Corrosion and Mechanical Micro-Interaction Behavior of Metal Materials
Funding
Conflicts of Interest
References
- Li, M.; Ding, W.; Sun, Y.; Gan, Z.; Lu, X.; Lei, X. An atomic scale study of the corrosion mechanism of Fe(100) surface by halogen ions. Phys. B Condens. Matter 2025, 699, 416870. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, S.; Sahu, R.K.; Kailath, A.J. Atomic Investigation of Corrosion Mechanism and Surface Degradation of Fe-Cr-Ni Alloy in Presence of Water: Advance Reactive Molecular Dynamics Simulation. Trans. Indian Inst. Met. 2024, 77, 1355–1359. [Google Scholar] [CrossRef]
- Ou, H.; Gao, Z.; Fan, K.; Zhang, Y.; Sun, J.; Fu, Q. Investigation of ZrO2-toughened Yb2SiO5 environmental barrier coating on Nb alloy under water-vapor corrosion at 1500 °C. Corros. Sci. 2024, 236, 112255. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, M.; Qin, W.; Pan, C.; Behnamian, Y.; Yao, X.; Xia, D.-H.; Hu, W. Near-atomic-scale study of the oxide films on the grain boundaries of Al-Mg alloys at the initial stage of corrosion: Experimental investigations and DFT calculations. Corros. Sci. 2025, 244, 112640. [Google Scholar] [CrossRef]
- Sharma, A.; Beura, V.; Zhang, D.; Darsell, J.; Niverty, S.; Prabhakaran, V.; Overman, N.; Herling, D.; Joshi, V.; Solanki, K. Effect of corrosion behavior of cast and extruded ZK60 magnesium alloys processed via friction extrusion. J. Magnes. Alloys 2024, 12, 3553–3573. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, Q.; Li, Y.; Li, R.; Xu, Q. Effect of ammonium ion on the corrosion behavior of Ni2FeCrMo0.2 high-entropy alloy in simulated haze solution. J. Mater. Res. Technol. 2025, 37, 146–156. [Google Scholar] [CrossRef]
- Gao, F.; Yang, C.; Li, J.; Zhou, N.; Luo, X.; Chai, F. A new insight on the corrosion behavior and mechanism of martensitic steel. Mater. Des. 2024, 243, 113066. [Google Scholar] [CrossRef]
- Wolf, M.J.; Usler, A.L.; Souza, R.A.D. Grain-Boundary Corrosion in UO2+δ from a Defect Chemical Perspective: A Case Study of the Σ5(310)[001] Grain Boundary. ACS Appl. Mater. Interfaces 2025, 17, 7906–7915. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Luo, S.J.; Shen, Y.; Lin, X.Z. Corrosion fatigue crack propagation behaviour of S135 high-strength drill pipe steel in H2S environment. Eng. Fail. Anal. 2019, 97, 493–505. [Google Scholar] [CrossRef]
- Xue, B.; Tan, J.; Wu, X.; Zhang, Z.; Kuang, W.; Jin, Q.; Wang, X.; Han, E.H.; Ke, W. Insights into fatigue crack propagation mechanism of T91 steel in liquid lead-bismuth eutectic at 150–450 °C. Corros. Sci. 2024, 236, 112264. [Google Scholar] [CrossRef]
- Li, M.X.; Jiao, Y.B.; Li, Y.-J.; Guo, W.-J.; Hua, Z.-M.; Gao, Y.; Jia, H.; Chen, P.; Wang, H.-Y. A bake-hardenable Mg-Zn-Sn-Ca alloy addressing strength-corrosion trade-off via solute segregation to dislocations. Scr. Mater. 2025, 259, 116542. [Google Scholar] [CrossRef]
- Zhou, Z.; Ye, K.; Hu, M.; Yu, L.; Hu, C.; Jiang, F.; Wang, L. The effect of the pretreatment processes on the corrosion and stability of titanium porous transport layer in proton exchange membrane water electrolyzer. Int. J. Hydrogen Energy 2025, 113, 277–292. [Google Scholar] [CrossRef]
- Paterlini, L.; Vergani, L.; Ormellese, M.; Curia, A.; Re, G.; Bolzoni, F. Hydrogen Embrittlement of a T95 Low-Alloy Steel Charged by Electrochemical Method. Materials 2025, 18, 1047. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, S.; Hou, J.; Wang, W.; Li, J.; Han, E.-H.; Kuang, W. Determining the microstructure effects on the stress corrosion cracking initiation behavior of laser powder-bed-fusion printed 304L stainless steel in high-temperature hydrogenated water. Corros. Sci. 2024, 240, 112482. [Google Scholar] [CrossRef]
- Su, K.; Zhang, J.; Wu, S.; Guan, J.; Li, H.; Ji, D.; Xie, H. Corrosion and corrosion-fatigue properties of composite ceramic coated aluminum alloy formed by combining surface nanocrystallization pre-treatment, micro-arc oxidation, and sealing post-treatment. Int. J. Fatigue 2025, 190, 108661. [Google Scholar] [CrossRef]
- Luo, S.; Liu, M.; Lin, X. Corrosion fatigue behavior of S135 high-strength drill pipe steel in a simulated marine environment. Mater. Corros. 2019, 70, 688–697. [Google Scholar] [CrossRef]
- Wang, H.; Gao, J.; Liu, T.; Yu, Y.; Xu, W.; Sun, Z. Axial buckling behavior of H-piles considering mechanical-electrochemical interaction induced damage. Mar. Struct. 2022, 83, 103157. [Google Scholar] [CrossRef]
- Liu, M. Corrosion and Mechanical Behavior of Metal Materials. Materials 2023, 16, 973. [Google Scholar] [CrossRef]
- Subasic, M.; Dahlberg, C.; Efsing, P. An elastoplastic formulation for mechanical-electrochemical corrosion damage under cyclic loading. Corros. Sci. 2025, 255, 113145. [Google Scholar] [CrossRef]
- Vasudevan, A.K.; Kujawski, D.; Latanision, R.M. On relating quasi-static load threshold K1SCC to K1C. Corros. Rev. 2024, 42, 615–626. [Google Scholar] [CrossRef]
- Yang, Y.; Zhuang, Y.; Wang, H.; Chen, C. Corrosion test and corrosion fatigue numerical simulation research on marine structures. Ocean Eng. 2025, 316, 119931. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhao, Z. Corrosion and Mechanical Micro-Interaction Behavior of Metal Materials. Materials 2025, 18, 4114. https://doi.org/10.3390/ma18174114
Liu M, Zhao Z. Corrosion and Mechanical Micro-Interaction Behavior of Metal Materials. Materials. 2025; 18(17):4114. https://doi.org/10.3390/ma18174114
Chicago/Turabian StyleLiu, Ming, and Ziyuan Zhao. 2025. "Corrosion and Mechanical Micro-Interaction Behavior of Metal Materials" Materials 18, no. 17: 4114. https://doi.org/10.3390/ma18174114
APA StyleLiu, M., & Zhao, Z. (2025). Corrosion and Mechanical Micro-Interaction Behavior of Metal Materials. Materials, 18(17), 4114. https://doi.org/10.3390/ma18174114