A Theoretical Raman Spectra Analysis of the Effect of the Li2S and Li3PS4 Content on the Interface Formation Between (110)Li2S and (100)β-Li3PS4
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Bulk and Isolated Surfaces
3.2. LPS/Li2S Heterostructure
- (1)
- 8L of LPS with 12L of Li2S (8L_LPS/12L_Li2S);
- (2)
- 4L of LPS with 12L of Li2S (4L_LPS/12L_Li2S);
- (3)
- 4L of LPS with 24L of Li2S (4L_LPS/24L_Li2S);
- (4)
- 4L of LPS with 36L of Li2S (4L_LPS/36L_Li2S);
- (5)
- 8L of LPS with 36L of Li2S (8L_LPS/36L_Li2S).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pathak, A.D.; Cha, E.; Choi, W. Towards the Commercialization of Li-S Battery: From Lab to Industry. Energy Storage Mater. 2024, 72, 103711. [Google Scholar] [CrossRef]
- Zhong, M.; Guan, J.; Sun, J.; Shu, X.; Ding, H.; Chen, L.; Zhou, N.; Xiao, Z. A Cost- and Energy Density-Competitive Lithium-Sulfur Battery. Energy Storage Mater. 2021, 41, 588–598. [Google Scholar] [CrossRef]
- Wang, L.; Riedel, S.; Zhao-Karger, Z. Challenges and Progress in Anode-Electrolyte Interfaces for Rechargeable Divalent Metal Batteries. Adv. Energy Mater. 2024, 14, 2402157. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.; Yan, T.; Gao, X.P. Perspectives of High-Performance Li–S Battery Electrolytes. Adv. Funct. Mater. 2024, 34, 2309625. [Google Scholar] [CrossRef]
- Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R. Crystal Structure and Phase Transitions of the Lithium Ionic Conductor Li3PS4. Solid State Ion. 2011, 182, 53–58. [Google Scholar] [CrossRef]
- Marana, N.L.; Casassa, S.; Sgroi, M.F.; Maschio, L.; Silveri, F.; D’Amore, M.; Ferrari, A.M. Stability and Formation of the Li3PS4/Li, Li3PS4/Li2S, and Li2S/Li Interfaces: A Theoretical Study. Langmuir 2023, 39, 18797–18806. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Zhang, Z.; Shi, P.; Feng, Y.; Yao, Y.; Ye, S.; Wang, H.; Wu, X.; Yu, Y.; et al. A Mixed Lithium-Ion Conductive Li2S/Li2Se Protection Layer for Stable Lithium Metal Anode. Adv. Funct. Mater. 2020, 30, 2001607. [Google Scholar] [CrossRef]
- Lai, C.; Shu, C.; Li, W.; Wang, L.; Wang, X.; Zhang, T.; Yin, X.; Ahmad, I.; Li, M.; Tian, X.; et al. Stabilizing a Lithium Metal Battery by an in Situ Li2S-Modified Interfacial Layer via Amorphous-Sulfide Composite Solid Electrolyte. Nano Lett. 2020, 20, 8273–8281. [Google Scholar] [CrossRef]
- Zhou, Y.; Doerrer, C.; Kasemchainan, J.; Bruce, P.G.; Pasta, M.; Hardwick, L.J. Observation of Interfacial Degradation of Li6PS5Cl against Lithium Metal and LiCoO2 via In Situ Electrochemical Raman Microscopy. Batter. Supercaps 2020, 3, 647–652. [Google Scholar] [CrossRef]
- Otoyama, M.; Ito, Y.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. Reaction Uniformity Visualized by Raman Imaging in the Composite Electrode Layers of All-Solid-State Lithium Batteries. Phys. Chem. Chem. Phys. 2020, 22, 13271–13276. [Google Scholar] [CrossRef]
- Otoyama, M.; Ito, Y.; Hayashi, A.; Tatsumisago, M. Raman Imaging for LiCoO2 Composite Positive Electrodes in All-Solid-State Lithium Batteries Using Li2S–P2S5 Solid Electrolytes. J. Power Sources 2016, 302, 419–425. [Google Scholar] [CrossRef]
- Jiao, Z.; Chen, L.; Si, J.; Xu, C.; Jiang, Y.; Zhu, Y.; Yang, Y.; Zhao, B. Core-Shell Li2S@Li3PS4 Nanoparticles Incorporated into Graphene Aerogel for Lithium-Sulfur Batteries with Low Potential Barrier and Overpotential. J. Power Sources 2017, 353, 167–175. [Google Scholar] [CrossRef]
- Stöffler, H.; Zinkevich, T.; Yavuz, M.; Hansen, A.L.; Knapp, M.; Bednarčík, J.; Randau, S.; Richter, F.H.; Janek, J.; Ehrenberg, H.; et al. Amorphous versus Crystalline Li3PS4: Local Structural Changes during Synthesis and Li Ion Mobility. J. Phys. Chem. C 2019, 123, 10280–10290. [Google Scholar] [CrossRef]
- Phuc, N.H.H.; Morikawa, K.; Totani, M.; Muto, H.; Matsuda, A. Chemical Synthesis of Li3PS4 Precursor Suspension by Liquid-Phase Shaking. Solid State Ion. 2016, 285, 2–5. [Google Scholar] [CrossRef]
- Lim, J.; Zhou, Y.; Powell, R.H.; Ates, T.; Passerini, S.; Hardwick, L.J. Localised Degradation within Sulfide-Based All-Solid-State Electrodes Visualised by Raman Mapping. Chem. Commun. 2023, 59, 7982–7985. [Google Scholar] [CrossRef]
- Partovi-Azar, P.; Kühne, T.D.; Kaghazchi, P. Evidence for the Existence of Li2S2 Clusters in Lithium–Sulfur Batteries: Ab Initio Raman Spectroscopy Simulation. Phys. Chem. Chem. Phys. 2015, 17, 22009–22014. [Google Scholar] [CrossRef]
- Erba, A.; Desmarais, J.; Casassa, S.; Civalleri, B.; Donà, L.; Bush, I.; Searle, B.; Maschio, L.; Daga, L.E.; Cossard, A.; et al. CRYSTAL23: A Program for Computational Solid State Physics and Chemistry. J. Chem. Theory Comput. 2022, 19, 6891–6932. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45, 13244. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158. [Google Scholar] [CrossRef]
- Ojamäe, L.; Hermansson, K.; Pisani, C.; Causà, M.; Roetti, C. Structural, Vibrational and Electronic Properties of a Crystalline Hydrate from Ab Initio Periodic Hartree–Fock Calculations. Acta Crystallogr. Sect. B 1994, 50, 268–279. [Google Scholar] [CrossRef]
- Lichanot, A.; Aprà, E.; Dovesi, R. Quantum Mechnical Hartree-Fock Study of the Elastic Properties of Li2S and Na2S. Phys. Status Solidi 1993, 177, 157–163. [Google Scholar] [CrossRef]
- Zicovich-Wilson, C.M.; Bert, A.; Roetti, C.; Dovesi, R.; Saunders, V.R. Characterization of the Electronic Structure of Crystalline Compounds through Their Localized Wannier Functions. J. Chem. Phys. 2001, 116, 1120. [Google Scholar] [CrossRef]
- Marana, N.L.; Sgroi, M.F.; Maschio, L.; Ferrari, A.M.; D’Amore, M.; Casassa, S. Computational Characterization of β-Li3PS4 Solid Electrolyte: From Bulk and Surfaces to Nanocrystals. Nanomaterials 2022, 12, 2795. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Rocca, R.; Sgroi, M.F.; Camino, B.; D’Amore, M.; Ferrari, A.M. Disordered Rock-Salt Type Li2TiS3 as Novel Cathode for LIBs: A Computational Point of View. Nanomaterials 2022, 12, 1832. [Google Scholar] [CrossRef]
- Marana, N.L.; Silveri, F.; de Oliveira Gomes, E.; Donà, L.; D’Amore, M.; Ascrizzi, E.; Sgroi, M.F.; Maschio, L.; Ferrari, A.M. A Computational Study of the Negative LiIn Modified Anode and Its Interaction with β-Li3PS4 Solid–Electrolyte for Battery Applications. Phys. Chem. Chem. Phys. 2024, 26, 15648–15656. [Google Scholar] [CrossRef]
- Yu, H.S.; He, X.; Li, S.L.; Truhlar, D.G. MN15: A Kohn–Sham Global-Hybrid Exchange–Correlation Density Functional with Broad Accuracy for Multi-Reference and Single-Reference Systems and Noncovalent Interactions. Chem. Sci. 2016, 7, 5032–5051. [Google Scholar] [CrossRef]
- Wu, X.; El Kazzi, M.; Villevieille, C. Surface and Morphological Investigation of the Electrode/Electrolyte Properties in an All-Solid-State Battery Using a Li2S-P2S5 Solid Electrolyte. J. Electroceramics 2017, 38, 207–214. [Google Scholar] [CrossRef]
- Bertheville, B.; Bill, H.; Hagemann, H. Experimental Raman Scattering Investigation of Phonon Anharmonicity Effects In Li2S. J. Phys. Condens. Matter 1998, 10, 2155. [Google Scholar] [CrossRef]
- Mirmira, P.; Zheng, J.; Ma, P.; Amanchukwu, C. V Importance of Multimodal Characterization and Influence of Residual Li2S Impurity in Amorphous Li3PS4 Inorganic Electrolytes. J. Mater. Chem. A 2021, 9, 19637–19648. [Google Scholar] [CrossRef]
- Zicovich-Wilson, C.M.; Pascale, F.; Roetti, C.; Saunders, V.R.; Orlando, R.; Dovesi, R. Calculation of the Vibration Frequencies of α-Quartz: The Effect of Hamiltonian and Basis Set. J. Comput. Chem. 2004, 25, 1873–1881. [Google Scholar] [CrossRef]
- Ates, T.; Neumann, A.; Danner, T.; Latz, A.; Zarrabeitia, M.; Stepien, D.; Varzi, A.; Passerini, S.; Ates, T.; Neumann, A.; et al. Elucidating the Role of Microstructure in Thiophosphate Electrolytes—A Combined Experimental and Theoretical Study of β-Li3PS4. Adv. Sci. 2022, 9, 2105234. [Google Scholar] [CrossRef] [PubMed]
- Barkalov, O.I.; Naumov, P.G.; Felser, C.; Medvedev, S.A. Pressure-Induced Transition to Ni2In-Type Phase in Lithium Sulfide (Li2S). Solid State Sci. 2016, 61, 220–224. [Google Scholar] [CrossRef]
- Jiang, H.; Han, Y.; Wang, H.; Zhu, Y.; Guo, Q.; Jiang, H.; Sun, W.; Zheng, C.; Xie, K. In-Situ Generated Li2S-Based Composite Cathodes with High Mass and Capacity Loading for All-Solid-State Li-S Batteries. J. Alloys Compd. 2021, 874, 159763. [Google Scholar] [CrossRef]
- Schönberger, U.; Andersen, O.K.; Methfessel, M. Bonding at Metal-Ceramic Interfaces; AB Initio Density-Functional Calculations for Ti and Ag on MgO. Acta Metall. Mater. 1992, 40, S1–S10. [Google Scholar] [CrossRef]
- Finnis, M.W. The Theory of Metal—Ceramic Interfaces. J. Phys. Condens. Matter 1996, 8, 5811. [Google Scholar] [CrossRef]
- Mahmoud, A.; Maschio, L.; Sgroi, M.F.; Pullini, D.; Ferrari, A.M. Ab Initio Simulation of ZnO/LaMnO3 Heterojunctions: Insights into Their Structural and Electronic Properties. J. Phys. Chem. C 2017, 121, 25333–25341. [Google Scholar] [CrossRef]
- Jiang, H.; Han, Y.; Wang, H.; Guo, Q.; Zhu, Y.; Xie, W.; Zheng, C.; Xie, K. In Situ Generated Li2S-LPS Composite for All-Solid-State Lithium-Sulfur Battery. Ionics 2020, 26, 2335–2342. [Google Scholar] [CrossRef]
- Jiang, H.; Han, Y.; Wang, H.; Zhu, Y.; Guo, Q.; Jiang, H.; Zheng, C.; Xie, K. Li2S–Li3PS4 (LPS) Composite Synthesized by Liquid-Phase Shaking for All-Solid-State Lithium–Sulfur Batteries with High Performance. Energy Technol. 2020, 8, 2000023. [Google Scholar] [CrossRef]
- Yamamoto, K.; Takahashi, M.; Ohara, K.; Phuc, N.H.H.; Yang, S.; Watanabe, T.; Uchiyama, T.; Sakuda, A.; Hayashi, A.; Tatsumisago, M.; et al. Synthesis of Sulfide Solid Electrolytes through the Liquid Phase: Optimization of the Preparation Conditions. ACS Omega 2020, 5, 26287–26294. [Google Scholar] [CrossRef]
a | b | Estrain (Li2S) | Estrain (LPS) | |||
---|---|---|---|---|---|---|
PBE0 | MN15 | |||||
(110)Li2S | 5.70 | 8.06 | - | - | - | |
(100)LPS | 6.23 | 8.28 | - | - | - | |
4L_LPS/12L_Li2S | 5.82 | 8.04 | 1.39 | 7.36 | −29.15 | −48.32 |
8L_LPS/12L_Li2S | 5.88 | 8.05 | 4.03 | 5.29 | −28.79 | −47.81 |
4L_LPS/24L_Li2S | 5.82 | 8.04 | 0.33 | 7.45 | −27.76 | −50.54 |
4L_LPS/36L_Li2S | 5.82 | 8.04 | 1.02 | 7.50 | −31.23 | −48.99 |
8L_LPS/36L_Li2S | 5.88 | 8.06 | 0.74 | 5.34 | −29.12 | −47.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marana, N.L.; Ascrizzi, E.; Silveri, F.; Sgroi, M.F.; Maschio, L.; Ferrari, A.M. A Theoretical Raman Spectra Analysis of the Effect of the Li2S and Li3PS4 Content on the Interface Formation Between (110)Li2S and (100)β-Li3PS4. Materials 2025, 18, 3515. https://doi.org/10.3390/ma18153515
Marana NL, Ascrizzi E, Silveri F, Sgroi MF, Maschio L, Ferrari AM. A Theoretical Raman Spectra Analysis of the Effect of the Li2S and Li3PS4 Content on the Interface Formation Between (110)Li2S and (100)β-Li3PS4. Materials. 2025; 18(15):3515. https://doi.org/10.3390/ma18153515
Chicago/Turabian StyleMarana, Naiara Leticia, Eleonora Ascrizzi, Fabrizio Silveri, Mauro Francesco Sgroi, Lorenzo Maschio, and Anna Maria Ferrari. 2025. "A Theoretical Raman Spectra Analysis of the Effect of the Li2S and Li3PS4 Content on the Interface Formation Between (110)Li2S and (100)β-Li3PS4" Materials 18, no. 15: 3515. https://doi.org/10.3390/ma18153515
APA StyleMarana, N. L., Ascrizzi, E., Silveri, F., Sgroi, M. F., Maschio, L., & Ferrari, A. M. (2025). A Theoretical Raman Spectra Analysis of the Effect of the Li2S and Li3PS4 Content on the Interface Formation Between (110)Li2S and (100)β-Li3PS4. Materials, 18(15), 3515. https://doi.org/10.3390/ma18153515