Improving the Microstructure and Mechanical Properties of Al-0.7Fe-0.4Mg-0.1Si-0.5Er Alloy by Equal Channel Angular Pressing
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and ECAP Processing
2.2. Testing Instruments
3. Results and Discussion
3.1. Effect of ECAP on Phase Evolution
3.2. Effect of ECAP on Grain Morphology
3.3. Effect of ECAP on Mechanical Properties
3.3.1. Microhardness
3.3.2. Tensile Strength
3.3.3. The Strengthening Mechanism of ECAP Alloy
Parameter | Description | Value | Unit | Ref(s). |
---|---|---|---|---|
Hall–Petch coefficient | 0.12 | MPa × m1/2 | [7] | |
Shear modulus | 25.4 | GPa | [40] | |
Burgers vector | 0.286 | nm | [40] | |
Talor factor | 3.06 | Dimensionless | [41] | |
Wavelength of Cu Kα radiation | 0.154 | nm | [42] |
3.4. Effect of ECAP on Conductive Properties
4. Conclusions
- (1)
- ECAP effectively refined the grain structure and promoted the precipitation of phases. Grain refinement was primarily attributed to CDRX and GDRX induced by severe plastic deformation.
- (2)
- With increasing ECAP passes, the average grain size first decreased and then slightly increased, while the precipitate fraction exhibited the opposite trend, initially increasing due to deformation-induced precipitation and then declining due to partial dissolution and coarsening at higher passes.
- (3)
- The alloy exhibited excellent mechanical properties and electrical conductivity after ECAP, resulting from the combined effects of grain refinement strengthening, dislocation strengthening, and precipitate strengthening. The optimal performance was achieved after four passes, with a tensile strength of 208 MPa and an electrical conductivity of 57.1%IACS.
- (4)
- This work provides a comprehensive understanding of the microstructure–property relationship in Er-micro-alloyed aluminum alloys under multi-pass ECAP, offering practical insights into optimizing the strength–conductivity balance in micro-alloyed systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Czerwinski, F. Aluminum alloys for electrical engineering: A review. J. Mater. Sci. 2024, 59, 14847–14892. [Google Scholar] [CrossRef]
- Chang, S.Y.; Lee, K.S.; Choi, S.H.; Hyuk Shin, D. Effect of ECAP on microstructure and mechanical properties of a commercial 6061 Al alloy produced by powder metallurgy. J. Alloys Compd. 2003, 354, 216–220. [Google Scholar] [CrossRef]
- Murashkin, M.Y.; Sadykov, D.I.; Mavlyutov, A.M.; Kazykhanov, V.U.; Enikeev, N.A. Effect of Mg content on mechanical properties and electrical conductivity of ultrafine-grained Al–Mg–Zr wires produced by ECAP-Conform and drawing. J. Mater. Sci. 2024, 59, 5923–5943. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Gao, Y.H.; Yang, C.; Zhang, P.; Kuang, J.; Liu, G.; Sun, J. Microalloying Al alloys with Sc: A review. Rare Met. 2020, 39, 636–650. [Google Scholar] [CrossRef]
- Dai, Y.; Yan, L.; Hao, J. Review on Micro-Alloying and Preparation Method of 7xxx Series Aluminum Alloys: Progresses and Prospects. Materials 2022, 15, 1216. [Google Scholar] [CrossRef]
- Wu, X.L.; Nie, Z.-R.; Wen, S.P.; Gao, K.Y.; Huang, H. New Progress on Er-Containing Micro-Alloying Aluminum Alloys. Mater. Sci. Forum 2017, 877, 211–217. [Google Scholar] [CrossRef]
- Xu, S.; Li, Y.; Zhang, M.; Song, T.; Ding, H.; Jing, S. Improving strength and elongation combination of Cu–9Ni–6Sn-(0.2Nb) alloys by pre-annealing and aging treatment. Mater. Sci. Eng. A 2022, 860, 144221. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, L.; Jiang, H.; Zhao, J.; He, J. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys. J. Mater. Sci. Technol. 2020, 47, 142–151. [Google Scholar] [CrossRef]
- Tuan, N.; Alves, A.; Toptan, F.; Lopes, A.; Pinto, A.M.P. The effect of Sc and Yb microalloying additions and aged-hardening heat treatment on corrosion behavior of Al-Mg alloys. Mater. Corros. 2016, 67, 60–71. [Google Scholar] [CrossRef]
- Cardoso, K.R.; Travessa, D.N.; Botta, W.J.; Jorge, A.M. High Strength AA7050 Al alloy processed by ECAP: Microstructure and mechanical properties. Mater. Sci. Eng. A 2011, 528, 5804–5811. [Google Scholar] [CrossRef]
- Surendarnath, S.; Ramesh, G.; Ramachandran, T.; Ravisankar, B. Corrosion Behavior of Commercially Pure Aluminum Processed through Conventional and New ECAP Dies. J. Mater. Eng. Perform. 2024, 33, 6036–6049. [Google Scholar] [CrossRef]
- Elhefnawey, M.; Shuai, G.L.; Li, Z.; Zhang, D.T.; Tawfik, M.M.; Li, L. On achieving ultra-high strength and improved wear resistance in Al–Zn–Mg alloy via ECAP. Tribol. Int. 2021, 163, 107188. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, X.; Yang, X.; Jia, J.; Qi, B. The evolution of hardness homogeneity in commercially pure Ti processed by ECAP. J. Wuhan Univ. Technol. 2014, 29, 578–584. [Google Scholar] [CrossRef]
- Jia, D.S.; He, T.; Song, M.; Huo, Y.M.; Hu, H.Y. Effects of equal channel angular pressing and further cold upsetting process to the kinetics of precipitation during aging of 7050aluminum alloy. J. Mate. Res. Technol. 2023, 26, 5126–5140. [Google Scholar] [CrossRef]
- He, X.; Wang, W.; Dong, F.; Jiang, Y.; Zhang, Y. Achieving Mechanical-Electrical Property Synergy in 8076-Derived Alloy by Erbium Microalloying and Homogenization Annealing Treatment. Adv. Eng. Mater. 2025, 27, 490. [Google Scholar] [CrossRef]
- Qian, C.H.; Li, P.; Xue, K.M. Interface, lattice strain and dislocation density of SiCp/Al composite consolidated by equal channel angular pressing and torsion. Trans. Nonferrous Met. Soc. China 2015, 25, 1744–1751. [Google Scholar] [CrossRef]
- Edalati, K.; Toh, S.; Iwaoka, H.; Horita, Z. Microstructural characteristics of tungsten-base nanocomposites produced from micropowders by high-pressure torsion. Acta Mater. 2012, 60, 3885–3893. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J.; Yang, W.; Ma, X.; Liu, H.; Wang, B. Role of ultrasonic in synergistic strengthening of friction stir welded alloys by grain refinement and rapid nanoscale precipitation. Mater. Sci. Eng. A 2022, 838, 142751. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, H.; Du, S. Achievement of high-strength 2219aluminum alloy joint in a broad process window by ultrasonic enhanced friction stir welding. Mater. Sci. Eng. A 2021, 804, 140587. [Google Scholar] [CrossRef]
- You, J.; Zhao, Y.; Dong, C.; Su, Y. Improving the microstructure and mechanical properties of Al-Cu dissimilar joints by ultrasonic dynamic-stationary shoulder friction stir welding. J. Mech. Work. Technol. 2023, 311, 117812. [Google Scholar] [CrossRef]
- Jiang, J.; Jiang, F.; Zhang, M.; Yi, K. Microstructure evolution and tensile property of deformed Al-Mg-Sc alloy: Comparison of ECAP and FSP. J. Mater. Res. Technol. 2023, 22, 2612–2626. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.; Li, Y.; Peng, Z.; Liu, H.; Ma, A.; Jiang, J.; Yuan, T. RT ECAP and rolling bestow high strength and good ductility on a low lithium aluminum alloy. J. Mater. Res. Technol. 2023, 25, 5561–5574. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, H.; Fujii, H.; Ushioda, K. Effect of ultrasound on microstructure evolution of friction stir welded aluminum alloys. J. Manuf. Process. 2020, 56, 362–371. [Google Scholar] [CrossRef]
- You, J.; Tan, J.; Liu, X.; Du, K.; Li, J.; Yi, C.; Zhao, Y. Microstructural evolution and strengthening mechanism of U71Mn steel joints fabricated by friction-flash hybrid welding. Mater. Des. 2024, 247, 113403. [Google Scholar] [CrossRef]
- Zhao, Y.; You, J.; Qin, J.; Dong, C.; Liu, L.; Liu, Z.; Miao, S. Stationary shoulder friction stir welding of Al-Cu dissimilar materials and its mechanism for improving the microstructures and mechanical properties of joint. Mater. Sci. Eng. A 2022, 837, 142754. [Google Scholar] [CrossRef]
- You, J.; Zhao, Y.; Dong, C.; Wang, C.; Miao, S.; Yi, Y.; Su, Y. Microstructure characteristics and mechanical properties of stationary shoulder friction stir welded 2219-T6 aluminium alloy at high rotation speeds. Int. J. Adv. Manuf. Technol. 2020, 108, 987–996. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, H.; Fujii, H. Improving the mechanical properties of 2219-T6 aluminum alloy joints by ultrasonic vibrations during friction stir welding. J. Mech. Work. Technol. 2019, 271, 75–84. [Google Scholar] [CrossRef]
- Sauvage, X.; Bobruk, E.V.; Murashkin, M.Y.; Nasedkina, Y.; Enikeev, N.A.; Valiev, R.Z. Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al–Mg–Si alloys. Acta Mater. 2015, 98, 355–366. [Google Scholar] [CrossRef]
- Qian, F.; Jin, S.; Sha, G.; Li, Y. Enhanced dispersoid precipitation and dispersion strengthening in an Al alloy by microalloying with Cd. Acta Mater. 2018, 157, 114–125. [Google Scholar] [CrossRef]
- Xue, H.; Yang, C.; Zhang, P.; Wu, S.H.; Liu, G.; Sun, J. Heat-resistant Al alloys: Microstructural design and microalloying effect. J. Mater. Sci. 2024, 59, 9749–9767. [Google Scholar] [CrossRef]
- Bourgeois, L.; Dwyer, C.; Weyland, M.; Nie, J.F.; Muddle, B.C. The magic thicknesses of θ′ precipitates in Sn-microalloyed Al-Cu. Acta Mater. 2012, 60, 633–644. [Google Scholar] [CrossRef]
- Fan, S.; Li, Z.; Xiao, W.; Yan, P.; Feng, J.; Jiang, Q.; Ma, J.; Gong, Y. Effects of processing paths on the microstructure, mechanical properties and electrical conductivity of dilute Al-Zr-Sc alloy conductive wires. J. Mater. Sci. Technol. 2024, 188, 202–215. [Google Scholar] [CrossRef]
- Tang, Z.; Cui, J.; Yu, M.; Zhu, W.; Xu, Z.; Zeng, J.; Xu, T.; Yang, H.; Tan, Y.; Yang, B. A new insight on the diffusion growth mechanism of intermetallic compounds in Al-Er system. Mater. Des. 2022, 224, 111341. [Google Scholar] [CrossRef]
- Luo, S.X.; Shi, Z.M.; Li, N.Y.; Lin, Y.M.; Liang, Y.H.; Zeng, Y.D. Crystallization inhibition and microstructure refinement of Al-5Fe alloys by addition of rare earth elements. J. Alloys Compd. 2019, 789, 90–99. [Google Scholar] [CrossRef]
- Song, X.; Gao, M.; Yang, B.; Guan, R. Modification and refinement of Fe-containing phases, mechanical properties and strengthening mechanisms in Al-Fe alloys via Cr alloying and continuous rheo-extrusion. Mater. Sci. Eng. A 2022, 850, 143557. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, K.; Wen, S.; Huang, H.; Nie, Z.; Zhou, D. The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al-Er binary alloy. J. Alloys Compd. 2014, 610, 27–34. [Google Scholar] [CrossRef]
- Li, J.; Ding, H.; Li, B. Study on the variation of properties of Cu–Cr–Zr alloy by different rolling and aging sequence. Mater. Sci. Eng. A 2021, 802, 140413. [Google Scholar] [CrossRef]
- Li, J.; Ding, H.; Li, B.; Wang, L. Microstructure evolution and properties of a Cu–Cr–Zr alloy with high strength and high conductivity. Mater. Sci. Eng. A 2021, 819, 141464. [Google Scholar] [CrossRef]
- Li, J.; Ding, H.; Li, B.; Gao, W.; Bai, J.; Sha, G. Effect of Cr and Sn additions on microstructure, mechanical-electrical properties and softening resistance of Cu–Cr–Sn alloy. Mater. Sci. Eng. A 2021, 802, 140628. [Google Scholar] [CrossRef]
- Ma, K.K.; Wen, H.M.; Hu, T.; Topping, T.D.; Isheim, D.; Seidman, D.N.; Lavernia, E.J.; Schoenung, J.M. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014, 62, 141–155. [Google Scholar] [CrossRef]
- Booth-Morrison, C.; Dunand, D.C.; Seidman, D.N. Coarsening resistance at 400 °C of precipitation-strengthened Al-Zr-Sc-Er alloys. Acta Mater. 2011, 59, 7029–7042. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhao, Y.G.; Xu, X.F.; Pan, D.; Jiang, W.Q.; Yang, X.H.; Wang, Z. Superior mechanical properties induced by the interaction between dislocations and precipitates in the electro-pulsing treated Al-Mg-Si alloys. Mater. Sci. Eng. A 2018, 735, 154–161. [Google Scholar] [CrossRef]
- Pan, L.; Liu, K.; Breton, F.; Grant Chen, X. Effect of Fe on Microstructure and Properties of 8xxx Aluminum Conductor Alloys. J. Mater. Eng. Perform. 2016, 25, 5201–5208. [Google Scholar] [CrossRef]
- Cubero-Sesin, J.M.; Arita, M.; Horita, Z. High strength and electrical conductivity of Al-Fe alloys produced by synergistic combination of high-pressure torsion and aging. Adv. Eng. Mater. 2015, 17, 1792–1803. [Google Scholar] [CrossRef]
Elements | Fe | Si | Mg | Cu | Zn | B | Er | Al |
---|---|---|---|---|---|---|---|---|
content | 0.75 | 0.1 | 0.37 | 0.04 | 0.05 | 0.03 | 0.47 | Bal. |
Precipitation | 1p | 2p | 4p | 8p |
---|---|---|---|---|
Al | 97.2% | 95.9% | 84.5% | 94.4% |
β″ (Mg5Si6) | 0.7% | 1.8% | 6.6% | 2.4% |
β′ (Mg6Si3.3) | 0% | 0% | 0.1% | 0% |
β (Mg2Si) | 0.7% | 0.8% | 3.4% | 1% |
Al13Fe4 | 1.5% | 1.5% | 5.4% | 2.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Dong, F.; Zhang, Y. Improving the Microstructure and Mechanical Properties of Al-0.7Fe-0.4Mg-0.1Si-0.5Er Alloy by Equal Channel Angular Pressing. Materials 2025, 18, 4007. https://doi.org/10.3390/ma18174007
He X, Dong F, Zhang Y. Improving the Microstructure and Mechanical Properties of Al-0.7Fe-0.4Mg-0.1Si-0.5Er Alloy by Equal Channel Angular Pressing. Materials. 2025; 18(17):4007. https://doi.org/10.3390/ma18174007
Chicago/Turabian StyleHe, Xingchi, Fuyu Dong, and Yue Zhang. 2025. "Improving the Microstructure and Mechanical Properties of Al-0.7Fe-0.4Mg-0.1Si-0.5Er Alloy by Equal Channel Angular Pressing" Materials 18, no. 17: 4007. https://doi.org/10.3390/ma18174007
APA StyleHe, X., Dong, F., & Zhang, Y. (2025). Improving the Microstructure and Mechanical Properties of Al-0.7Fe-0.4Mg-0.1Si-0.5Er Alloy by Equal Channel Angular Pressing. Materials, 18(17), 4007. https://doi.org/10.3390/ma18174007