A Review of Novel Die Attach Materials for High-Temperature WBG Power Electronic Applications
Abstract
1. Introduction
2. TLP Bonding
2.1. Addition of Ni
2.2. Addition of SiC NWs
2.3. Pre-Soldering Annealing of Ni Pads
3. Transient Liquid-Phase Sintering
3.1. High-Sn-Content Cu@Sn Core/Shell Powder
3.2. Interlayer of Cu Powders Between Sn Foils
3.3. Sn-Coated Cu Foam (CF@Sn) Preform
3.4. Cu Foam/SAC305 Composite Solder Preform
3.5. Cu-SnAgCu Molded Sheets
3.6. Cu-Sn Nanocomposite Interlayer (Cu-Sn NI)
3.7. Sn-Cu Coated Multi-Walled Carbon Nanotubes (MWCNTs)
3.8. Surface Structure Manipulation
4. Nanoparticle Sintering
4.1. Nanoparticle Paste
4.1.1. Cu@Ag Nanoparticles
4.1.2. Self-Reducible Cu Nanoparticles
4.1.3. Liquid-Metal-Enhanced Nano/Microparticle Paste
4.1.4. Cu Nanoparticle Paste with Zn Powder
4.1.5. Bimodal-Sized Cu Nanoparticle Pastes
4.2. Organic-Free Nanoparticle Film
4.2.1. Ag Nanoparticle Films
4.2.2. Ag-Pd Nanoalloy Film
4.2.3. Cu Nanoparticle Film
4.3. High-Thermal-Conductivity and Low-CTE Composite Paste
4.3.1. Ag/Diamond Composite Paste
4.3.2. Ag/Si Composite Paste
5. Conclusions
- (1)
- Production efficiency and yield
- (2)
- Strength and high-temperature reliability
- (3)
- Thermal conductivity and coefficient of thermal expansion (CTE)
- (4)
- Thermal shocking and thermal cycling
- (5)
- Gas emission
- (6)
- Economic efficiency
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vivona, M.; Jennings, M. Silicon Carbide: Material Growth, Device Processing, and Applications. Materials 2024, 17, 4571. [Google Scholar] [CrossRef]
- Capan, I. Wide-Bandgap Semiconductors for Radiation Detection: A Review. Materials 2024, 17, 1147. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, Z.; Lou, X. A review of WBG and Si electronics hybrid applications. Chin. J. Electr. Eng. 2021, 7, 1–20. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Jiu, J.; Long, X.; Suganuma, K. Thermal fatigue behaviors of SiC power module by Ag sinter joining under harsh thermal shock test. China Weld. 2022, 31, 15–21. [Google Scholar] [CrossRef]
- Qin, Y.; Albano, B.; Spencer, J.; Lundh, J.S.; Wang, B.; Buttay, C.; Tadjer, M.; DiMarino, C.; Zhang, Y. Thermal management and packaging of wide and ultra-wide bandgap power electronics: A review and perspective. J. Phys. D Appl. Phys. 2023, 56, 093001. [Google Scholar] [CrossRef]
- Yuvaraja, S.; Khandelwal, V.; Tang, X.; Li, X. Wide bandgap semiconductor-based integrated circuits. Chip 2023, 2, 100072. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, Z.; Zhao, Z.; Liu, Y.; Li, D.; Mei, Y.H. Influence of Au Substrate Crystal Structure on Ag–Au Interdiffusion for WBG Packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2025, 15, 858–867. [Google Scholar] [CrossRef]
- Sun, L.; Chen, M.-h.; Zhang, L.; He, P.; Xie, L.-s. Recent progress in SLID bonding in novel 3D-IC technologies. J. Alloys Compd. 2020, 818, 152825. [Google Scholar] [CrossRef]
- Chinnam, R.K.; Fauteux, C.; Neuenschwander, J.; Janczak-Rusch, J. Evolution of the microstructure of Sn-Ag-Cu solder joints exposed to ultrasonic waves during solidification. Acta Mater. 2011, 59, 1474–1481. [Google Scholar] [CrossRef]
- Ji, H.; Qiao, Y.; Li, M. Rapid formation of intermetallic joints through ultrasonic-assisted die bonding with Sn–0.7Cu solder for high temperature packaging application. Scr. Mater. 2016, 110, 19–23. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Liu, J.H.; Li, Z.L.; Zhao, Y.X.; Niu, H.W.; Song, X.G.; Dong, H.J. Non-interfacial growth of Cu3Sn in Cu/Sn/Cu joints during ultrasonic-assisted transient liquid phase soldering process. Mater. Lett. 2017, 186, 283–288. [Google Scholar] [CrossRef]
- Liu, J.H.; Zhao, H.Y.; Li, Z.L.; Song, X.G.; Dong, H.J.; Zhao, Y.X.; Feng, J.C. Study on the microstructure and mechanical properties of Cu-Sn intermetallic joints rapidly formed by ultrasonic-assisted transient liquid phase soldering. J. Alloys Compd. 2017, 692, 552–557. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Liu, J.H.; Li, Z.L.; Song, X.G.; Zhao, Y.X.; Niu, H.W.; Tian, H.; Dong, H.J.; Feng, J.C. A Comparative Study on the Microstructure and Mechanical Properties of Cu6Sn5 and Cu3Sn Joints Formed by TLP Soldering With/Without the Assistance of Ultrasonic Waves. Metall. Mater. Trans. A 2018, 49, 2739–2749. [Google Scholar] [CrossRef]
- Liu, B.; Tian, Y.; Feng, J.; Wang, C. Enhanced shear strength of Cu–Sn intermetallic interconnects with interlocking dendrites under fluxless electric current-assisted bonding process. J. Mater. Sci. 2016, 52, 1943–1954. [Google Scholar] [CrossRef]
- Liu, B.; Tian, Y.; Wang, C.; An, R.; Wang, C. Ultrafast formation of unidirectional and reliable Cu3Sn-based intermetallic joints assisted by electric current. Intermetallics 2017, 80, 26–32. [Google Scholar] [CrossRef]
- Feng, J.; Hang, C.; Tian, Y.; Liu, B.; Wang, C. Growth kinetics of Cu6Sn5 intermetallic compound in Cu-liquid Sn interfacial reaction enhanced by electric current. Sci. Rep. 2018, 8, 1775. [Google Scholar] [CrossRef]
- Rodriguez, R.I.; Ibitayo, D.; Quintero, P.O. Kinetics of Dissolution and Isothermal Solidification for Gold-Enriched Solid–Liquid Interdiffusion (SLID) Bonding. J. Electron. Mater. 2013, 42, 2677–2685. [Google Scholar] [CrossRef]
- Mokhtari, O. A review: Formation of voids in solder joint during the transient liquid phase bonding process—Causes and solutions. Microelectron. Reliab. 2019, 98, 95–105. [Google Scholar] [CrossRef]
- Atieh, A.M.; Cooke, K.O.; Epstein, M. Transient liquid phase (TLP) bonding as reaction–controlled diffusion. Mater. Today Commun. 2022, 33, 104293. [Google Scholar] [CrossRef]
- Feng, H.; Huang, J.; Yang, J.; Zhou, S.; Zhang, R.; Chen, S. A Transient Liquid Phase Sintering Bonding Process Using Nickel-Tin Mixed Powder for the New Generation of High-Temperature Power Electronics. J. Electron. Mater. 2017, 46, 4152–4159. [Google Scholar] [CrossRef]
- Hu, T.; Chen, H.; Li, M.; Wang, C. Microstructure evolution and thermostability of bondline based on Cu@Sn core-shell structured microparticles under high-temperature conditions. Mater. Des. 2017, 131, 196–203. [Google Scholar] [CrossRef]
- Peng, X.; Wang, Y.; Ye, Z.; Huang, J.; Yang, J.; Chen, S.; Zhao, X. Transient Liquid-Phase Sintering Bonding Based on Cu40Sn60 (wt.%) Core/Shell Particles for High-Temperature Power Device Packaging. J. Electron. Mater. 2021, 50, 7283–7292. [Google Scholar] [CrossRef]
- Peng, X.; Wang, Y.; Wang, W.; Ye, Z.; Yang, J.; Huang, J. Kinetics of Cu6Sn5 and Cu3Sn intermetallic compounds growth and isothermal solidification during Cu-Sn transient liquid phase sintering process. J. Alloys Compd. 2023, 949, 169631. [Google Scholar] [CrossRef]
- Feng, H.; Huang, J.; Chen, S.; Zhao, X. Review on the Development of High-Temperature Resistant Packaging and Interconnection for New-Generation Power Chips at Home and Abroad. Trans. China Weld. Inst. 2016, 37, 120–128+134. [Google Scholar]
- Ke, X.; Xie, B.; Wang, Z.; Zhang, J.; Wang, J.; Li, Z.; He, H.; Wang, L. Progress of Interconnect Materials in the Third-generation Semiconductor and Their Low-temperature Sintering of Copper Nanoparticles. J. Inorg. Mater. 2024, 39, 17–31. [Google Scholar] [CrossRef]
- Paknejad, S.A.; Mannan, S.H. Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Reliab. 2017, 70, 1–11. [Google Scholar] [CrossRef]
- Hou, F.; Sun, Z.; Su, M.; Fan, J.; You, X.; Li, J.; Wang, Q.; Cao, L.; Zhang, G. Review of Die-Attach Materials for SiC High-Temperature Packaging. IEEE Trans. Power Electron. 2024, 39, 13471–13486. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, D.; Yan, H.; Li, C.-F.; Chen, C.; Li, W. Low-temperature copper sinter-joining technology for power electronics packaging: A review. J. Mater. Process. Technol. 2024, 332, 118526. [Google Scholar] [CrossRef]
- Liu, C.; Gan, G.; Jiang, Z.; Huang, T.; Ma, P.; Chen, S.; Xu, Q.; Bao, C.; Cheng, D.; Wu, Y. Progress advances in full IMC solder joints for power electronic. Chin. J. Nonferrous Met. 2022, 32, 2876–2896. [Google Scholar] [CrossRef]
- Liu, J.; Lei, Z.; Wang, Q.; Mou, Y.; Chen, M. Fabrication of Sn-plated Cu foam for high-efficiency transient-liquid-phase bonding. Mater. Today Commun. 2022, 30, 103058. [Google Scholar] [CrossRef]
- Heo, M.-H.; Seo, Y.-J.; Yoon, J.-W. Novel and fast transient liquid phase bonding using etched Cu foam/Sn–3.0Ag–0.5Cu composite solder preform. Mater. Today Commun. 2023, 35, 105730. [Google Scholar] [CrossRef]
- Jiang, H.; Robertson, S.; Liang, S.; Zhou, Z.; Zhao, L.; Liu, C. Rapid formation of intermetallic joint using Cu-Sn nanocomposite interlayer based on patterned copper nanowire array. Mater. Lett. 2022, 307, 131074. [Google Scholar] [CrossRef]
- Rajendran, S.H.; Do Hyun, J.; Wook Sang, J.; Jae Pil, J. Transient Liquid Phase Bonding of Copper Using Sn Coated Cu MWCNT Composite Powders for Power Electronics. Appl. Sci. 2019, 9, 529. [Google Scholar] [CrossRef]
- Sun, Z.; Li, J.; Yu, M.; Kathaperumal, M.; Wong, C.-P. A review of the thermal conductivity of silver-epoxy nanocomposites as encapsulation material for packaging applications. Chem. Eng. J. 2022, 446, 137319. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, P.; Lu, D.; Pan, H.; Liu, X.; Xu, C.; Wei, J.; Li, M.; Ji, H. A supersaturated Cu-Ag nanoalloy joint with ultrahigh shear strength and ultrafine nanoprecipitates for power electronic packaging. J. Mater. Sci. Technol. 2023, 145, 56–65. [Google Scholar] [CrossRef]
- Jia, Q.; Zou, G.; Zhang, H.; Wang, W.; Ren, H.; A, Z.; Deng, Z.; Yan, S.; Shen, D.; Liu, L. Sintering mechanism of Ag-Pd nanoalloy film for power electronic packaging. Appl. Surf. Sci. 2021, 554, 149579. [Google Scholar] [CrossRef]
- Wu, Y.; Zou, G.; Wang, S.; Guo, W.; Zhang, H.; Peng, P.; Feng, B.; Liu, L. Rapid and low temperature sintering bonding using Cu nanoparticle film for power electronic packaging. Appl. Surf. Sci. 2022, 603, 154422. [Google Scholar] [CrossRef]
- Chu, K.; Sohn, Y.; Moon, C. A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding. Scr. Mater. 2015, 109, 113–117. [Google Scholar] [CrossRef]
- Rautiainen, A.; Xu, H.; Osterlund, E.; Li, J.; Vuorinen, V.; Paulasto-Krockel, M. Microstructural Characterization and Mechanical Performance of Wafer-Level SLID Bonded Au-Sn and Cu-Sn Seal Rings for MEMS Encapsulation. J. Electron. Mater. 2015, 44, 4533–4548. [Google Scholar] [CrossRef]
- Tollefsen, T.A.; Larsson, A.; Taklo, M.M.V.; Neels, A.; Maeder, X.; Høydalsvik, K.; Breiby, D.W.; Aasmundtveit, K. Au-Sn SLID Bonding: A Reliable HT Interconnect and Die Attach Technology. Metall. Mater. Trans. B 2013, 44, 406–413. [Google Scholar] [CrossRef]
- Wu, Z.-Y.; Wang, T.-C.; Wang, Y.-C.; Song, R.-W.; Tsai, S.-Y.; Duh, J.-G. Enhancing mechanical properties via adding Ni and Zn in Cu/Sn3.5Ag/Cu transient liquid phase bonding for advanced electronic packaging. J. Mater. Sci. Mater. Electron. 2022, 33, 3016–3023. [Google Scholar] [CrossRef]
- Chao, C.-S.; Wu, Z.-Y.; Lee, Y.-K.; Huang, P.-W.; Chang, S.-Y.; Tsai, S.-Y.; Duh, J.-G. Enhancing mechanical properties via the dual effect of Ni addition and temperature gradient for 5 μm Cu/Sn-3.0Ag-0.5Cu/Cu transient liquid phase bonding. Mater. Sci. Eng. A 2023, 870, 144863. [Google Scholar] [CrossRef]
- Abdul Razak, N.R.; Tan, X.F.; Mohd Salleh, M.A.A.; McDonald, S.D.; Bermingham, M.J.; Yasuda, H.; Nogita, K. Controlling the distribution of porosity during transient liquid phase bonding of Sn-based solder joint. Mater. Today Commun. 2022, 31, 103248. [Google Scholar] [CrossRef]
- Li, M.-l.; Zhang, L.; Gao, L.-l.; Wang, X.; Chen, C.; Lu, X. Interfacial structures and mechanical properties of Cu/Sn/Cu containing SiC nanowires under transient liquid phase bonding. Intermetallics 2022, 148, 107641. [Google Scholar] [CrossRef]
- Njuki, M.; Thekkut, S.; Das, R.; Borgesen, P.; Dimitrov, N. Preventing Void Growth Between Ni3Sn4 and Solder. J. Electron. Mater. 2022, 51, 6333–6346. [Google Scholar] [CrossRef]
- Fujino, M.; Narusawa, H.; Kuramochi, Y.; Higurashi, E.; Suga, T.; Shiratori, T.; Mizukoshi, M. Transient liquid-phase sintering using silver and tin powder mixture for die bonding. Jpn. J. Appl. Phys. 2016, 55, 04EC14. [Google Scholar] [CrossRef]
- Feng, H.; Huang, J.; Peng, X.; Lv, Z.; Wang, Y.; Yang, J.; Chen, S.; Zhao, X. Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging. J. Electron. Mater. 2018, 47, 4642–4652. [Google Scholar] [CrossRef]
- Jeong, S.-E.; Jung, S.-B.; Yoon, J.-W. Fast formation of Ni–Sn intermetallic joints using Ni–Sn paste for high-temperature bonding applications. J. Mater. Sci. Mater. Electron. 2020, 31, 15048–15060. [Google Scholar] [CrossRef]
- Jeong, S.-R.; Jung, S.-B.; Yoon, J.-W. High-temperature stability of Ni-Sn intermetallic joints for power device packaging. J. Alloys Compd. 2021, 890, 161778. [Google Scholar] [CrossRef]
- Jeong, S.-E.; Yoon, J.-W. Intermetallic compound transformation and mechanical strength of Ni–Sn transient liquid phase sinter-bonded joints in an extreme high-temperature environment. J. Mater. Sci. Mater. Electron. 2022, 33, 6616–6626. [Google Scholar] [CrossRef]
- Liu, J.; Wang, K.; Yu, F.; Hang, C.; Fu, X.; Chen, H.; Li, M. A paste based on Cu@Sn@Ag particles for die attachment under ambient atmosphere in power device packaging. J. Mater. Sci. Mater. Electron. 2020, 31, 1808–1816. [Google Scholar] [CrossRef]
- Ishizaki, T.; Watanabe, R. Pressureless Bonding by Use of Cu and Sn Mixed Nanoparticles. J. Electron. Mater. 2014, 43, 4413–4420. [Google Scholar] [CrossRef]
- Sakamoto, I.; Jeong, D.; Tatsumi, H.; Nishikawa, H. Microstructure and Bonding Properties of Transient Liquid-Phase Bonding using Cu-SnAgCu Molded Sheets By High-Pressure Powder Compression. J. Electron. Mater. 2025, 54, 773–783. [Google Scholar] [CrossRef]
- Shao, H.; Wu, A.; Bao, Y.; Zhao, Y.; Zou, G.; Liu, L. Novel transient liquid phase bonding through capillary action for high-temperature power electronics packaging. Mater. Sci. Eng. A 2018, 724, 231–238. [Google Scholar] [CrossRef]
- Jiang, H.; Robertson, S.; Liang, S.; Zhou, Z.; Zhao, L.; Liu, C. Defect formation and mitigation in Cu/Cu joints formed through transient liquid phase bonding with Cu-Sn nanocomposite interlayer. Microelectron. Reliab. 2022, 138, 114681. [Google Scholar] [CrossRef]
- Hsu, S.-Y.; Chen, C.-M.; Song, J.-M.; Nishikawa, H. Surface modification of Cu electroplated layers for Cu–Sn transient liquid phase bonding. Mater. Chem. Phys. 2021, 277, 125621. [Google Scholar] [CrossRef]
- Yoon, J.-W.; Bae, S.; Lee, B.-S.; Jung, S.-B. Bonding of power device to ceramic substrate using Sn-coated Cu micro paste for high-temperature applications. Appl. Surf. Sci. 2020, 515, 146060. [Google Scholar] [CrossRef]
- Liu, X.; He, S.; Nishikawa, H. Thermally stable Cu3Sn/Cu composite joint for high-temperature power device. Scr. Mater. 2016, 110, 101–104. [Google Scholar] [CrossRef]
- Hang, C.; Liu, J.; Wang, J.; Fu, X.; Chen, H.; Li, M. A low-temperature bonding method for high power device packaging based on In-infiltrated nanoporous Cu. J. Mater. Sci. Mater. Electron. 2020, 31, 14157–14164. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Liu, J.; Mou, Y.; Peng, Y.; Chen, M. Facile preparation of Cu foam/Sn composite preforms for low-temperature interconnection of high-power electronics. J. Mater. Sci. Mater. Electron. 2021, 32, 12547–12556. [Google Scholar] [CrossRef]
- Sun, L.; Chen, M.-h.; Zhang, L. Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. J. Alloys Compd. 2019, 786, 677–687. [Google Scholar] [CrossRef]
- Yang, T.L.; Aoki, T.; Matsumoto, K.; Toriyama, K.; Horibe, A.; Mori, H.; Orii, Y.; Wu, J.Y.; Kao, C.R. Full intermetallic joints for chip stacking by using thermal gradient bonding. Acta Mater. 2016, 113, 90–97. [Google Scholar] [CrossRef]
- Kahler, J.; Heuck, N.; Stranz, A.; Waag, A.; Peiner, E. Pick-and-Place Silver Sintering Die Attach of Small-Area Chips. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 2, 199–207. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, W.; Bai, H.; Zou, G.; Liu, L.; Peng, P.; Guo, W. Microstructural and mechanical evolution of silver sintering die attach for SiC power electronics during high temperature applications. J. Alloys Compd. 2019, 774, 487–494. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, C.; Wen, Y.; Xue, Z.; Zhou, X.; Shi, D.; Hu, G.; Xie, X. Novel micro-nano epoxy composites for electronic packaging application: Balance of thermal conductivity and processability. Compos. Sci. Technol. 2021, 209, 108760. [Google Scholar] [CrossRef]
- Kahler, J.; Heuck, N.; Wagner, A.; Stranz, A.; Peiner, E.; Waag, A. Sintering of Copper Particles for Die Attach. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 2, 1587–1591. [Google Scholar] [CrossRef]
- Cao, H.; Yuan, J.; Wu, X.; Li, T.; Wang, L.; Suhr, J.; Zhang, Z. Micron- and nano-sized copper sintering pastes: Materials, processes, and applications. Mater. Des. 2025, 256, 114291. [Google Scholar] [CrossRef]
- Noordin, N.M.; Cheong, K.Y. Effects of Various Heating Rate and Sintering Temperatures on the Microstructural and Die-Shear Strength of Sintered Ag-Cu Nanopaste. Procedia Eng. 2017, 184, 611–615. [Google Scholar] [CrossRef]
- Mu, F.; Ren, H.; Liu, L.; Wang, Y.; Zou, G.; Suga, T. Nano-Cu paste sintering in Pt-catalyzed formic acid vapor for Cu bonding at a low temperature. In Proceedings of the 2019 International Conference on Electronics Packaging (ICEP), Niigata, Japan, 17–20 April 2019. [Google Scholar] [CrossRef]
- Liu, W.; Wang, H.; Huang, K.-S.; Wu, A.T. Low temperature and pressureless Cu-to-Cu direct bonding by green synthesized Cu nanoparticles. J. Taiwan Inst. Chem. Eng. 2021, 125, 394–401. [Google Scholar] [CrossRef]
- Wang, K.; Wen, J.; Feng, J.; Wang, Y.; Wu, P.; Wang, S.; Tian, Y. A novel Cu@Ag nano paste with low porosity for rapidly sintering in air condition. Mater. Charact. 2024, 209, 113762. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, H.; Li, J.; Zhu, P.; Sun, R. Cu-Cu joint formation by low-temperature sintering of self-reducible Cu nanoparticle paste under ambient condition. Appl. Surf. Sci. 2021, 570, 151220. [Google Scholar] [CrossRef]
- Liu, G.; Shen, J.; Tang, Q.; Li, H.; Ma, C.; Zhang, Y. Effect of liquid metal enhanced Cu nano/micro particle paste on performance of Cu-Cu joints. Mater. Today Commun. 2023, 36, 106416. [Google Scholar] [CrossRef]
- Satoh, T.; Usui, M. Effect of zinc particle mixing on properties of copper–nanoparticle/bismuth–tin solder hybrid joints. J. Mater. Sci. Mater. Electron. 2018, 29, 20415–20423. [Google Scholar] [CrossRef]
- Xiao, Y.-b.; Gao, Y.; Liu, Z.-Q.; Sun, R.; Liu, Y. Cu–Cu bonding using bimodal submicron–nano Cu paste and its application in die attachment for power device. J. Mater. Sci. Mater. Electron. 2022, 33, 12604–12614. [Google Scholar] [CrossRef]
- Hou, B.; Zhou, M.B.; Zhang, X.P. A comprehensive and in-depth study of pressureless and low-temperature in-air sintering performance of bimodal-sized Cu nanoparticle pastes for die attachment and the joint strengthening mechanism. J. Mater. Sci. Mater. Electron. 2025, 36, 298. [Google Scholar] [CrossRef]
- Fang, J.-P.; Cai, J.; Wang, Q.; Zheng, K.; Zhou, Y.-K.; Geng, Z.-T. Low temperature Au-Au bonding using Ag nanoparticles as intermediate for die attachment in power device packaging. Appl. Surf. Sci. 2022, 593, 153436. [Google Scholar] [CrossRef]
- Kähler, J.; Stranz, A.; Waag, A.; Peiner, E.; Jung, S.; Kruspe, T. Sinter-attach of Peltier dice for cooling of deep-drilling electronics. In Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 13–16 May 2012. [Google Scholar] [CrossRef]
- Xu, Y.; Qiu, X.; Li, W.; Wang, S.; Ma, N.; Ueshima, M.; Chen, C.; Suganuma, K. Development of high thermal conductivity of Ag/diamond composite sintering paste and its thermal shock reliability evaluation in SiC power modules. J. Mater. Res. Technol. 2023, 26, 1079–1093. [Google Scholar] [CrossRef]
- Li, W.; Chen, C.; Nishijima, M.; Ueshima, M.; Nishikawa, H.; Suganuma, K. Improved thermal shock reliability of Ag paste sintered joint by adjusted coefficient of thermal expansion with Ag-Si atomized particles addition. Mater. Des. 2024, 246, 113308. [Google Scholar] [CrossRef]
- Choi, E.B.; Lee, J.-H. Dewetting behavior of Ag in Ag-coated Cu particle with thick Ag shell. Appl. Surf. Sci. 2019, 480, 839–845. [Google Scholar] [CrossRef]
- Li, M.; Xiao, Y.; Zhang, Z.; Yu, J. Bimodal Sintered Silver Nanoparticle Paste with Ultrahigh Thermal Conductivity and Shear Strength for High Temperature Thermal Interface Material Applications. ACS Appl. Mater. Interfaces 2015, 7, 9157–9168. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Wang, L.; Mei, Y.-H.; Lu, G.-Q. A novel multiscale silver paste for die bonding on bare copper by low-temperature pressure-free sintering in air. Mater. Des. 2018, 140, 64–72. [Google Scholar] [CrossRef]
- Morisada, Y.; Nagaoka, T.; Fukusumi, M.; Kashiwagi, Y.; Yamamoto, M.; Nakamoto, M. A Low-Temperature Bonding Process Using Mixed Cu–Ag Nanoparticles. J. Electron. Mater. 2010, 39, 1283–1288. [Google Scholar] [CrossRef]
- Xiao, K.; Ngo, K.D.T.; Lu, G.-Q. A diffusion-viscous analysis and experimental verification of defect formation in sintered silver bond-line. J. Mater. Res. 2014, 29, 1006–1017. [Google Scholar] [CrossRef]
- Wang, T.; Chen, X.; Lu, G.-Q.; Lei, G.-Y. Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection. J. Electron. Mater. 2007, 36, 1333–1340. [Google Scholar] [CrossRef]
- Feng, B.; Shen, D.; Wang, W.; Deng, Z.; Lin, L.; Ren, H.; Wu, A.; Zou, G.; Liu, L.; Zhou, Y.N. Cooperative Bilayer of Lattice-Disordered Nanoparticles as Room-Temperature Sinterable Nanoarchitecture for Device Integrations. ACS Appl. Mater. Interfaces 2019, 11, 16972–16980. [Google Scholar] [CrossRef]
- Heuck, N.; Müller, S.; Palm, G.; Bakin, A.; Waag, A. Swelling Phenomena in Sintered Silver Die Attach Structures at High Temperatures: Reliability Problems and Solutions for an Operation above 350 °C. In Proceedings of the IMAPSource Proceedings 2010 (HITEC), Albuquerque, NM, USA, 11–13 May 2010. Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT). [Google Scholar] [CrossRef]
- Liu, Z.; Cai, J.; Wang, Q.; Liu, L.; Zou, G. Modified Pulse Laser Deposition of Ag Nanostructure as Intermediate for Low Temperature Cu-Cu Bonding. Appl. Surf. Sci. 2018, 445, 16–23. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Q.; Song, C.; Cai, J. Low Temperature Fine-Pitch Wafer-Level Cu-Cu Bonding Using Nanoparticles Fabricated by PVD. In Proceedings of the 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 29 May–1 June 2018. [Google Scholar] [CrossRef]
- Wang, W.; Zou, G.; Jia, Q.; Zhang, H.; Feng, B.; Deng, Z.; Liu, L. Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics. Mater. Sci. Eng. A 2020, 793, 139894. [Google Scholar] [CrossRef]
- Yang, S.; Wu, J.; Christou, A. Initial stage of silver electrochemical migration degradation. Microelectron. Reliab. 2006, 46, 1915–1921. [Google Scholar] [CrossRef]
- Li, D.; Mei, Y.; Xin, Y.; Li, Z.; Chu, P.K.; Ma, C.; Lu, G.Q. Reducing Migration of Sintered Ag for Power Electronics Operating at High Temperature. IEEE Trans. Power Electron. 2020, 35, 12646–12650. [Google Scholar] [CrossRef]
- Naguib, H.; MacLaurin, B. Silver Migration and the Reliability of Pd/Ag Conductors in Thick-Film Dielectric Crossover Structures. IEEE Trans. Compon. Hybrids Manuf. Technol. 1979, 2, 196–207. [Google Scholar] [CrossRef]
- Lin, J.C.; Chan, J.Y. On the resistance of silver migration in Ag-Pd conductive thick films under humid environment and applied d.c. field. Mater. Chem. Phys. 1996, 43, 256–265. [Google Scholar] [CrossRef]
New Approaches | Sintering Parameters (°C-min-Mpa) | Atmosphere | Shear Strength /MPa | Advantages | References |
---|---|---|---|---|---|
High-tin-content Cu@Sn core/shell powder | 300-150-0.2 | vacuum | 20.67 | sufficient liquid Sn to fill porosities | [22] |
Interlayer of Cu powders between Sn foils | 300-45-0.3. | air | 32.9 | sufficient liquid supplements for the original gaps | [54] |
Sn-coated Cu foam preform | 280-40-2 | Ar | 28.1 | complete infiltration of the low-melting-phase material into the foam’s porous matrix | [30] |
Cu foam/SAC305 composite solder preform | 260-40-10.8 | air | 53.9 | improve the wettability of Sn on Cu foam | [31] |
Cu-SnAgCu molded sheets | 300-20-5 | formic acid | 50.5 | highly dense without voids; smooth surface | [53] |
Cu-Sn nanocomposite interlayer | 250-2-5 | air | 23.1 | Cu6Sn5 grains nucleate inside the interlayer leading a short reaction time for full IMC joints | [32,55] |
Sn-Cu coated MWCNT | 260-8-10 | air | 35.3 | interfacial contact area of Cu/Sn increases and the joint is reinforced by MWCNT | [33] |
Surface structure manipulation | 260-20-30 | air | 68/83.3 | riveting and interlocking effects suppress crack propagation | [56] |
Interlayer Materials | Sintering Parameters (°C-min-Mpa) | Atmosphere | Shear Strength/MPa | Advantage | References | |
---|---|---|---|---|---|---|
Nanoparticle paste | Cu@Ag NPs paste | 250-30-5 | vacuum | 152 | Oxidation resistance | [35] |
250-30-10 | air | 17.3 | Oxidation resistance | [71] | ||
Self-reducible Cu NP paste | 250-20-10 | air | 52.01 | Oxidation resistance | [72] | |
Liquid metal-enhanced NP paste | 260-30-4 | air | 27.5 | Void-free | [73] | |
Cu NP paste with Zn powder | 350-5-0.02 | H2 | 65 | Pressureless | [74] | |
bimodal submicron–nano Cu paste | 300-30-0.4 | N2 | 60.4 | High-density Low-cost | [75] | |
bimodal Cu-nanoparticle paste | 280-10-0 | air | 22.3 | No pressure or pressureless | [76] | |
280-10-5 | 70.1 | |||||
Organic-free nanoparticle film | Ag NP film | 200-3-20 | air | 10 | Organic-free | [77] |
Ag-Pb nanoalloy film | 300-30-20 | air | 23.5 | Organic-free Ag migration inhibit | [36] | |
Cu NP films | 140-5-5 | EG+ Ar | 22 | Organic-free | [37] | |
250-5-1 | 50–65 | Low-cost | ||||
High-thermal-conductivity and low-CTE composite paste | Ag/Diamond composite paste | 250-2-6 | air | 10.2/6.2 | Low-CTE | [78] |
250-60-0 | air | 43.8/67.5 | Low-CTE High thermal conductivity No pressure | [79] | ||
Ag/Si composite paste | 300-60-20 | air | 80–100 | Low-CTE | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, N.; Li, Y. A Review of Novel Die Attach Materials for High-Temperature WBG Power Electronic Applications. Materials 2025, 18, 3841. https://doi.org/10.3390/ma18163841
Wu N, Li Y. A Review of Novel Die Attach Materials for High-Temperature WBG Power Electronic Applications. Materials. 2025; 18(16):3841. https://doi.org/10.3390/ma18163841
Chicago/Turabian StyleWu, Na, and Yuxiang Li. 2025. "A Review of Novel Die Attach Materials for High-Temperature WBG Power Electronic Applications" Materials 18, no. 16: 3841. https://doi.org/10.3390/ma18163841
APA StyleWu, N., & Li, Y. (2025). A Review of Novel Die Attach Materials for High-Temperature WBG Power Electronic Applications. Materials, 18(16), 3841. https://doi.org/10.3390/ma18163841