MBE Growth of High-Quality HgCdSe for Infrared Detector Applications
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Influence of Thermal Cleaning on the HgCdSe Crystalline Quality
3.2. Physical Properties of HgCdSe Epi-Layers
3.3. Performance Study of Prototype MWIR HgCdSe Photoconductor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MBE | Molecular Beam Epitaxy |
XRD | X-Ray Diffraction |
FWHM | Full Width at Half Maximum |
PCD | Photoconductive Decay |
HR-MSA | High-Resolution Mobility Spectrum Analysis |
IR | Infrared |
FTIR | Fourier Transform Infrared |
MWIR | Mid-Wavelength Infrared |
UV | Ultraviolet |
RHEED | Reflection High-Energy Electron Diffraction |
References
- Lei, W.; Antoszewski, J.; Faraone, L. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Appl. Phys. Rev. 2015, 2, 041303. (In English) [Google Scholar] [CrossRef]
- Zhang, Z.K.; Pan, W.W.; Liu, J.L.; Lei, W. A review on MBE-grown HgCdSe infrared materials on GaSb (211)B substrates. Chin. Phys. B 2019, 28, 018103. (In English) [Google Scholar] [CrossRef]
- Chen, Y.; Brill, G.; Benson, D.; Wijewarnasuriya, P.; Dhar, N. MBE Growth of ZnTe and HgCdSe on Si: A New IR Material. In Infrared Sensors, Devices, and Applications and Single Photon Imaging Ii; SPIE: Bellingham, WA, USA, 2011; Volume 8155. (In English) [Google Scholar]
- Vaghayenegar, M.; Jacobs, R.; Benson, J.; Stoltz, A.; Almeida, L.; Smith, D.J. Correlation of etch pits and dislocations in as-grown and thermal cycle-annealed HgCdTe (211) films. J. Electron. Mater. 2017, 46, 5007–5019. [Google Scholar] [CrossRef]
- Brill, G.; Chen, Y.; Wijewarnasuriya, P. Study of HgCdSe Material Grown by Molecular Beam Epitaxy. J. Electron. Mater. 2011, 40, 1679–1684. (In English) [Google Scholar] [CrossRef]
- Vaghayenegar, M.; Doyle, K.J.; Trivedi, S.; Wijewarnasuriya, P.; Smith, D.J. Microstructural Characterization of Defects and Chemical Etching for HgCdSe/ZnTe/Si (211) Heterostructures. J. Electron. Mater. 2019, 48, 571–582. (In English) [Google Scholar] [CrossRef]
- Doyle, K.; Swartz, C.H.; Dinan, J.H.; Myers, T.H.; Brill, G.; Chen, Y.P.; VanMil, B.L.; Wijewarnasuriya, P. Mercury cadmium selenide for infrared detection. J. Vac. Sci. Technol. B 2013, 31, 03C124. (In English) [Google Scholar] [CrossRef]
- Brill, G.; Chen, Y.; Wijewarnasuriya, P. Material Characteristics of HgCdSe grown on GaSb and ZnTe/Si Substrates by MBE. In Infrared Sensors, Devices, and Applications and Single Photon Imaging Ii; SPIE: Bellingham, WA, USA, 2011; Volume 8155. (In English) [Google Scholar]
- Summers, C.; Broerman, J. Optical absorption in Hg1−x Cdx Se alloys. Phys. Rev. B 1980, 21, 559. [Google Scholar] [CrossRef]
- Lei, W.; Ren, Y.L.; Madni, I.; Umana-Membreno, G.A.; Faraone, L. MBE growth of high quality HgCdSe on GaSb substrates. Infrared Phys. Technol. 2018, 92, 197–202. (In English) [Google Scholar] [CrossRef]
- Lansari, Y.; Cook, J.; Schetzina, J. Growth of HgSe and Hg1−x Cdx Se thin films by molecular beam epitaxy. J. Electron. Mater. 1993, 22, 809–813. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, W.; Martyniuk, M.; Ma, S.; Faraone, L.; Lei, W. Nanoindentation of Hg0.7Cd0.3Se prepared by molecular beam epitaxy. Infrared Phys. Technol. 2022, 127, 104446. [Google Scholar] [CrossRef]
- Chai, J.; Lee, K.-K.; Doyle, K.; Dinan, J.; Myers, T. Growth of lattice-matched ZnTeSe alloys on (100) and (211) B GaSb. J. Electron. Mater. 2012, 41, 2738–2744. [Google Scholar] [CrossRef]
- Munoz-Yague, A.; Piqueras, J.; Fabre, N. Preparation of Carbon-Free GaAs Surfaces: AES and RHEED Analysis. J. Electrochem. Soc. 1981, 128, 149. [Google Scholar] [CrossRef]
- Kodama, M.; Hasegawa, J.; Kimata, M. Influence of substrate preparation on the morphology of GaSb films grown by molecular beam epitaxy. J. Electrochem. Soc. 1985, 132, 659. [Google Scholar] [CrossRef]
- Da silva, F.W.O.; Raisin, C.; Silga, M.; Nouaoura, M.; Lassabatere, L. Chemical Preparation of Gasb (001) Substrates Prior to Mbe. Semicond. Sci. Technol. 1989, 4, 565–569. (In English) [Google Scholar] [CrossRef]
- Zazo, L.G.; Montojo, M.; Castano, J.; Piqueras, J. Chemical cleaning of GaSb (1, 0, 0) surfaces. J. Electrochem. Soc. 1989, 136, 1480. [Google Scholar] [CrossRef]
- Möller, K.; Töben, L.; Kollonitsch, Z.; Giesen, C.; Heuken, M.; Willig, F.; Hannappel, T. In-situ monitoring and analysis of GaSb (100) substrate deoxidation. Appl. Surf. Sci. 2005, 242, 392–398. [Google Scholar] [CrossRef]
- Schwartz, G.P.; Gualtieri, G.; Griffiths, J.; Thurmond, C.; Schwartz, B. Oxide-Substrate and Oxide-Oxide Chemical Reactions in Thermally Annealed Anodic Films on GaSb, GaAs, and GaP. J. Electrochem. Soc. 1980, 127, 2488. [Google Scholar] [CrossRef]
- Wang, C.; Shiau, D.; Lin, A. Preparation of GaSb substrates for GaSb and GaInAsSb growth by organometallic vapor phase epitaxy. J. Cryst. Growth 2004, 261, 385–392. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Chen, A.B.; Sher, A.; Van Schilfgaarde, M. Temperature dependence of band gaps in HgCdTe and other semiconductors. J. Electron. Mater. 1995, 24, 1121–1125. [Google Scholar] [CrossRef]
- Chai, J.; Noriega, O.C.; Dedigama, A.; Kim, J.J.; Savage, A.A.; Doyle, K.; Smith, C.; Chau, N.; Pena, J.; Dinan, J.H. Determination of critical thickness for epitaxial ZnTe layers grown by molecular beam epitaxy on (211) B and (100) GaSb substrates. J. Electron. Mater. 2013, 42, 3090–3096. [Google Scholar] [CrossRef]
- Cui, H.; Wang, C.; Wang, J.; Liu, C.; Pi, K.; Li, X.; Tang, Z. Measurement of minority carrier lifetime in infrared photovoltaic detectors using parallel circuit method. Opt. Quantum Electron. 2015, 47, 1367–1372. [Google Scholar] [CrossRef]
- Tirado-Mejía, L.; Villada, J.A.; De los Rios, M.; Peñafiel, J.A.; Fonthal, G.; Espinosa-Arbeláez, D.G.; Ariza-Calderón, H.; Rodríguez-García, M.E. Optical and structural characterization of GaSb and Te-doped GaSb single crystals. Phys. B Condens. Matter 2008, 403, 4027–4032. [Google Scholar] [CrossRef]
- Cui, H.; Wang, J.; Wang, C.; Liu, C.; Pi, K.; Li, X.; Xu, Y.; Tang, Z. Experimental determination of effective minority carrier lifetime in HgCdTe Photovoltaic detectors using optical and electrical methods. Adv. Condens. Matter Phys. 2015, 2015, 482738. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.; Hoffman, C.; Cho, S.; Ketterson, J.; Faraone, L.; Antoszewski, J.; Lindemuth, J. Quantitative mobility spectrum analysis (QMSA) for Hall characterization of electrons and holes in anisotropic bands. J. Electron. Mater. 1999, 28, 548–552. [Google Scholar] [CrossRef]
- Roodenko, K.; Liao, P.K.; Lan, D.; Clark, K.P.; Fraser, E.D.; Frensley, P.W.; Vargason, K.W.; Kuo, J.M.; Kao, Y.C.; Pinsukanjana, P.R. Development of n-type Te-doped GaSb substrates with low carrier concentration for FPA applications. Infrared Phys. Technol. 2017, 84, 38–42. [Google Scholar] [CrossRef]
- Smith, L.M.; Byrne, C.F.; Patel, D.; Knowles, P.; Thompson, J.; Jenkin, G.T.; Duy, T.N.; Durand, A.; Bourdillot, M. The growth of CdHgTe on GaAs and fabrication of high-quality photodiodes. J. Vac. Sci. Technol. A Vac. Surf. Film. 1990, 8, 1078–1085. [Google Scholar] [CrossRef]
- Triboulet, R. MOVPE of narrow band gap II–VI materials. J. Cryst. Growth 1991, 107, 598–604. [Google Scholar] [CrossRef]
- Gouws, G.J.; Muller, R.J.; Bowden, R.S. The growth of various buffer layer structures and their influence on the quality of (CdHg) Te epilayers. J. Cryst. Growth 1993, 130, 209–216. [Google Scholar] [CrossRef]
- Siliquini, F.; Musca, C.; Nener, B.; Faraone, L. Temperature dependence of Hg/sub 0.68/Cd/sub 0.32/Te infrared photoconductor performance. IEEE Trans. Electron Devices 1995, 42, 1441–1448. [Google Scholar] [CrossRef]
- Tong, J.; Xie, Y.; Ni, P.; Xu, Z.; Qiu, S.; Tobing, L.Y.; Zhang, D.-H. InAs0.91Sb0.09 photoconductor for near and middle infrared photodetection. Phys. Scr. 2016, 91, 115801. [Google Scholar] [CrossRef]
- Yoo, S.D.; Kwack, K.D. Analysis of carrier concentration, lifetime, and electron mobility on p-type HgCdTe. J. Appl. Phys. 1998, 83, 2586–2592. [Google Scholar] [CrossRef]
- Doyle, K.; Swartz, C.H.; Pattison, J.; Chen, Y.P.; Myers, T.H. Electron transport and minority carrier lifetime in HgCdSe. In Proceedings of the 2013 II–VI Workshop, Chicago, IL, USA, 1–3 October 2013. [Google Scholar]
Parameters | Hg0.73Cd0.27Se (N-Type) | Hg0.68Cd0.32Te (N-Type) [31] | |
---|---|---|---|
Cut-off wavelength (µm) | 4.2 | 4.5 | |
Minority carrier lifetime (µs) | 1.19 | 7.90 | |
Mobility (cm2/Vs) | ~16,000 | ~33,000 | |
Background carrier concentration (cm−3) | ~ 2.2 × 1017 | ~3.4 × 1014 | |
Specific detectivity (cmHz1/2/W) | ~ 1.2 × 109 | ~ 2.0 × 1011 | |
Previous Hg1−xCdxSe research results [2] | Typical Hg1−xCdxTe on Cd0.96Zn0.04Te substrate [1] | Hg0.73Cd0.27Se in this work | |
XRD FWHM (arcsec) | 120–220 | 25–40 | ~65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Pan, W.; Umana Membreno, G.A.; Ma, S.; Faraone, L.; Lei, W. MBE Growth of High-Quality HgCdSe for Infrared Detector Applications. Materials 2025, 18, 3676. https://doi.org/10.3390/ma18153676
Zhang Z, Pan W, Umana Membreno GA, Ma S, Faraone L, Lei W. MBE Growth of High-Quality HgCdSe for Infrared Detector Applications. Materials. 2025; 18(15):3676. https://doi.org/10.3390/ma18153676
Chicago/Turabian StyleZhang, Zekai, Wenwu Pan, Gilberto A. Umana Membreno, Shuo Ma, Lorenzo Faraone, and Wen Lei. 2025. "MBE Growth of High-Quality HgCdSe for Infrared Detector Applications" Materials 18, no. 15: 3676. https://doi.org/10.3390/ma18153676
APA StyleZhang, Z., Pan, W., Umana Membreno, G. A., Ma, S., Faraone, L., & Lei, W. (2025). MBE Growth of High-Quality HgCdSe for Infrared Detector Applications. Materials, 18(15), 3676. https://doi.org/10.3390/ma18153676