1062. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.; Zhang, Y.; Zhang, S.; Li, L.; Pang, X. The Design of PAN-Based Janus Membrane with Adjustable Asymmetric Wettability in Wastewater Purification. Materials 2024, 17, 417. [Google Scholar] [CrossRef]
- Rychtowski, P.; Prowans, B.; Miadlicki, P.; Trzeciak, M.; Tryba, B. Preparation of TiO2 Nanorods@Ni-Foam for Photocatalytic Decomposition of Acetaldehyde-In Situ FTIR Surface Investigation. Materials 2025, 18, 986. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, B.; Wu, W.; Guo, K.; Huang, W.; Ding, J. Effects on Metallization of n+-Poly-Si Layer for N-Type Tunnel Oxide Passivated Contact Solar Cells. Materials 2024, 17, 2747. [Google Scholar] [CrossRef]
- Du, K.; Wang, A.; Li, Y.; Xu, Y.; Li, L.; Yuan, N.; Ding, J. The Synergistic Effect of Phosphonic and Carboxyl Acid Groups for Efficient and Stable Perovskite Solar Cells. Materials 2023, 16, 7306. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, C.; Liu, Y.; Wang, J.; Su, X.; Wang, Q. Performance of Large Area n-TOPCon Solar Cells with Selective Poly-Si Based Passivating Contacts Prepared by PECVD Method. Materials 2024, 17, 849. [Google Scholar] [CrossRef]
- Gribov, E.; Koshevoy, E.; Kuznetsov, A.; Mikhnenko, M.; Losev, E.; Lyulyukin, M. Flat-Band Potential Determination and Catalytical Properties of Sn3O4/SnO2 Heterostructures in the Photo-Electrooxidation of Small Organic Molecules under Ultraviolet (370 nm) and Blue (450 nm) Light. Materials 2023, 16, 7300. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Su, T. Advanced Materials for Solar Energy Utilization. Materials 2025, 18, 3511. https://doi.org/10.3390/ma18153511
Zhu X, Su T. Advanced Materials for Solar Energy Utilization. Materials. 2025; 18(15):3511. https://doi.org/10.3390/ma18153511
Chicago/Turabian StyleZhu, Xingwang, and Tongming Su. 2025. "Advanced Materials for Solar Energy Utilization" Materials 18, no. 15: 3511. https://doi.org/10.3390/ma18153511
APA StyleZhu, X., & Su, T. (2025). Advanced Materials for Solar Energy Utilization. Materials, 18(15), 3511. https://doi.org/10.3390/ma18153511