Could Fostering Alternative Plant Feedstocks Improve the Sustainability of Leather Manufacturing? A Critical Review
Abstract
1. Introduction
2. Methodology
3. Geographical Distribution, Market and Extraction of Newly Sourced Vegetable Tannins
3.1. Geographical Distribution and Market of Most Commonly Employed VTs
3.2. Geographical Distribution and Market of Newly Sourced VTs
3.3. Condensed Tannin Extracts
3.3.1. AFRICA-Tanzania: A. xanthopea, E. divinorum and E. racemosa Extracts
3.3.2. AFRICA-Sudan: Anogessus leiocarpus Extract
3.3.3. AFRICA-Ethiopia: Cassia Singueana, Solanum incanum, Rumex abyssinicus, Eichhornia crassipes and Osyris lanceolata Extracts
3.3.4. ASIA-Bangladesh: Cassia fistula, Pontederia crassipes, Xylocarpus granatum and Azadirachta indica Extracts
3.3.5. ASIA-Indonesia: A. mangium and A. auriculiformis Extracts
3.3.6. ASIA-Pakistan: Eucalyptus globulus Extracts
3.4. Hydrolysable Tannins
ASIA-China: Coriaria nepalensins Extract
4. Characteristics and Applications of Leather Produced with Different Vegetable Tanning Systems
4.1. Vegetable Extract Employed for Tanning Tests
4.1.1. Anogessus leiocarpus
4.1.2. Cassia singueana
4.1.3. Solanum incanum
4.1.4. Acacia mangium and Acacia auriculiformis
VT Name | Hide | Wt% | HS (°C) | Tensile Strength (N/mm2) | Elongation at Break (%) | Tear Strength (N/mm) | Softness (mm) | Methods | Ref. |
---|---|---|---|---|---|---|---|---|---|
>75 | >22.55 | 30–45 | >29.4 | UNIDO 1996 a [83] | |||||
VTs employed for tanning tests | |||||||||
A. xanthoplea | hide powder | 22 | 92 | 5.69 ± 0.3 | 36.80 ± 1.89 | 5.69 ± 0.3 | 1.9 ± 0.4 | EN ISO 17235:2015 b [84] | [50] |
E. divinorum | 88 | 4.71 ± 1.0 | 26.30 ± 1.41 | 4.71 ± 1.0 | 1.7 ± 0.4 | ||||
A. mearnsii | 86 | 6.06 ± 0.6 | 33.44 ± 1.98 | 6.06 ± 0.6 | 2.4 ± 0.3 | ||||
Anogessus leiocarpus (leaves) | pelt | 22 | 90 | 10.5 ± 0.35 | 40.6 ± 0.4 | 2.6 ± 0.5 | [45] | ||
Anogessus leiocarpus (bark) | 86 | 7.8 ± 0.25 | 32.0 ± 0.6 | 1.5 ± 0.8 | |||||
A. mearnsii | 89 | 10 ± 0.35 | 40 ± 0.35 | 1.0 ± 0.05 | |||||
Cassia singueana | sheep | 25 | 83 | 15.6 | 45.3 | 24.2 | IUP6 c, IUP8 d, IUP16 e [81,82,83] | [37] | |
Mimosa | 80 | 14.8 | 38.7 | 22.5 | |||||
Solanum incanum | goat | 25 | 75 | 14.2 | 43.7 | 23.4 | IUP6 c, IUP8 d, IUP16 e [81,82,83] | [51] | |
Mimosa | 78 | 12.5 | 30.2 | 21.5 | |||||
A. mangium | goat | 74 | 21.03 | 38.26 | [60] | ||||
A. auriculiformis | 80 | 24.30 | 39.60 | ||||||
Mimosa | 82 | 23.96 | 26.02 | ||||||
Quebracho | 82 | 17.28 | 28.92 |
4.2. Vegetable Extract Employed for Tanning and Retanning Tests
4.2.1. Hagenia abyssinica
4.2.2. Pontederia crassipes
4.2.3. Xylocarpus granatum
4.2.4. Azadirachta indica
4.2.5. Eucalyptus globulus
4.2.6. Coriaria nepalensis
VT Name | Hide | Wt% | HS (°C) | Tensile Strength (N/mm2) | Elongation at Break (%) | Tear Strength (N/mm) | Softness (mm) | Methods | Ref. |
---|---|---|---|---|---|---|---|---|---|
>75 | >22.55 | 30–45 | >29.4 | UNIDO 1996 a [83] | |||||
VTs employed for tanning and retanning tests | |||||||||
Hagenia abyssinica | sheep | 24 (tanning) 4 (retanning) | 73.3 | 10.25 ± 0.03 | 45.71 ± 0.02 | 26.90 ± 0.04 | IUP2 b, IUP6 c, IUP8 d, IUP16 e [81,82,85,86] | [54] | |
Mimosa | 15 (tanning) 4 (retanning) | 75.1 | 19.8 ± 0.03 | 36.72 ± 0.03 | 27.82 ± 0.02 | ||||
Pontederia crassipes | goat | 30 (tanning) 15 (retanning) | 83.3 | 28.08 ± 1.35 | 63.33 ± 4.16 | 40.5 ± 0.8 | IUP6 c, IUP8 d [81] | [57] | |
Mimosa | 30 (tanning) 15 (retanning) | 82.2 | 26.15 ± 1.21 | 52.6 ± 3.41 | 33.7 ± 0.5 | ||||
Xylocarpus granatum | goat | 3 (tanning) 18 (retanning) | 86.34 | 29.17 ± 1.39 | 42.545 ± 2.05 | 38.2 ± 4.5 | IUP6 c, IUP8 d [81,82] | [58] | |
Mimosa/Quebracho | 3 (tanning) 24 (retanning) | 81.34 | 25.36 ± 1.61 | 38.675 ± 3.57 | 36.5 ± 3.3 | ||||
Azadirachta indica (powder) | goat | 8 (tanning) 20 (retanning) | 81 | 29.2 | 38.72 | 146 | IUP6 c, IUP8 d, IUP16 e [81,82,85] | [59] | |
Azadirachta indica (extract) | 8 (tanning) 20 (retanning) | 86 | 27.71 | 40.71 | 144 | ||||
Mimosa | 8 (tanning) 20 (retanning) | 84 | 29.42 | 37.29 | 141 | ||||
E. globulus | goat | 350 mL (tanning) 350 mL (retanning) | 75 | 35 | 74 | IUP6 c [81] | [61] | ||
A.nilotica | 350 mL (tanning) 350 mL (retanning) | 80 | 38 | 85 | |||||
Mimosa | 350 mL (tanning) 350 mL (retanning) | 76 | 42 | 58 | |||||
Coriaria nepalensis | sheep | 2 (pretanning) 18 (tanning) | 76.4 | 6.1 | 75.8 | 38.2 | [62] | ||
Valonia | 2 (pretanning) 18 (tanning) | 72.1 | 5 | 68 | 38 |
4.3. Vegetable Extract Employed for Leather Tanning Followed by Synthetic Retanning
4.3.1. Eichhornia crassipes
4.3.2. Cassia fistula
4.3.3. Rumex abyssinicus
4.3.4. Osyris lanceolata
VT Name | Hide | Wt% | HS (°C) | Tensile Strength (N/mm2) | Elongation at Break (%) | Tear Strength (N/mm) | Softness (mm) | Methods | Ref. |
---|---|---|---|---|---|---|---|---|---|
>75 | >22.55 | 30–45 | >29.4 | UNIDO 1996 a [83] | |||||
VTs employed for tanning and synthetic retanning tests | |||||||||
Eichhornia crassipes | - | 10 (tanning) 8 Retanal MD 80/LSF-100 (retanning) | 55 | 6 | 47 | 37 | UNIDO 1996 a [83] | [53] | |
20 (tanning) 8 Retanal MD 80/LSF-100 (retanning) | 52 | 7.2 | 42 | 45 | |||||
5 + 5 (Quebracho) (tanning) 8 Retanal MD 80/LSF-100 (retanning) | 58 | 8.9 | 60.5 | 106.2 | |||||
Quebracho | 10 (tanning) 8 Retanal MD 80/LSF-100 (retanning) | 76 | 22 | 62 | 115 | ||||
Cassia fistula | goat | 4 (tanning) 18 + 18 (syntan) (retanning) | 85.77 | 27.61 ± 0.54 | 38.02 ± 1.79 | 43.1 ± 0.45 | UNIDO 1996 a, IUP16 b [81,84] | [56] | |
Rumex abyssinicus | goat | 5–30 (tanning) 6 (syntan) (retanning) | 61–78 | 20.82 ± 0.29 | 48 ± 0.7 | 39.2 ± 0.9 | IUP6 c, IUP8 d [81,82] | [52] | |
Mimosa | 15 (tanning) 6(syntan) (retanning) | 80 | 20.59 ± 0.20 | 48.5 ± 1.4 | 39.2 ± 0.9 | ||||
Osyris lanceolata | sheep | 30 (tanning) 3 (Basyntan D) (retanning) | 84.5 | 12.36 | 42.6 | 15–18 e | [55] |
5. Environmental Impact
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AOAC | Association of Official Analytical Chemists |
BOD | Biologica Oxygen Demand |
CAGR | Compound Annual Growth Rate |
CNB | Coriaria Nepalensins bark |
COD | Chemical Oxygen Demand |
DSC | Differential Scanning Calorimetry |
EB(%) | Elongation at break (percentage) |
HS | Hydrothermal Stability |
IUP | International Union for Physical testing |
SEM | Scanning Electron Microscope |
T(%) | Tannin (percentage) |
T/N | Tannin/Non-tannin |
Td | Denaturation Temperature |
TDS | Total Dissolved Solids |
TFC(%) | Total Flavonoid Content (percentage) |
TNBSA | 2,4,6-trinitrobenzenesulphonic acid |
TPC(%) | Total Phenol Content (percentage) |
TS | Tensile Strength |
Ts | Tear Strength |
Ts | Shrinkage Temperature |
UNIDO | United Nations Industrial Development Organization |
VT | Vegetable Tannin |
References
- Haslam, E. Plant Polyphenols: Vegetable Tannins Revisited; Chemistry and Pharmacology of Natural Products; Cambridge University Press: Cambridge, UK, 1989; ISBN 978-0-521-32189-1. [Google Scholar]
- Trimble, H. The Tannins. A Monograph on the History, Preparation, Properties, Methods of Estimation, and Uses of the Vegetable Astringents, with an Index to the Literature of the Subject; J. B. Lippincott Company: Philadelphia, PA, USA, 1892. [Google Scholar]
- Arbenz, A.; Avérous, L. Chemical Modification of Tannins to Elaborate Aromatic Biobased Macromolecular Architectures. Green Chem. 2015, 17, 2626–2646. [Google Scholar] [CrossRef]
- Das, A.K.; Islam, M.N.; Faruk, M.O.; Ashaduzzaman, M.; Dungani, R. Review on Tannins: Extraction Processes, Applications and Possibilities. S. Afr. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- Covington, A.D. Tanning Chemistry: The Science of Leather; Royal Society of Chemistry: Cambridge, UK, 2009; ISBN 978-0-85404-170-1. [Google Scholar]
- Vera, M.; Mella, C.; García, Y.; Jiménez, V.A.; Urbano, B.F. Recent Advances in Tannin-Containing Food Biopackaging. Trends Food Sci. Technol. 2023, 133, 28–36. [Google Scholar] [CrossRef]
- Aires, A. (Ed.) Tannins—Structural Properties, Biological Properties and Current Knowledge; IntechOpen: London, UK, 2020; ISBN 978-1-78984-796-3. [Google Scholar]
- Fraga-Corral, M.; Otero, P.; Echave, J.; Garcia-Oliveira, P.; Carpena, M.; Jarboui, A.; Nuñez-Estevez, B.; Simal-Gandara, J.; Prieto, M.A. By-Products of Agri-Food Industry as Tannin-Rich Sources: A Review of Tannins’ Biological Activities and Their Potential for Valorization. Foods 2021, 10, 137. [Google Scholar] [CrossRef]
- Nguyen, C.; Nirmal, N.; Sultanbawa, Y.; Ziora, Z. Antioxidant and Antibacterial Activity of Four Tannins Isolated from Different Sources and Their Effect on the Shelf-Life Extension of Vacuum-Packed Minced Meat. Foods 2023, 12, 354. [Google Scholar] [CrossRef]
- Hassan, M.M.; Harris, J.; Busfield, J.J.C.; Bilotti, E. A Review of the Green Chemistry Approaches to Leather Tanning in Imparting Sustainable Leather Manufacturing. Green Chem. 2023, 25, 7441–7469. [Google Scholar] [CrossRef]
- Bayramoğlu, E.E.; Çivi, S. Review of Tannins Currently Used in the Leather Industry. Part 1: Hydrolysable Tannins. In The 10th International Conference on Advanced Materials and Systems (ICAMS 2024); Sciendo: Warsaw, Poland, 2024; pp. 30–37. ISBN 978-83-67405-80-5. [Google Scholar]
- Bayramoğlu, E.E.; Çivi, S. Review of Tannins Currently Used in the Leather Industry. Part 2: Condensed Tannins. In The 10th International Conference on Advanced Materials and Systems (ICAMS 2024); Sciendo: Warsaw, Poland, 2024; pp. 38–44. ISBN 978-83-67405-80-5. [Google Scholar]
- Luo, J.-X.; Feng, Y.-J. A Novel Eco-Combination Tannage of Chrome-Free Leather with Softness and High Shrinkage Temperature. J. Soc. Leather Technol. Chem. 2022, 106, 99–105. [Google Scholar]
- Ren, C.; Liu, J.; Wang, F.; Lei, Y.; Kaya, M.G.A.; Tang, K. Study on the Pyrolysis Kinetic Behaviors of Different Vegetable-Tanned Sheepskin Leathers. J. Am. Leather Chem. Assoc. 2023, 118, 315–326. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Xie, W.; Tang, Y.; Yang, F.; Gong, C.; Wang, C.; Li, X.; Li, C. Preparation and Characterisation of Soybean Protein Adhesives Modified with an Environmental-Friendly Tannin-Based Resin. Polymers 2023, 15, 2289. [Google Scholar] [CrossRef]
- Pizzi, A. Little Secrets for the Successful Industrial Use of Tannin Adhesives: A Review. J. Renew. Mater. 2023, 11, 3403–3415. [Google Scholar] [CrossRef]
- Yusuf, M.; Shabbir, M.; Mohammad, F. Natural Colorants: Historical, Processing and Sustainable Prospects. Nat. Prod. Bioprospect. 2017, 7, 123–145. [Google Scholar] [CrossRef] [PubMed]
- Aires, A.; Carvalho, R.; Saavedra, M.J. Valorization of Solid Wastes from Chestnut Industry Processing: Extraction and Optimization of Polyphenols, Tannins and Ellagitannins and Its Potential for Adhesives, Cosmetic and Pharmaceutical Industry. Waste Manag. 2016, 48, 457–464. [Google Scholar] [CrossRef]
- Heath, R.S.; Ruscoe, R.E.; Turner, N.J. The Beauty of Biocatalysis: Sustainable Synthesis of Ingredients in Cosmetics. Nat. Prod. Rep. 2022, 39, 335–388. [Google Scholar] [CrossRef]
- Fonseca, N.V.B.; Cardoso, A.D.S.; Bahia, A.S.R.D.S.; Messana, J.D.; Vicente, E.F.; Reis, R.A. Additive Tannins in Ruminant Nutrition: An Alternative to Achieve Sustainability in Animal Production. Sustainability 2023, 15, 4162. [Google Scholar] [CrossRef]
- Besharati, M.; Maggiolino, A.; Palangi, V.; Kaya, A.; Jabbar, M.; Eseceli, H.; De Palo, P.; Lorenzo, J.M. Tannin in Ruminant Nutrition: Review. Molecules 2022, 27, 8273. [Google Scholar] [CrossRef]
- Tannin Market Growth Forecast: Exploring Trends and Opportunities for the Next Decade-Latest Global Market Insights. Available online: https://blog.tbrc.info/2025/03/tannin-market-growth/ (accessed on 18 June 2025).
- Falcão, L.; Araújo, M. Vegetable Tannins Used in the Manufacture of Historic Leathers. Molecules 2018, 23, 1081. [Google Scholar] [CrossRef]
- Ding, W.; Remón, J.; Jiang, Z. Environmentally-Friendly Tanning for Leather Production: A Review. Environ. Chem. Lett. 2025, 23, 839–864. [Google Scholar] [CrossRef]
- Ma, J.; Shen, Y.; Yao, H.; Fan, Q.; Zhang, W.; Yan, H. A Novel Method to Enhance the Efficiency of Aldehyde Tanning Agents via Collagen Amination. Int. J. Biol. Macromol. 2025, 287, 138564. [Google Scholar] [CrossRef]
- Gatto, V.; Conca, S.; Bardella, N.; Beghetto, V. Efficient Triazine Derivatives for Collagenous Materials Stabilization. Materials 2021, 14, 3069. [Google Scholar] [CrossRef]
- Beghetto, V.; Gatto, V.; Conca, S.; Bardella, N.; Scrivanti, A. Polyamidoamide Dendrimers and Cross-Linking Agents for Stabilized Bioenzymatic Resistant Metal-Free Bovine Collagen. Molecules 2019, 24, 3611. [Google Scholar] [CrossRef]
- Facchin, M.; Gatto, V.; Samiolo, R.; Conca, S.; Santandrea, D.; Beghetto, V. May 1,3,5-Triazine Derivatives Be the Future of Leather Tanning? A Critical Review. Environ. Pollut. 2024, 345, 123472. [Google Scholar] [CrossRef]
- Conca, S.; Gatto, V.; Samiolo, R.; Giovando, S.; Cassani, A.; Tarabra, E.; Beghetto, V. Characterisation and Tanning Effects of Purified Chestnut and Sulfited Quebracho Extracts. Collagen Leather 2024, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Beghetto, V.; Agostinis, L.; Gatto, V.; Samiolo, R.; Scrivanti, A. Sustainable Use of 4-(4,6-Dimethoxy-1,3,5-Triazin-2-Yl)-4-Methylmorpholinium Chloride as Metal Free Tanning Agent. J. Clean. Prod. 2019, 220, 864–872. [Google Scholar] [CrossRef]
- Musa, A.; Gasmelseed, G.; Faki, E.; Ibrahim, H. Synergistic Combination Tanning System for Greener Environment towards Sustainable Development in Leather Making. Sch. J. Eng. Technol. 2019, 7, 271–277. [Google Scholar] [CrossRef]
- Pradeep, S.; Sundaramoorthy, S.; Sathish, M.; Jayakumar, G.C.; Rathinam, A.; Madhan, B.; Saravanan, P.; Rao, J.R. Chromium-Free and Waterless Vegetable-Aluminium Tanning System for Sustainable Leather Manufacture. Chem. Eng. J. Adv. 2021, 7, 100108. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, J.; Wang, C.; Zhang, J.; Radnaeva, V.D.; Lin, W. Sustainable Metal-Free Leather Manufacture via Synergistic Effects of Triazine Derivative and Vegetable Tannins. Collagen Leather 2023, 5, 2. [Google Scholar] [CrossRef]
- Koopmann, A.-K.; Ehgartner, C.R.; Euchler, D.; Claros, M.; Huesing, N. Sustainable Tannin Gels for the Efficient Removal of Metal Ions and Organic Dyes. Gels 2023, 9, 822. [Google Scholar] [CrossRef]
- Sadegh, N.; Haddadi, H.; Sadegh, F.; Asfaram, A. Recent Advances and Perspectives of Tannin-Based Adsorbents for Wastewater Pollutants Elimination: A Review. Environ. Nanotechnol. Monit. Manag. 2023, 19, 100763. [Google Scholar] [CrossRef]
- Kavitha, V.U.; Kandasubramanian, B. Tannins for Wastewater Treatment. SN Appl. Sci. 2020, 2, 1081. [Google Scholar] [CrossRef]
- Teklemedhin, T.B.; Gebretsadik, T.T.; Gebrehiwet, T.B.; Gebrekidan, G.A.; Edris, M.; Teklegiorgis, N.T.; Hagos, K.B. Vegetable Tannins as Chrome-Free Leather Tanning. Adv. Mater. Sci. Eng. 2023, 2023, 1–11. [Google Scholar] [CrossRef]
- Zohra, F.-T.; Shakil, M.S.R.; Aktar, M.S.; Rahman, S.; Ahmed, S. A Novel Vegetable Tannin for Eco-Leather Production: Separation, Characterisation and Application of Facile Valorized Indigenous Acacia Nilotica Bark Extract. Bioresour. Technol. Rep. 2023, 23, 101591. [Google Scholar] [CrossRef]
- Pinto, P.C.R.; Sousa, G.; Crispim, F.; Silvestre, A.J.D.; Neto, C.P. Eucalyptus Globulus Bark as Source of Tannin Extracts for Application in Leather Industry. ACS Sustain. Chem. Eng. 2013, 1, 950–955. [Google Scholar] [CrossRef]
- Ayrapetyan, D.; Befort, N.; Hermans, F. The Role of Sustainability in the Emergence and Evolution of Bioeconomy Clusters: An Application of a Multiscalar Framework. J. Clean. Prod. 2022, 376, 134306. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Imbert, E.; Morone, P. Exploring Regional Transitions to the Bioeconomy Using a Socio-Economic Indicator: The Case of Italy. Econ. Polit. 2022, 39, 989–1021. [Google Scholar] [CrossRef]
- Wijeyekoon, S.; Suckling, I.; Fahmy, M.; Hall, P.; Bennett, P. Techno—economic Analysis of Tannin and Briquette Co--production from Bark Waste: A Case Study Quantifying Symbiosis Benefits in Biorefinery. Biofuels Bioprod. Biorefining 2021, 15, 1332–1344. [Google Scholar] [CrossRef]
- Elgailani, I.E.H.; Ishak, C.Y. Determination of Tannins of Three Common Acacia Species of Sudan. Adv. Chem. 2014, 2014, 1–5. [Google Scholar] [CrossRef]
- Cucos, A.; Budrugeac, P.; Miu, L. DMA and DSC Studies of Accelerated Aged Parchment and Vegetable-Tanned Leather Samples. Thermochim. Acta 2014, 583, 86–93. [Google Scholar] [CrossRef]
- Haroun, M.; Ahmed, M.M. Appropriateness of Anogessus Leiocarpus Leaves and Bark as Vegetable Tannins Traditionally Used in Leather Making in Sudan. GSC Adv. Res. Rev. 2023, 14, 7–13. [Google Scholar] [CrossRef]
- Bayramoğlu, E.E.; Çivi, S. Vegetable Tannins Used in Leather Industry and Extraction Methods. J. Am. Leather Chem. Assoc. 2025, 120, 62–77. [Google Scholar] [CrossRef]
- Pizzi, A. Tannins: Major Sources, Properties and Applications. In Monomers, Polymers and Composites from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2008; pp. 179–199. ISBN 978-0-08-045316-3. [Google Scholar]
- Falcão, L.; Araújo, M.E.M. Tannins Characterisation in New and Historic Vegetable Tanned Leathers Fibres by Spot Tests. J. Cult. Herit. 2011, 12, 149–156. [Google Scholar] [CrossRef]
- Conde, M.; Combalia, F.; Baquero, G.; Ollé, L.; Bacardit, A. Exploring the Feasibility of Substituting Mimosa Tannin for Pine Bark Powder. A LCA Perspective. Clean. Eng. Technol. 2022, 7, 100425. [Google Scholar] [CrossRef]
- China, C.R.; Hilonga, A.; Nyandoro, S.S.; Schroepfer, M.; Kanth, S.V.; Meyer, M.; Njau, K.N. Suitability of Selected Vegetable Tannins Traditionally Used in Leather Making in Tanzania. J. Clean. Prod. 2020, 251, 119687. [Google Scholar] [CrossRef]
- Seda Badessa, T.; Hailemariam, M.T.; Ahmed, S.M. Greener Approach for Goat Skin Tanning. Cogent Eng. 2022, 9, 2018959. [Google Scholar] [CrossRef]
- Mohammed, S.A.; Naisini, A.; Madhan, B.; Demessie, B.A. Rumex Abyssinicus (Mekmeko): A Newer Alternative for Leather Manufacture. Environ. Prog. Sustain. Energy 2020, 39, e13453. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Gelebo, G.G.; Gebre, B.M. Potential of Water Hyacinth Leaves Extract as a Leather Tanning Agent. J. Am. Leather Chem. Assoc. 2022, 117, 391–399. [Google Scholar] [CrossRef]
- Unango, F.J.; Duraisamy, R.; Ramasamy, K.M.; Birhanu, T. Characteristics and Tanning Potential of Hagenia Abyssinica Tannin Extracts and Its Possible Use in Clean Leather Production. Cogent Eng. 2021, 8, 1993520. [Google Scholar] [CrossRef]
- Teshome, Z.; Agazhi, T.; Gashew, T.; Solomon, B.; Belay, T.; Baye, B.; Temach, E. Extraction and Optimization of Tanning Material from Osyris Lanceolata Barks: Cleaner Leather Tanning Processing. J. Chem. 2023, 2023, 1–12. [Google Scholar] [CrossRef]
- Oaishi, R.T.; Ahmed, S.; Tuj-Zohra, F.; Rahman, A.; Abid, N.M. Facile Extraction and Prospective Application of Indigenous Cassia Fistula Tannin in Sustainable Leather Manufacture. J. Dispers. Sci. Technol. 2024, 45, 2134–2145. [Google Scholar] [CrossRef]
- Mustafa, M.A.; Noyon, M.A.R.; Uddin, M.E.; Islam, R. Sustainable Leather Tanning with Pontederia Crassipes Tannin: A Promising Eco-Friendly Alternative. Clean. Eng. Technol. 2024, 18, 100717. [Google Scholar] [CrossRef]
- Das, R.K.; Mizan, A.; Zohra, F.T.; Ahmed, S.; Ahmed, K.S.; Hossain, H. Extraction of a Novel Tanning Agent from Indigenous Plant Bark and Its Application in Leather Processing. J. Leather Sci. Eng. 2022, 4, 18. [Google Scholar] [CrossRef]
- Shakil, S.R.; Zenith, F.T.J.; Khan, M.R.; Tonay, W.R. Application and Valorization of Novel Indigenous Azadirachta Indica Leaf in Leather Processing. Heliyon 2024, 10, e36270. [Google Scholar] [CrossRef]
- Mutiar, S.; Kasim, A. Potential and Application of Vegetable Tanning Materials from Industrial Forest Plantation in Indonesia. J. Fibers Polym. Compos. 2023, 2, 29–45. [Google Scholar] [CrossRef]
- Khan, S.R.; Khan, S.M.; Khan, R.U. Eco-Friendly Valorization and Utilization of Plant Waste as a Source of Tannin for Leather Tanning. Sustainability 2023, 15, 3884. [Google Scholar] [CrossRef]
- Guo, L.; Qiang, T.; Ma, Y.; Wang, K.; Du, K. Optimisation of Tannin Extraction from Coriaria Nepalensis Bark as a Renewable Resource for Use in Tanning. Ind. Crops Prod. 2020, 149, 112360. [Google Scholar] [CrossRef]
- Howes, F.N. Vegetable Tanning Materials; London Butterworths Scientific Publications: London, UK, 1953. [Google Scholar]
- Auad, P.; Spier, F.; Gutterres, M. Vegetable Tannin Composition and Its Association with the Leather Tanning Effect. Chem. Eng. Commun. 2020, 207, 722–732. [Google Scholar] [CrossRef]
- Mugedo, J.Z.A.; Waterman, P.G. Sources of Tannin: Alternatives to Wattle (Acacia Mearnsii) among Indigenous Kenyan Species. Econ. Bot. 1992, 46, 55–63. [Google Scholar] [CrossRef]
- Cuong, D.X.; Hoan, N.X.; Dong, D.H.; Thuy, L.T.M.; Van Thanh, N.; Ha, H.T.; Tuyen, D.T.T.; Chinh, D.X. Tannins: Extraction from Plants. In Tannins—Structural Properties, Biological Properties and Current Knowledge; Aires, A., Ed.; IntechOpen: London, UK, 2020; ISBN 978-1-78984-796-3. [Google Scholar]
- Marzoni, M.; Castillo, A.; Franzoni, A.; Nery, J.; Fortina, R.; Romboli, I.; Schiavone, A. Effects of Dietary Quebracho Tannin on Performance Traits and Parasite Load in an Italian Slow-Growing Chicken (White Livorno Breed). Animals 2020, 10, 684. [Google Scholar] [CrossRef]
- Cesprini, E.; Šket, P.; Causin, V.; Zanetti, M.; Tondi, G. Development of Quebracho (Schinopsis Balansae) Tannin-Based Thermoset Resins. Polymers 2021, 13, 4412. [Google Scholar] [CrossRef]
- Kuria, A.; Ombui, J.; Onyuka, A.; Sasia, A.; Kipyegon, C.; Kaimenyi, P.; Ngugi, A. Quality Evaluation of Leathers Produced by Selected Vegetable Tanning Materials from Laikipia County, Kenya. J. Agric. Vet. Sci. 2016, 9, 13. [Google Scholar] [CrossRef]
- Schropfer, M.; Meyer, M. Investigations Towards the Binding Mechanisms of Vegetable Tanning Agents to Collagen. Res. J. Phytochem. 2016, 10, 58–66. [Google Scholar] [CrossRef]
- Micheli, L.; Ferrara, V.; Akande, T.; Khatib, M.; Salawu, S.O.; Ciampi, C.; Lucarini, E.; Di Cesare Mannelli, L.; Mulinacci, N.; Ghelardini, C. Ellagitannins and Triterpenoids Extracts of Anogeissus Leiocarpus Stem Bark Extracts: Protective Effects against Osteoarthritis. Phytother. Res. 2023, 37, 2381–2394. [Google Scholar] [CrossRef] [PubMed]
- Salih, E.Y.A.; Kanninen, M.; Sipi, M.; Luukkanen, O.; Hiltunen, R.; Vuorela, H.; Julkunen-Tiitto, R.; Fyhrquist, P. Tannins, Flavonoids and Stilbenes in Extracts of African Savanna Woodland Trees Terminalia Brownii, Terminalia Laxiflora and Anogeissus Leiocarpus Showing Promising Antibacterial Potential. S. Afr. J. Bot. 2017, 108, 370–386. [Google Scholar] [CrossRef]
- Senna Singueana. Available online: https://prota.prota4u.org/protav8.asp?g=pe&p=Senna+singueana (accessed on 18 June 2025).
- Leather and Leather Goods Exports from Bangladesh: Performance, Prospects and Policy Priorities. Available online: https://bei-bd.org/storage/app/uploads/public/603/f3d/a04/603f3da04982e520432210.pdf (accessed on 20 June 2025).
- Bahorun, T.; Neergheen, V.; Aruoma, O. Phytochemical Constituents of Cassia fistula. Afr. J. Food Agric. Nutr. Dev. 2005, 4, 1530–1540. [Google Scholar] [CrossRef]
- Adiguzel-Zengin, A.C.; Zengin, G.; Kilicarislan-Ozkan, C.; Dandar, U.; Kilic, E. Characterisation and Application of Acacia Nilotica L. as an Alternative Vegetable Tanning Agent for Leather Processing. Fresenius Environ. Bull. 2017, 26, 7319–7326. [Google Scholar]
- Alhaji, M.H.; Abdullahi, M.S.; Oparah, E.N.; Bitrus, H.; Rigit, A.R.H. Production of Tannins from Acacia Nilotica Pods for the Leather Manufacturing Industry—Extractions, Characterisation, and Optimization Using Design of Experiment. BioResources 2020, 15, 2212–2226. [Google Scholar] [CrossRef]
- Ali, A.A.E.H.; Gasm Elseed, G.A.A.; Ahmed, A.E.H. Utilization of Improved Indigenous Tannins of Grain Powder (Acacia Nilotica) in Eco Friendly Tannage. Int. J. Multidiscip. Curr. Res. 2016, 4, 14–20. [Google Scholar]
- Nugraha, A.W.; Suparno, O.; Indrasti, N.S.; Hoerudin, H. The Properties of Wet Blue Added Crude Enzyme from Rhizopus Oligosporus in the Acid Bating Process. Trop. Anim. Sci. J. 2022, 45, 104–111. [Google Scholar] [CrossRef]
- Sole, R.; Gatto, V.; Conca, S.; Bardella, N.; Morandini, A.; Beghetto, V. Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis. Molecules 2021, 26, 191. [Google Scholar] [CrossRef]
- ISO 3380-IULTCS/IUP 16; Leather—Physical and Mechanical Tests—Determination of Shrinkage Temperature up to 100 °C. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 3376-IULTCS/IUP 6; Leather—Physical and Mechanical Tests—Determination of Tensile Strength and Percent-age Elongation. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 3377-2-IULTCS/IUP 8; Leather—Physical and Mechanical Tests—Determination of Tear Load. International Organization for Standardization: Geneva, Switzerland, 2016.
- United Nations Industrial Development Organization. Acceptable Quality Standards in the Leather and Footwear Industry; United Nations Industrial Development Organization: Vienna, Austria, 1996; ISBN 92-1-106301-9. [Google Scholar]
- ISO 17235-IULTCS/IUP 36; Leather—Physical and Mechanical Tests—Determination of Softness. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 2418-IULTCS/IUP 2; Leather—Chemical, Physical, Mechanical and Fastness Tests—Position and Preparation of Specimens for Testing. International Organization for Standardization: Geneva, Switzerland, 2023.
- Mourya, N.R.; Bargali, K.; Bargali, S.S. Impacts of Coriaria Nepalensis Colonization on Vegetation Structure and Regeneration Dynamics in a Mixed Conifer Forest of Indian Central Himalaya. J. For. Res. 2019, 30, 305–317. [Google Scholar] [CrossRef]
- American Public Healt Association. Standard Method for the Examination of Water and Wastewater, 16th ed.; Greenberg, T., Ed.; American Public Healt Association: Washington, DC, USA, 1985. [Google Scholar]
- Clesceri, L.S.; Greenberg, A.E.; Trussell, R.R. Standard Methods for the Examination of Water and Wastewater, 17th ed.; American Public Healt Association: Washington, DC, USA, 1989. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemist: Washington, DC, USA, 1996. [Google Scholar]
Botanical Name | Common Name | Geographical Origin | T/N (a) | T (%) | TPC (%) a | TFC (%) a | Yield (%) a | Ash (%) | pH | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
CONDENSED TANNINS | ||||||||||
Africa | ||||||||||
A. xanthophloea | Fever tree | Northern Tanzania | 6.6 | 33 | 13 | 10 | 40 b | [50] | ||
E. divinorum | Diamond leaf | Northern Tanzania | 0.9 | 11 | 3 | 2 | 16 b | |||
E. racemosa | Sea guarrie | Northern Tanzania | 0.3 | 7 | 2 | 2 | 47 b | |||
A. mearnsii | 7.7 | 47 | 18 | 12 | 55 b | |||||
Anogessus leiocarpus | African birch (leaves) | Sudan | 1.3 | 16 | 22.4 | 30.7 | 38 b | [45] | ||
Anogessus leiocarpus | African birch (barks) | Sudan | 1.1 | 10 | 9.6 | 12.7 | 17 b | |||
Cassia singueana | Winter cassia | Northern Ethiopia | 37 | 37 c | 3.3 | 5.2 | [37] | |||
Solanum incanum | Sodom apple | Southern Ethiopia | 1.3 | 12 | 17 d | 5.2 | [51] | |||
Rumex abyssinicus | Mekmeko | Ethiopia | 1.1 | 18 | [52] | |||||
Eichhornia crassipes | Water hyacinth (leaves) | Ethiopia | 4 | 14.8 | 6.3 | [53] | ||||
Eichhornia crassipes | Water hyacinth (stems) | Ethiopia | 3 | 15.6 | 5.8 | |||||
Hagenia abyssinica | African redwood | Ethiopia | 2.1 | 15 | 23 e | 4.7 | [54] | |||
Osyris lanceolata | African sandalwood | Ethiopia | 0.9 | 18 | 20 | 4.7 | [55] | |||
Asia | ||||||||||
Cassia fistula | Golden shower tree | Bangladesh | 159 f | 4.0 | [56] | |||||
Pontederia crassipes | Water hyacinth | Bangladesh | >10 | 26 g | 4.2 | [57] | ||||
Xylocarpus granatum | Dhundul | Bangladesh | 121 h | 31 i | 4 | [58] | ||||
Mimosa | 114 h | 4.8 | ||||||||
Quebracho | 130 h | 4.9 | ||||||||
Azadirachta indica | Neem tree (leaf powder) | Bangladesh | 0.6 | 10 | 4.9 | [59] | ||||
Azadirachta indica | Neem tree (leaf extract) | Bangladesh | 1.8 | 12 | 4.8 | |||||
Mimosa | 2.38 | 64 | 4.9 | |||||||
A. mangium | Silver wattle | Indonesia | 11 | 24 j | [60] | |||||
A. auriculiformis | Silver wattle | 12 | 26 j | |||||||
Eucalyptus globulus | Eucalyptus | Pakistan | 125 k | 199 l | [61] | |||||
A. Nilotica L. | 196 k | 319 l | ||||||||
HYDROLYSABLE TANNINS | ||||||||||
Asia | ||||||||||
Coriaria nepalensis | Masuri berry | China | 0.8 | 43 | 16 m | 7.5 | [62] | |||
Valonia |
VT Name | BOD (mg/L) | COD (mg/L) | TDS (mg/L) | Refs. |
---|---|---|---|---|
Cassia singueana | 1.17 ± 0.08 a | 3.35 ± 0.03 a | 18.21 ± 0.07 a | [37,88,89] |
Mimosa | 1.24 ± 0.07 a | 3.47 ± 0.05 a | 22.63 ± 0.08 a | |
H. abyssinica | 3.90 ± 0.05 b | 7.35 ± 0.85 b | 59.45 ± 1.15 b | [54,90] |
Mimosa | 3.85 ± 0.05 b | 8.30 ± 0.20 b | 58.70 ± 1.80 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beghetto, V.; Gatto, V.; Conca, S. Could Fostering Alternative Plant Feedstocks Improve the Sustainability of Leather Manufacturing? A Critical Review. Materials 2025, 18, 3759. https://doi.org/10.3390/ma18163759
Beghetto V, Gatto V, Conca S. Could Fostering Alternative Plant Feedstocks Improve the Sustainability of Leather Manufacturing? A Critical Review. Materials. 2025; 18(16):3759. https://doi.org/10.3390/ma18163759
Chicago/Turabian StyleBeghetto, Valentina, Vanessa Gatto, and Silvia Conca. 2025. "Could Fostering Alternative Plant Feedstocks Improve the Sustainability of Leather Manufacturing? A Critical Review" Materials 18, no. 16: 3759. https://doi.org/10.3390/ma18163759
APA StyleBeghetto, V., Gatto, V., & Conca, S. (2025). Could Fostering Alternative Plant Feedstocks Improve the Sustainability of Leather Manufacturing? A Critical Review. Materials, 18(16), 3759. https://doi.org/10.3390/ma18163759