Fatigue Properties and Degradation of Cured Epoxy Adhesives Under Water and Air Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Adhesive Material
2.2. Specimens
2.3. Experimental Procedure
3. Results and Discussion
3.1. Fatigue Tests for Smooth Specimens in Water and Air
3.2. Fatigue Tests for Bulk Specimens with a Surface Microcrack in Water
3.3. Fatigue and Deformation Behavior of Specimens
3.3.1. Compliance Behavior Transition in the Fatigue Tests
3.3.2. Creep Deformation Transition in the Fatigue Tests
3.3.3. Transition of the Viscoelasticity Behavior
3.4. Deformation Behavior Under Static and Cyclic Stress in Water
4. Conclusions
- Fatigue strength and limit values in water were improved by 7% compared to those in air.
- In fatigue tests conducted in water on specimens with artificial surface microcracks, all fractures originated from existing cracks. Therefore, pre-cracks of 0.1 mm or larger were found to affect fracture behavior in water.
- The fracture toughness value (1.5 MPa·m0.5) calculated from the tests in water was the same as that in air, indicating that water absorption had no effect on the toughness of pre-cracks.
- The compliance, creep deformation, and tan δ were higher in fatigue tests in water compared to those in air. The deformation was mainly due to expansion caused by water absorption.
- The FTIR measurement results showed that chemical structural transition did not occur regardless of load, time, or absorption.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Da Silva, L.F.M.; Öchsner, A.; Adams, R. Handbook of Adhesion Technology; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 9778-3-642-01168-9. [Google Scholar] [CrossRef]
- Higgins, A. Adhesive bonding of aircraft structures. Int. J. Adhes. Adhes. 2000, 20, 367–376. [Google Scholar] [CrossRef]
- Stoeckel, F.; Konnerth, J.; Gindl-Altmutter, W. Mechanical properties of adhesives for bonding wood—A review. Int. J. Adhes. Adhes. 2013, 45, 32–41. [Google Scholar] [CrossRef]
- Horiuchi, S.; Terasaki, N.; Miyamae, T. Interfacial Phenomena in Adhesion and Adhesive Bonding, 1st ed.; Springer: Singapore, 2023. [Google Scholar]
- Adams, R.D.; Coppendale, J.; Mallick, V.; Al-Hamdan, H. The effect of temperature on the strength of adhesive joints. Int. J. Adhes. Adhes. 1992, 12, 185–190. [Google Scholar] [CrossRef]
- Ashcroft, I.A.; Hughes, D.J.; Shaw, S.J.; Wahab, M.A.; Crocombe, A. Effect of temperature on the quasi-static strength and fatigue resistance of bonded composite double lap joints. J. Adhes. 2001, 75, 61–88. [Google Scholar] [CrossRef]
- Ferreira, J.A.M.; Reis, P.N.; Costa, J.D.M.; Richardson, M.O.W. Fatigue behaviour of composite adhesive lap joints. Compos. Sci. Technol. 2002, 62, 1373–1379. [Google Scholar] [CrossRef]
- da Silva, L.F.M.; Adams, R.D. Adhesive joints at high and low temperatures using similar and dissimilar adherends and dual adhesives. Int. J. Adhes. Adhes. 2007, 27, 216–226. [Google Scholar] [CrossRef]
- da Silva, L.F.M.; Sato, C. Design of Adhesive Joints Under Humid Conditions; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–19. [Google Scholar]
- Bauer, F.; Denneler, S.; Willert-Porada, M. Influence of temperature and humidity on the mechanical properties of Nafion® 117 polymer electrolyte membrane. J. Polym. Sci. 2005, 43, 786–795. [Google Scholar] [CrossRef]
- Teagen, A.; Ramya, S.; Seokmoo, H.; Naksoo, K. Creep behavior of ABS polymer in temperature–humidity conditions. J. Mater. Eng. Perform. 2017, 26, 2754–2762. [Google Scholar] [CrossRef]
- Shimamoto, K.; Batorova, S.; Houjou, K.; Akiyama, H.; Sato, C. Accelerated test method for water resistance of adhesive joints by interfacial cutting of open-faced specimens. J. Adhes. 2021, 97, 1255–1270. [Google Scholar] [CrossRef]
- Houjou, K.; Akiyama, H.; Sato, C. Fatigue fracture behavior of cured epoxy adhesive containing a surface crack. Polym. Test. 2023, 117, 107821. [Google Scholar] [CrossRef]
- Sauer, J.A.; Richardson, G.C. Fatigue of polymers. Int. J. Fract. 1980, 16, 499–532. [Google Scholar] [CrossRef]
- Smith, L.V.; Weitsman, Y.J. The immersed fatigue response of polymer composites. Int. J. Fract. 1996, 82, 31–42. [Google Scholar] [CrossRef]
- Selzer, R.; Friedrich, K. Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture. Compos. Part A Appl. Sci. Manuf. 1997, 28, 595–604. [Google Scholar] [CrossRef]
- Weitsman, Y.; Elahi, M. Effects of fluids on the deformation, strength and durability of polymeric composites—An overview. Mech. Time-Depend. Mat. 2000, 4, 107–126. [Google Scholar] [CrossRef]
- Mortazavian, S.; Fatemi, A. Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review. Int. J. Fatigue 2015, 70, 297–321. [Google Scholar] [CrossRef]
- Rodríguez-Dopico, F.J.; Álvarez García, A.; Tarrío-Saavedra, J. Characterization of epoxy adhesive for marine applications. Oceans 2024, 5, 906–922. [Google Scholar] [CrossRef]
- Broutman, L.J.; Gaggar, S.K. Fatigue behavior of epoxy and polyester resins. Int. J. Polym. Mater. Polym. Biomater. 1972, 1, 295–316. [Google Scholar] [CrossRef]
- Savvilotidou, M.; Keller, T.; Vassilopoulos, A.P. Fatigue performance of a cold-curing structural epoxy adhesive subjected to moist environments. Int. J. Fatigue 2017, 103, 405–414. [Google Scholar] [CrossRef]
- Houjou, K.; Takahashi, K.; Ando, K. Analytical investigation of effect of stress ratio on threshold stress intensity factor range improved by overload. Int. J. Struct. Integr. 2012, 3, 53–60. [Google Scholar] [CrossRef]
- Houjou, K.; Takahashi, K.; Ando, K. Improvement of fatigue limit by shot peening for high-tensile strength steel containing a crack in the stress concentration zone. Int. J. Struct. Integr. 2013, 4, 258–266. [Google Scholar] [CrossRef]
- Houjou, K.; Takahashi, K.; Ando, K.; Abe, H. Effect of peening on the fatigue limit of welded structural steel with surface crack and rendering the crack harmless. Int. J. Struct. Integr. 2014, 5, 279–289. [Google Scholar] [CrossRef]
- Fueki, R.; Takahashi, K.; Houjou, K. Fatigue limit prediction and estimation for the crack size rendered harmless by peening for welded joint containing a surface crack. Mater. Sci. Appl. 2015, 6, 500–510. [Google Scholar] [CrossRef]
- Newman, J.C.; Raju, I.S. An empirical stress- intensity factor equation for the surface crack. Eng. Fract. Mech. 1981, 15, 185–192. [Google Scholar] [CrossRef]
- Houjou, K.; Sekiguchi, Y.; Shimamoto, K.; Akiyama, H.; Sato, C. Energy release rate and crack propagation rate behaviour of moisture-deteriorated epoxy adhesives through the double cantilever beam method. J. Adhes. 2022, 99, 1016–1030. [Google Scholar] [CrossRef]
- Zhou, J.; Lucas, J.P. The effects of a water environment on anomalous absorption behavior in graphite/epoxy composites. Compos. Sci. Technol. 1995, 53, 57–64. [Google Scholar] [CrossRef]
- Loh, W.K.; Crocombe, A.D.; Abdel Wahab, M.M.; Ashcroft, I.A. Modelling anomalous moisture uptake, swelling and thermal characteristics of a rubber toughened epoxy adhesive. Int. J. Adhes. Adhes. 2005, 25, 1–12. [Google Scholar] [CrossRef]
- Ameli, A.; Datla, N.V.; Papini, M.; Spelt, J.K. Hygrothermal properties of highly toughened epoxy adhesives. J. Adhes. 2010, 86, 698–725. [Google Scholar] [CrossRef]
- Max, -J.-J.; Chapados, C. Infrared spectroscopy of aqueous carboxylic acids: Comparison between different acids and their salts. J. Phys. Chem. A 2004, 108, 3324–3337. [CrossRef]
- Morsch, S.; Liu, Y.; Lyon, S.B.; Gibbon, S.R.; Gabriele, B.; Malanin, M.; Eichhorn, K.-J. Examining the early stages of thermal oxidative degradation in epoxyamine resins. Polym. Degrad. Stab. 2020, 176, 109147. [Google Scholar] [CrossRef]
- Shimamoto, K.; Batorova, S.; Houjou, K.; Akiyama, H.; Sato, C. Degradation of epoxy adhesive containing dicyandiamide and carboxyl-terminated butadiene acrylonitrile rubber due to water with open-faced specimens. J. Adhes. 2020, 97, 1388–1403. [Google Scholar] [CrossRef]
Material | Mass% |
---|---|
Bisphenol A epoxy resin | 24 |
CTBN-modified epoxy resin (elastomer 40%) CTBN; carboxyl-terminated butadiene acrylonitrile rubber | 39 |
Fumed silica | 3 |
Filler (CaCO3) | 26 |
CaO | 2 |
Dicyane diamide | 5 |
3-(3,4-dichlorophenyl)-1,1′-dimethylurea | 1 |
Bulk Mechanical Properties | |
Tensile strength at R.T. (MPa) | 30 |
Young’s modulus at R.T. (MPa) | 1100 |
Poisson’s ratio at R.T. | 0.41 |
Tg point (°C) | 110–125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houjou, K.; Akiyama, H.; Shimamoto, K. Fatigue Properties and Degradation of Cured Epoxy Adhesives Under Water and Air Environments. Materials 2025, 18, 4166. https://doi.org/10.3390/ma18174166
Houjou K, Akiyama H, Shimamoto K. Fatigue Properties and Degradation of Cured Epoxy Adhesives Under Water and Air Environments. Materials. 2025; 18(17):4166. https://doi.org/10.3390/ma18174166
Chicago/Turabian StyleHoujou, Keiji, Haruhisa Akiyama, and Kazumasa Shimamoto. 2025. "Fatigue Properties and Degradation of Cured Epoxy Adhesives Under Water and Air Environments" Materials 18, no. 17: 4166. https://doi.org/10.3390/ma18174166
APA StyleHoujou, K., Akiyama, H., & Shimamoto, K. (2025). Fatigue Properties and Degradation of Cured Epoxy Adhesives Under Water and Air Environments. Materials, 18(17), 4166. https://doi.org/10.3390/ma18174166