Multilayer Graphene Nanoshells from Biomass for Fast-Charge, Long-Cycle-Life and Low-Temperature Li-Ion Anodes
Abstract
1. Introduction
2. Experimental Section
2.1. MGNS Synthesis
2.2. Electrode and Electrochemical Cell Preparation
2.3. Electrochemical Analysis
2.4. Characterization
3. Results and Discussion
3.1. Biochar
3.2. Unpurified Product Made with 20% w/w Metal Salt
3.3. Purified Product Made with 20% w/w Metal Salt
3.4. Surface Area and Porosity
3.5. Raman Spectroscopy
3.6. Electrochemical Testing
3.7. Electrochemical Cycling in Propylene Carbonate
3.8. High-Rate Loading/Unloading
3.9. Variation of Metal Salt Percentage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elbarbary, Z.M.S.; Hoskeri, P.A.; Javidparvar, A.A.; Alammar, M.M.; Rajakannu, A.; Manfo, T.A. Machine learning approach to the possible synergy between co-doped elements in the case of LiFePO4/C. J. Alloys Compd. 2025, 1034, 181316. [Google Scholar] [CrossRef]
- Beard, K.W. Linden’s Handbook of Batteries, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Banek, N.A.; Abele, D.T.; McKenzie, K.R., Jr.; Wagner, M.J. Sustainable Conversion of Lignocellulose to High-Purity, Highly Crystalline Flake Potato Graphite. ACS Sustain. Chem. Eng. 2018, 6, 13199–13207. [Google Scholar] [CrossRef]
- Banek, N.A.; McKenzie, K.R.; Abele, D.T.; Wagner, M.J. Sustainable conversion of biomass to rationally designed lithium-ion battery graphite. Sci. Rep. 2022, 12, 8080. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.J.; Banek, N.A.; Abele, D.T.; McKenzie, K.R. Methods and Systems for the Production of Crystalline Flake Graphite from Biomass or Other Carbonaceous Materials. U.S. Patent 11,380,895 B2, 5 July 2022. [Google Scholar]
- Chung, G.C.; Kim, H.J.; Yu, S.I.; Jun, S.H.; Choi, J.W.; Kim, M.H. Origin of graphite exfoliation—An investigation of the important role of solvent cointercalation. J. Electrochem. Soc. 2000, 147, 4391–4398. [Google Scholar] [CrossRef]
- Buqa, H.; Goers, D.; Holzapfel, M.; Spahr, M.E.; Novák, P. High Rate Capability of Graphite Negative Electrodes for Lithium-Ion Batteries. J. Electrochem. Soc. 2005, 152, A474–A481. [Google Scholar] [CrossRef]
- Spahr, M.E.; Palladino, T.; Wilhelm, H.; Würsig, A.; Goers, D.; Buqa, H.; Holzapfel, M.; Novák, P. Exfoliation of Graphite during Electrochemical Lithium Insertion in Ethylene Carbonate-Containing Electrolytes. J. Electrochem. Soc. 2004, 151, A1383. [Google Scholar] [CrossRef]
- Luo, J.-M.; Sun, Y.-G.; Guo, S.-J.; Xu, Y.-S.; Chang, B.-B.; Liu, C.-T.; Cao, A.-M.; Wan, L.-J. Hollow carbon nanospheres: Syntheses and applications for post lithium-ion batteries. Mater. Chem. Front. 2020, 4, 2283–2306. [Google Scholar] [CrossRef]
- Tao, X.-S.; Sun, Y.-G.; Liu, Y.; Chang, B.-B.; Liu, C.-T.; Xu, Y.-S.; Yang, X.-C.; Cao, A.-M. Facile Synthesis of Hollow Carbon Nanospheres and Their Potential as Stable Anode Materials in Potassium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 13182–13188. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jin, S.; Zhang, Z.; Du, Z.; Liu, H.; Yang, J.; Xu, H.; Ji, H. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 14180–14186. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wang, S.; Zhang, Y.; Yu, B.; Hou, L.; Su, G.; Ma, S.; Zou, J.; Huang, H. Hollow Carbon Nanospheres with Extremely Small Size as Anode Material in Lithium-Ion Batteries with Outstanding Cycling Stability. J. Phys. Chem. C 2016, 120, 3139–3144. [Google Scholar] [CrossRef]
- Tang, K.; White, R.J.; Mu, X.; Titirici, M.-M.; van Aken, P.A.; Maier, J. Hollow Carbon Nanospheres with a High Rate Capability for Lithium-Based Batteries. ChemSusChem 2012, 5, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, J.; Shao, C.; Li, B.; Li, Y.; Yang, Y. Fabrication of hollow carbonaceous nanospheres and their applications in lithium-ion batteries. Mater. Res. Bull. 2018, 102, 51–55. [Google Scholar] [CrossRef]
- Wagner, M.J.; Cox, J.; McKinnon, T.; Gneshin, K. Hollow Carbon Nanosphere Based Secondary Cell Electrodes. U.S. Patent 8,262,942, 11 September 2012. [Google Scholar]
- Banek, N.A.; Hays, K.A.; Wagner, M.J. High Capacity Silicon/Multiwall Graphene Nanoshell Li-Ion Battery Anodes from a Low-Temperature, High-Yield and Scalable Green Synthesis. J. Electrochem. Soc. 2017, 164, A1569. [Google Scholar] [CrossRef]
- Wagner, M.J.; Banek, N.A.; Hays, K. Hollow Carbon Nanosphere Composite Based Secondary Cell Electrodes. U.S. Patent 10,511,017, 17 December 2019. [Google Scholar]
- Herring, A.M.; McKinnon, J.T.; Petrick, D.E.; Gneshin, K.W.; Filley, J.; McCloskey, B.D. Detection of reactive intermediates during laser pyrolysis of cellulose char by molecular beam mass spectroscopy, implications for the formation of polycyclic aromatic hydrocarbons. J. Anal. Appl. Pyrolysis 2003, 66, 165–182. [Google Scholar] [CrossRef]
- Herring, A.M.; McKinnon, J.T.; McCloskey, B.D.; Filley, J.; Gneshin, K.W.; Pavelka, R.A.; Kleebe, H.-J.; Aldrich, D.J. A Novel Method for the Templated Synthesis of Homogeneous Samples of Hollow Carbon Nanospheres from Cellulose Chars. J. Am. Chem. Soc. 2003, 125, 9916–9917. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, P. Estimation of the Size and Internal Structure of Colloidal Particles by Means of Röntgen. Nachr. Ges. Wiss. Göttingen 1918, 2, 96–100. [Google Scholar]
- Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165–180. [Google Scholar] [CrossRef]
- Song, X.Y.; Kinoshita, K.; Tran, T.D. Microstructural Characterization of Lithiated Graphite. J. Electrochem. Soc. 1996, 143, L120–L123. [Google Scholar] [CrossRef]
- Ding, M.S. Liquid phase boundaries, dielectric constant, and viscosity of PC-DEC and PC-EC binary carbonates. J. Electrochem. Soc. 2003, 150, A455–A462. [Google Scholar] [CrossRef]
- Wagner, M.J.; Banek, N.A.; Abele, D.T.; McKenzie, K.R. Production of Carbon Nanochains and Nanotubes from Biomass. U.S. Patent 11,975,970 B2, 7 May 2024. [Google Scholar]
- Womble, M.D.; McKenzie, K.R.; Wagner, M.J. Thick film formation on Li-O2 cathodes—breaking the true capacity barrier. Sci. Rep. 2025, 15, 5868. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McKenzie, K.R., Jr.; Banek, N.A.; Wagner, M.J. Multilayer Graphene Nanoshells from Biomass for Fast-Charge, Long-Cycle-Life and Low-Temperature Li-Ion Anodes. Materials 2025, 18, 3918. https://doi.org/10.3390/ma18163918
McKenzie KR Jr., Banek NA, Wagner MJ. Multilayer Graphene Nanoshells from Biomass for Fast-Charge, Long-Cycle-Life and Low-Temperature Li-Ion Anodes. Materials. 2025; 18(16):3918. https://doi.org/10.3390/ma18163918
Chicago/Turabian StyleMcKenzie, Kevin R., Jr., Nathan A. Banek, and Michael J. Wagner. 2025. "Multilayer Graphene Nanoshells from Biomass for Fast-Charge, Long-Cycle-Life and Low-Temperature Li-Ion Anodes" Materials 18, no. 16: 3918. https://doi.org/10.3390/ma18163918
APA StyleMcKenzie, K. R., Jr., Banek, N. A., & Wagner, M. J. (2025). Multilayer Graphene Nanoshells from Biomass for Fast-Charge, Long-Cycle-Life and Low-Temperature Li-Ion Anodes. Materials, 18(16), 3918. https://doi.org/10.3390/ma18163918