Effect of Fluorinated Graphite (FG) Addition on Friction Performance of FG-Ni/WC/CeO2 Cladding Layers over a Wide Temperature Range
Abstract
1. Introduction
2. Experimental Procedure
2.1. Material Preparation
2.2. Material Characterization©
2.3. Nanoindentation and Microhardness Test
2.4. Friction Test
3. Results and Discussion
3.1. Phase Composition and Micromorphology
3.2. Nanoindentation and Microhardness Analysis
3.3. Friction and Wear Analysis
3.4. Analysis of Wear Track and Debris
3.5. Wear Mechanism
3.6. Discussion
4. Conclusions
- (1)
- The addition of varying FG contents to the Ni/WC/CeO2 matrix during vacuum cladding led to the in situ formation of a CeF3 phase, which exhibited excellent high-temperature wear resistance and self-lubricating properties. The optimal formation efficiency of the CeF3 phase was achieved at an FG content of 1.5 wt% (Ce:F atomic ratio = 1:7.06). The corresponding NWF15 exhibited the smallest average grain size (15.88 nm) and the lowest porosity (0.141%).
- (2)
- NWF15 exhibited the highest microhardness of 1062.7 HV 0.2. Compared to NWF5, this represents an increase of 10.64% in hardness. The H/E and H3/E2 ratios, indicators of resistance to elastic strain and plastic deformation, reached 0.0489 and 0.0291, respectively, corresponding to improvements of 20.74% and 78.53%. These results demonstrate the superior mechanical properties of NWF15.
- (3)
- All cladding layers exhibited relatively low friction coefficients at 600 °C. However, a significant increase in wear severity was observed when the friction temperature rose from 600 °C to 800 °C. Throughout the entire tested temperature range (25–800 °C), the CeF3 phase effectively reduced the wear of the cladding layers primarily by inhibiting the propagation of grooves.
- (4)
- Under friction at 25 °C, abrasive wear was the dominant mechanism. Within the 200–600 °C range, the primary wear mechanism shifted to adhesive wear. At 800 °C, oxidative wear prevailed. The oxides formed within the wear scars primarily consisted of NiO, NiFe2O4, Fe3O4, and Cr2O3.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seng, D.H.L.; Zhang, Z.-Q.; Meng, T.L.; Teo, S.L.; Tan, B.H.; Loi, Q.; Pan, T. Impact of spray angle and particle velocity in cold sprayed IN718 coatings. Surf. Coat. Tech. 2023, 466, 129623. [Google Scholar] [CrossRef]
- Dwivedi, S.P.; Sharma, S.; Srivastava, A.P.; Sethi, V.A.; Mohammed, K.A.; Kumar, A.; Khan, M.I.; Abbas, M.; Tag-Eldin, E.M. Homogeneity, metallurgical, mechanical, wear, and corrosion behavior of Ni and B4C coatings deposited on 304 stainless steels developed by microwave cladding technique. J. Mater. Res. Technol. 2023, 27, 5854–5867. [Google Scholar] [CrossRef]
- Jin, L.; Li, Y.; Liu, C.; Fan, X.; Zhu, M. Friction mechanism of DLC/MAO wear-resistant coatings with porous surface texture constructed in-situ by micro-arc oxidation. Surf. Coat. Tech. 2023, 473, 130010. [Google Scholar] [CrossRef]
- Cheng, J.; Zhen, J.; Zhu, S.; Yang, J.; Ma, J.; Li, W.; Liu, W. Friction and wear behavior of Ni-based solid-lubricating composites at high temperature in a vacuum environment. Mater. Design. 2017, 122, 405–413. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, B.; Kong, D. Friction—Wear Characteristics of High Velocity Oxygen Fuel Sprayed NiCrBSi Alloy Coating at Elevated Temperatures. Trans. Indian Inst. Met. 2018, 71, 2565–2573. [Google Scholar] [CrossRef]
- Yang, J.-F.; Jiang, Y.; Hardell, J.; Prakash, B.; Fang, Q.-F. Influence of service temperature on tribological characteristics of self-lubricant coatings: A review. Front. Mater. Sci. 2013, 7, 28–39. [Google Scholar] [CrossRef]
- Han, B.-Y.; Gao, X.-H.; Chen, S.-Y.; Cong, M.-Q.; Li, R.-X.; Liu, X.; Hang, W.-X.; Cui, F.-F. Microstructure and tribological behavior of plasma spray Ni60 alloy coating deposited on ZL109 aluminum alloy substrate. Tribol. Int. 2022, 175, 107859. [Google Scholar] [CrossRef]
- Aliabadi, M.; Khodabakhshi, F.; Soltani, R.; Gerlich, A.P. Modification of flame-sprayed NiCrBSi alloy wear-resistant coating by friction stir processing and furnace re-melting treatments. Surf. Coat. Tech. 2023, 455, 129236. [Google Scholar] [CrossRef]
- Zhan, Q.; Luo, F.; Huang, J.; Wang, Z.; Ma, B.; Liu, C. Corrosion Resistance and Wear Behavior of Ni60/TiC and NbC Composite Coatings Prepared by Laser Cladding. Materials. 2025, 18, 2459. [Google Scholar] [CrossRef]
- Liu, D.; Li, C.; Xin, S.; Liu, G. High-temperature friction and wear behaviors of the laser in-situ synthesized VB2 reinforced NiCrBSi alloy-based composite coating. Opt. Laser Technol. 2025, 184, 112505. [Google Scholar] [CrossRef]
- Liu, H.; Hao, J.; Niu, Q.; Du, Q.; Zheng, X.; Liu, H.; Yang, H. Influence of ultrasonic assistance on the microstructure and friction properties of laser cladded Ni60/WC composite coatings. J. Alloys Compd. 2025, 1010, 177149. [Google Scholar] [CrossRef]
- Luo, K.; Yang, Q.; Wu, Z.; Guo, Q.; Lu, J.; Luo, F. Tailoring high WC addition and crack-free Ni-WC coatings by PTAW: Establishing the relationship between the WC type, its retention and the wear resistance of coatings. Tribol. Int. 2025, 204, 110543. [Google Scholar] [CrossRef]
- Zhao, P.; Kong, D. Structure evolution and tribocorrosion performance of Ni60WC reinforced FeCoCrMoSi coatings by laser cladding. J. Alloys Compd. 2025, 1021, 179720. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Ramesh, M.R.; Panigrahi, S.K. Establishing high temperature tribological performance and wear mechanism map of engineered in-situ TiB2 reinforced Mg-RE metal matrix composites. Tribol. Int. 2025, 201, 110189. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Li, S.; Zhang, S.; Ai, X.; Xie, Z. Enhanced wear resistance and fracture resistance of spherical WC reinforced nickel-based alloy coating by adding non-spherical WC. Int. J. Refract. Met. Hard Mater. 2025, 126, 106951. [Google Scholar] [CrossRef]
- Shu, D.; Dai, S.; Wang, G.; Si, W.; Xiao, P.; Cui, X.; Chen, X. Influence of CeO2 content on WC morphology and mechanical properties of WC/Ni matrix composites coating prepared by laser in-situ synthesis method. J. Mater. Res. Technol. 2020, 9, 11111–11120. [Google Scholar] [CrossRef]
- Du, J.; Li, F.; Li, Y.; Lu, H.; Qi, X.; Yang, B.; Li, C.; Yu, P.; Wang, J.; Gao, L. The influence of nano-CeO2 on tribological properties and microstructure evolution of Cr3C2-NiCrCoMo composite coatings at high temperature. Surf. Coat. Tech. 2021, 428, 127913. [Google Scholar] [CrossRef]
- Yan, X.; Chang, C.; Deng, Z.; Lu, B.; Chu, Q.; Chen, X.; Ma, W.; Liao, H.; Liu, M. Microstructure, interface characteristics and tribological properties of laser cladded NiCrBSi-WC coatings on PH 13-8 Mo steel. Tribol. Int. 2021, 157, 106873. [Google Scholar] [CrossRef]
- Sun, S.; Fu, H.; Ping, X.; Guo, X.; Lin, J.; Lei, Y.; Wu, W.; Zhou, J. Effect of CeO2 addition on microstructure and mechanical properties of in-situ (Ti, Nb)C/Ni coating. Surf. Coat. Tech. 2019, 359, 300–313. [Google Scholar] [CrossRef]
- Wang, Y.; Li, A.; Shu, L.; Qin, J. The effect of WC addition on the microstructure and properties of laser cladded Ni-WC coatings. Mater. Today Commun. 2025, 46, 112515. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, C.; Ye, H.; Li, M.; Hu, C. Effect of nanoscale CeO2 powder on wear and corrosion resistance of Ni60A-WC coatings. Ceram. Int. 2025, 51, 10913–10932. [Google Scholar] [CrossRef]
- Kumar, R.; Hussainova, I.; Antonov, M.; Maurya, H.S.; Ripoll, M.R. Temperature-induced wear micro-mechanism transition in additively deposited nickel alloys with different solid lubricants. Wear 2024, 552–553, 205452. [Google Scholar] [CrossRef]
- Qu, C.; He, B.; Cheng, X.; Wang, H. Microstructure and wear characteristics of laser-clad Ni-based self-lubricating coating incorporating MoS2/Ag for use in high temperature. J. Mater. Res. Technol. 2024, 33, 4481–4492. [Google Scholar] [CrossRef]
- Yang, D.; Cheng, J.; Tang, Z.; Chen, W.; Xiao, R.; Geng, Y.; Chen, J.; Zhu, S.; La, P. Friction and wear properties of D-gun sprayed CrFeNiAl0.3Ti0.3-Ag-SrSO4 high entropy alloy matrix self-lubricating coating at elevated temperature. Tribol. Int. 2024, 200, 110151. [Google Scholar] [CrossRef]
- Ren, S.; Xia, X.; Song, K.; Ding, J.; Geng, K.; Song, G.; Huo, C.; Wang, Y.; Liao, W.; Hua, N.; et al. Effect of adding copper-plated graphite on the organization and wear reduction of Copper-Nickel alloy Composite Coatings. Surf. Coat. Tech. 2025, 496, 131661. [Google Scholar] [CrossRef]
- Shang, X.; Liang, Y.; Chen, P.; Zhang, H.; Yang, S.; Ran, X. The effect of Ag content modulation and frictional heat on the fretting wear resistance of Fe2O3-Ag composite coatings. Wear 2025, 572–573, 206039. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, G.; Zhu, L.; Bai, D.; Zhang, L. Tribological behaviors and wear mechanisms of NiTi-Ag coatings over a wide temperature range. Mater. Today Commun. 2025, 43, 111772. [Google Scholar] [CrossRef]
- Singh, A.K.; Atheaya, D.; Tyagi, R.; Ranjan, V. High temperature friction and wear of atmospheric plasma spray deposited NiMoAl-Ag-WS2 composite coatings. Surf. Coat. Tech. 2023, 455, 129225. [Google Scholar] [CrossRef]
- Shi, X.; Song, S.; Zhai, W.; Wang, M.; Xu, Z.; Yao, J.; Din, A.Q.U.; Zhang, Q. Tribological behavior of Ni3Al matrix self-lubricating composites containing WS2, Ag and hBN tested from room temperature to 800 °C. Mater. Design. 2014, 55, 75–84. [Google Scholar] [CrossRef]
- Bai, C.; Lai, Z.; Yu, Y.; Zhang, X.; Gao, K.; Yang, Z.; Zhang, J. Rich activated edges of hexagonal boron nitride flakes in-situ triggered by nickel nanoparticles to achieve efficient reduction of friction and wear. Compos. Part B-Eng. 2022, 234, 109710. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Zhang, X.; Chen, X.; Zhang, J.; Jing, L.; Wu, Y.; Yu, S. Tribological properties and self-lubrication mechanism of in-situ grown graphene reinforced nickel matrix composites in ambient air. Wear 2022, 496–497, 204308. [Google Scholar] [CrossRef]
- Chauhan, B.; Singh, A.D.; Sengupta, S.; Nadakuduru, V.N.; Mundotiya, B.M. Enhancement of wear resistance in electrodeposited Ni-Ag self-lubricated alloy coatings via in-situ formation of solid lubricating phases for high-temperature tribological applications. Wear 2025, 578–579, 206177. [Google Scholar] [CrossRef]
- Nawaz, M.H.; Shahid, M.K.; Gupta, R.K.; Jalil, R.; Chuang, F.-C.; Pham, P.V. Flatland of Graphene’s derivatives: Classification, synthesis, mechanisms, role of defects, applications, and prospectives. Coord. Chem. Rev. 2025, 528, 216421. [Google Scholar] [CrossRef]
- He, R.; Wu, M.; Jie, D.; Cui, C.; Ou, B.; Miao, X.; Gong, Y. A novel approach to regulate the microstructure of laser-clad FeCrNiMnAl high entropy alloy via CeO2 nanoparticles. Surf. Coat. Tech. 2023, 473, 130026. [Google Scholar] [CrossRef]
- Guo, M.; Chen, S.; Shang, F.; Liang, J.; Cui, T.; Liu, C.; Wang, M. Laser Cladding Novel NiCrSiFeBW–CeO2 Coating with Both High Wear and Corrosion Resistance. Met. Mater. Int. 2020, 27, 2706–2719. [Google Scholar] [CrossRef]
- Shu, D.; Cui, X.; Li, Z.; Sun, J.; Wang, J.; Chen, X.; Dai, S.; Si, W. Effect of the Rare Earth Oxide CeO2 on the Microstructure and Properties of the Nano-WC-Reinforced Ni-Based Composite Coating. Metals 2020, 10, 383. [Google Scholar] [CrossRef]
- Yuling, G.; Meiping, W.; Xiaojin, M.; Chen, C. Effect of CeO2 on crack sensitivity and tribological properties of Ni60A coatings prepared by laser cladding. Adv. Mech. Eng. 2021, 13, 168781402110131. [Google Scholar] [CrossRef]
- Li, O.; Yang, G.; Song, W.; Ma, Y. Effect of Graphene Oxide (GO) content on bending fracture, wear and corrosion resistance of GO-Ni/WC cladding layers produced by vacuum cladding. Mater. Chem. Phys. 2025, 345, 131202. [Google Scholar] [CrossRef]
- Zou, D.; Chen, J.; Li, D.Q. Separation chemistry and clean technique of cerium(IV): A review. J. Rare Earth. 2014, 32, 681–685. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, Z.; Sun, A.; Liu, J.; Xiao, M. Preparation and investigation of Ni-W/CeO2 composite coating and its structure and anti-corrosion properties with different ceria content and deposition time. Ceram. Int. 2024, 50, 44560–44571. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, K.; Li, J.; Chen, B.; Huang, C.; Soboleva, N. A comprehensive review on the rare earth elements improving microstructure and properties of laser cladded coatings. J. Alloys Compd. 2025, 1036, 181761. [Google Scholar] [CrossRef]
- Soni, S.K.; Thomas, B.; Swain, A.; Roy, T. Functionally graded carbon nanotubes reinforced composite structures: An extensive review. Compos. Struct. 2022, 299, 116075. [Google Scholar] [CrossRef]
- Li, C.; Wang, L.; Shang, L.; Cao, X.; Zhang, G.; Yu, Y.; Li, W.; Zhang, S.; Hu, H. Mechanical and high-temperature tribological properties of CrAlN/TiSiN multilayer coating deposited by PVD. Ceram. Int. 2021, 47, 29285–29294. [Google Scholar] [CrossRef]
- Tan, C.; Huang, Y.; Zhang, L.; Zhang, J.; Li, N. Preparation and properties analysis of Ni-W/Si3N4 composite coating on 7075 aluminum alloy. Phys. B Condens. Matter 2025, 700, 416929. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Chen, J.; Zhao, P.; Liu, W.; Jiang, Z.; Liu, Q.; Yang, S. Friction surface evolution of Ni-based superalloy with addition of revert at high temperature. Wear 2025, 580–581, 206240. [Google Scholar] [CrossRef]
- Khader, I.; Renz, A.; Kailer, A. A wear model for silicon nitride in dry sliding contact against a nickel-base alloy. Wear 2017, 376–377, 352–362. [Google Scholar] [CrossRef]
- Feng, K.; Shao, T. The evolution mechanism of tribo-oxide layer during high temperature dry sliding wear for nickel-based superalloy. Wear 2021, 476, 203747. [Google Scholar] [CrossRef]
- Deenadayalan, K.; Murali, V.; Elayaperumal, A.; Kumar, A.S.; Arulvel, S.; Asl, M.S. Friction and wear properties of short time heat-treated and laser surface re-melted NiCr-WC composite coatings at various dry sliding conditions. J. Mater. Res. Technol. 2022, 17, 3080–3104. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, N.; Mansori, M.E.; Wang, Q.; Lu, J.; Lin, X. Friction and dry sliding wear of Al–Fe–Cr quasicrystals with multi-reinforcements by laser powder bed fusion. Wear 2023, 522, 204682. [Google Scholar] [CrossRef]
- Jensen, J.S.; Esmizadeh, S.; Lund, M.; Juhl, J.; Nemati, N.; Aghababaei, R. Evaluating the effect of particle roundness on three-body wear between polymers and metals. Wear 2025, 570, 206000. [Google Scholar] [CrossRef]
- Wang, Y.; Gui, H.; Li, X.; Dong, Y.; Yang, X.; He, Z.; Zhao, D.; Yang, Y.; Zhao, H. Exploring the effect of grain/phase boundary transition phases on the wear resistance of Ni-based metal-ceramic composite coatings: Based on experimental study and finite element analysis. Tribol. Int. 2025, 211, 110846. [Google Scholar] [CrossRef]
Element | C | B | Si | Cr | Fe | Ni |
---|---|---|---|---|---|---|
Mass fraction | 0.7~1.1 | 3.0~4.0 | 3.5~5.0 | 15.0~17.0 | ≤5.0 | Bal. |
Sample | Components (wt%) | |||
---|---|---|---|---|
Ni-Based Alloy | WC | CeO2 | FG | |
NWF5 | 69.0 | 30 | 0.5 | 0.5 |
NWF10 | 68.5 | 30 | 0.5 | 1.0 |
NWF15 | 68.0 | 30 | 0.5 | 1.5 |
NWF20 | 67.5 | 30 | 0.5 | 2.0 |
Point | B | C | O | F | Si | Cr | Fe | Ni | Ce | W |
---|---|---|---|---|---|---|---|---|---|---|
1 | 28.28 | 21.35 | 0.59 | 4.26 | 0.05 | 6.60 | 2.51 | 25.45 | 0.01 | 10.90 |
2 | 24.00 | 23.35 | 0.00 | 4.83 | 2.20 | 7.31 | 1.94 | 28.49 | 0.12 | 7.76 |
3 | 24.27 | 34.99 | 1.38 | 2.60 | 0.99 | 21.86 | 1.40 | 11.95 | 0.02 | 0.54 |
4 | 4.81 | 54.83 | 2.30 | 0.00 | 0.00 | 0.67 | 0.22 | 3.42 | 0.08 | 33.61 |
5 | 34.35 | 15.63 | 0.23 | 3.48 | 0.00 | 6.28 | 2.35 | 24.02 | 0.03 | 13.63 |
6 | 23.35 | 18.70 | 0.00 | 5.27 | 10.18 | 0.85 | 0.45 | 41.07 | 0.01 | 0.14 |
7 | 33.22 | 14.70 | 0.00 | 4.27 | 0.02 | 2.39 | 2.07 | 43.08 | 0.00 | 0.25 |
8 | 0.00 | 12.51 | 1.55 | 63.85 | 0.23 | 0.34 | 0.10 | 2.23 | 19.15 | 0.03 |
Sample | Nanohardness | Elasticity Modulus | H/E | H3/E2 |
---|---|---|---|---|
H (GPa) | E (GPa) | / | GPa | |
NWF5 | 9.94 ± 1.16 | 245.4 ± 4.21 | 0.0405 | 0.0163 |
NWF10 | 10.68 ± 1.23 | 252.2 ± 4.74 | 0.0423 | 0.0192 |
NWF15 | 12.17 ± 1.19 | 249.0 ± 4.38 | 0.0489 | 0.0291 |
NWF20 | 11.68 ± 1.33 | 258.1 ± 5.29 | 0.0453 | 0.0239 |
Micro-Area | C | O | F | Si | Cr | Fe | Ni | Ce | W |
---|---|---|---|---|---|---|---|---|---|
1 | 40.31 | 10.84 | 0.24 | 16.39 | 8.62 | 2.44 | 20.02 | 0.00 | 1.15 |
2 | 42.17 | 13.43 | 1.73 | 0.00 | 2.30 | 0.71 | 14.56 | 0.07 | 25.03 |
3 | 18.37 | 38.05 | 0.00 | 3.35 | 7.58 | 8.41 | 22.32 | 0.11 | 1.80 |
4 | 17.47 | 47.45 | 0.03 | 8.98 | 2.57 | 0.69 | 9.76 | 0.01 | 13.04 |
5 | 12.09 | 7.93 | 4.23 | 7.84 | 3.82 | 5.40 | 58.33 | 0.06 | 0.30 |
6 | 12.68 | 57.22 | 0.00 | 2.57 | 4.76 | 1.32 | 18.73 | 0.11 | 2.61 |
7 | 14.06 | 60.18 | 0.00 | 1.64 | 4.54 | 1.23 | 15.10 | 0.08 | 3.15 |
8 | 18.10 | 50.61 | 0.12 | 10.02 | 0.17 | 0.14 | 1.83 | 0.00 | 19.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, O.; Yang, G.; Song, W.; Ma, Y. Effect of Fluorinated Graphite (FG) Addition on Friction Performance of FG-Ni/WC/CeO2 Cladding Layers over a Wide Temperature Range. Materials 2025, 18, 3983. https://doi.org/10.3390/ma18173983
Li O, Yang G, Song W, Ma Y. Effect of Fluorinated Graphite (FG) Addition on Friction Performance of FG-Ni/WC/CeO2 Cladding Layers over a Wide Temperature Range. Materials. 2025; 18(17):3983. https://doi.org/10.3390/ma18173983
Chicago/Turabian StyleLi, Ouyang, Guirong Yang, Wenming Song, and Ying Ma. 2025. "Effect of Fluorinated Graphite (FG) Addition on Friction Performance of FG-Ni/WC/CeO2 Cladding Layers over a Wide Temperature Range" Materials 18, no. 17: 3983. https://doi.org/10.3390/ma18173983
APA StyleLi, O., Yang, G., Song, W., & Ma, Y. (2025). Effect of Fluorinated Graphite (FG) Addition on Friction Performance of FG-Ni/WC/CeO2 Cladding Layers over a Wide Temperature Range. Materials, 18(17), 3983. https://doi.org/10.3390/ma18173983