Assessment of Time-Dependent Hydration Products in Olivine-Substituted Cement Mortars
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Experimental Results and Discussion
3.1. Physical and Chemical Analysis
3.2. XRD Analysis of the Cement Mortar
3.3. FT-IR Analysis of the Cement Mortar
3.4. Thermal Analysis of the Cement Mortar
3.5. SEM and EDS Analysis of the Cement Mortar
3.6. Compressive Strength
4. Conclusions
- Cement is the phase responsible for strength development.
- Olivine fine fractions fill voids through a filling effect, increasing the density of the matrix.
- According to XRD results, while the 20Sub specimen exhibited a more porous structure, the 10Sub specimen contained higher concentrations of Ca(OH)2 and C-S-H phases.
- The olivine substitution significantly altered the chemical bonds of Si-O, Mg-O, and Fe-O in the cement matrix, leading to notable changes in the FT-IR spectrum. This indicates that 10% olivine substitution positively influenced the hydration and carbonation processes.
- DTA/TG analysis revealed that 20% olivine substitution decreased the thermal stability of concrete while effectively reducing mass loss. The 10% olivine substitution demonstrated a moderating effect, producing intermediate results for both parameters. The reference specimen exhibited the highest values for both parameters. These findings suggest that olivine substitution has the potential to enhance the long-term properties of concrete, although higher substitution rates may compromise certain characteristics.
- SEM-EDS analysis indicated that olivine substitution improved the microstructure of cement. However, incorporating olivine beyond 10% adversely affected the homogeneity and strength of the matrix.
- The 10% olivine substitution strengthened the cement matrix by facilitating the balanced formation of microstructure and hydration products.
- In contrast, 20% olivine substitution presented a heterogeneous structure in the cement matrix and negatively impacted hydration.
- The compressive strength value of the 10Sub specimen remains within the limit values specified by BS EN 197-1 [85] standard.
- Olivine can be substituted for CEM IV 32.5 N-type cement up to 10%.
- The ability to use olivine directly as a cement replacement material without calcination shows promise for green cement and ecological concrete production. The results demonstrate the viability of olivine substitution in sustainable building materials and its effects on microstructure.
5. Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Asteris, P.G.; Skentou, A.D.; Bardhan, A.; Samui, P.; Pilakoutas, K. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cem. Concr. Res. 2021, 145, 106449. [Google Scholar] [CrossRef]
- Winnefeld, F.; Leemann, A.; German, A.; Lothenbach, B. CO2 storage in cement and concrete by mineral carbonation. Curr. Opin. Green Sustain. Chem. 2022, 38, 100672. [Google Scholar] [CrossRef]
- Manjunatha, M.; Preethi, S.; Malingaraya Mounika, H.G.; Niveditha, K.N.; Ravi. Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Mater. Today Proc. 2021, 47, 3637–3644. [Google Scholar] [CrossRef]
- Costa, F.N.; Ribeiro, D.V. Reduction in CO2 emissions during production of cement, with partial replacement of traditional raw materials by civil construction waste (CCW). J. Clean. Prod. 2020, 276, 123302. [Google Scholar] [CrossRef]
- Mohamad, N.; Muthusamy, K.; Embong, R.; Kusbiantoro, A.; Hashim, M.H. Environmental impact of cement production and solutions: A review. Mater. Today Proc. 2022, 48, 741–746. [Google Scholar] [CrossRef]
- Kayakuş, M.; Terzioğlu, M.; Erdoğan, D.; Zetter, S.A.; Kabas, O.; Moiceanu, G. European union 2030 carbon emission target: The case of turkey. Sustainability 2023, 15, 13025. [Google Scholar] [CrossRef]
- Rissman, J.; Bataille, C.; Masanet, E.; Aden, N.; Morrow, W.R.; Zhou, N.; Elliott, N.; Dell, R.; Heeren, N.; Huckestein, B.; et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. [Google Scholar] [CrossRef]
- Wojtacha-Rychter, K.; Kucharski, P.; Smolinski, A. Conventional and alternative sources of thermal energy in the production of cement—An impact on CO2 emission. Energies 2021, 14, 1539. [Google Scholar] [CrossRef]
- Nie, S.; Zhou, J.; Yang, F.; Lan, M.; Li, J.; Zhang, Z.; Chen, Z.; Xu, M.; Li, H.; Sanjayan, J.G. Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. J. Clean. Prod. 2022, 334, 130270. [Google Scholar] [CrossRef]
- Sousa, V.; Bogas, J.A. Comparison of energy consumption and carbon emissions from clinker and recycled cement production. J. Clean. Prod. 2021, 306, 127277. [Google Scholar] [CrossRef]
- Benhelal, E.; Shamsaei, E.; Rashid, M.I. Challenges against CO2 abatement strategies in cement industry: A review. J. Environ. Sci. 2021, 104, 84–101. [Google Scholar] [CrossRef]
- Altunci, Y.T.; Öcal, C. Engineering features of dung ash substituted cement mortars. BSEU J. Sci. 2021, 8, 24–31. [Google Scholar] [CrossRef]
- Aslan, Y.; Gürocak, Z. Investigation of pozzolanic properties of acidic and basic tuffs: A case study from Elazığ and Gümüşhane regions. Gümüşhane Univ. J. Sci. Technol. 2022, 12, 1024–1035. [Google Scholar] [CrossRef]
- Westgate, P.; Ball, R.J.; Paine, K. Olivine as a reactive aggregate in lime mortars. Constr. Build. Mater. 2019, 195, 115–126. [Google Scholar] [CrossRef]
- Zhong, S.S.; Zhao, Y.Y.S.; Lin, H.; Chang, R.; Qi, C.; Wang, J.; Mo, B.; Wen, Y.; Yu, W.; Zhou, D.S.; et al. High-temperature oxidation of magnesium- and iron-rich olivine under a CO2 atmosphere: Implications for Venus. Remote Sens. 2023, 15, 1959. [Google Scholar] [CrossRef]
- Scott, A.; Oze, C.; Shah, V.; Yang, N.; Shanks, B.; Cheeseman, C.; Marshall, A.; Watson, M. Transformation of abundant magnesium silicate minerals for enhanced CO2 sequestration. Commun. Earth Environ. 2021, 2, 1–6. [Google Scholar] [CrossRef]
- Saridhe, S.P.; Hareesh, M.; Priya, T.S.; Selvaraj, T. Role of olivine aggregate in lime and cement mortars for the sequestration of atmospheric CO2. Mater. Tehnol. 2023, 57, 135–140. [Google Scholar] [CrossRef]
- Ngono Onana, E.H.; Gentry, F.C.; Ndjigui, P.D. Petrological features of volcanic scoriae from the southern part of the Cameroon Volcanic Line and their supplementary cementations application. Heliyon 2022, 8, e08684. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Q.L. Effects of an eco-silica source based activator on functional alkali activated lightweight composites. Constr. Build. Mater. 2019, 215, 686–695. [Google Scholar] [CrossRef]
- Achang, M.; Radonjic, M. Adding olivine micro particles to Portland cement based wellbore cement slurry as a sacrificial material: A quest for the solution in mitigating corrosion of wellbore cement. Cem. Concr. Compos. 2021, 121, 104078. [Google Scholar] [CrossRef]
- Quercia, G.; Brouwers, H.J.H.; Garnier, A.; Luke, K. Influence of olivine nano-silica on hydration and performance of oil-well cement slurries. Mater. Des. 2016, 96, 162–170. [Google Scholar] [CrossRef]
- Pokharel, R.; Popa, I.C.; de Kok, Y.; King, H.E. Enhanced nesquehonite formation and stability in the presence of dissolved silica. Environ. Sci. Technol. 2024, 58, 362–370. [Google Scholar] [CrossRef]
- Shah, V.; Scott, A. Pozzolanic characteristics of silica recovered from olivine. Constr. Build. Mater. 2022, 332, 127378. [Google Scholar] [CrossRef]
- Güçlüer, K.; Yaldız, M.R.; Günaydın, O. An investigation of the high-temperature behavior of basalt, olivine, and pyrophyllite additive mortars. Iran. J. Sci. Technol. Trans. Civ. Eng. 2023, 47, 1467–1484. [Google Scholar] [CrossRef]
- Chen, Y.X.; Li, S.; Mezari, B.; Hensen, E.J.M.; Yu, R.; Schollbach, K.; Brouwers, H.J.H.; Yu, Q. Effect of highly dispersed colloidal olivine nano-silica on early age properties of ultra-high performance concrete. Cem. Concr. Compos. 2022, 131, 104564. [Google Scholar] [CrossRef]
- Kalpokaitė-Dičkuvienė, R.; Baltušnikas, A.; Levinskas, R.; Čėsnienė, J. Incinerator residual ash–Metakaolin blended cements: Effect on cement hydration and properties. Constr. Build. Mater. 2019, 206, 297–306. [Google Scholar] [CrossRef]
- Kocak, Y. Effects of metakaolin on the hydration development of Portland–composite cement. J. Build. Eng. 2020, 31, 101419. [Google Scholar] [CrossRef]
- Xu, G.; Du, S.; He, J.; Shi, X. The role of admixed graphene oxide in a cement hydration system. Carbon 2019, 148, 141–150. [Google Scholar] [CrossRef]
- An, J.; Nam, B.H.; Alharbi, Y.; Cho, B.H.; Khawaji, M. Edge-oxidized graphene oxide (EOGO) in cement composites: Cement hydration and microstructure. Compos. Part B Eng. 2019, 173, 106795. [Google Scholar] [CrossRef]
- Kocak, Y.; Tascı, E.; Kaya, U. The Effect using natural zeolite on the properties and hydration characteristics of blended cements. Constr. Build. Mater. 2013, 47, 720–727. [Google Scholar] [CrossRef]
- Cardinaud, G.; Rozière, E.; Martinage, O.; Loukili, A.; Barnes-Davin, L.; Paris, M.; Deneele, D. Calcined clay–Limestone cements: Hydration processes with high and low-grade kaolinite clays. Constr. Build. Mater. 2021, 277, 122271. [Google Scholar] [CrossRef]
- Zunino, F.; Scrivener, K. Assessing the effect of alkanolamine grinding aids in limestone calcined clay cements hydration. Constr. Build. Mater. 2021, 266, 121293. [Google Scholar] [CrossRef]
- Briki, Y.; Zajac, M.; Ben Haha, M.; Scrivener, K. Impact of limestone fineness on cement hydration at early age. Cem. Concr. Res. 2021, 147, 106515. [Google Scholar] [CrossRef]
- Khan, R.I.; Ashraf, W. Effects of ground wollastonite on cement hydration kinetics and strength development. Constr. Build. Mater. 2019, 218, 150–161. [Google Scholar] [CrossRef]
- Pınarcı, İ.; Kocak, Y. Hydration mechanisms and mechanical properties of pumice substituted cementitious binder. Constr. Build. Mater. 2022, 335, 127528. [Google Scholar] [CrossRef]
- Kocak, Y.; Nas, S. The effect of using fly ash on the strength and hydration characteristics of blended cements. Constr. Build. Mater. 2014, 73, 25–32. [Google Scholar] [CrossRef]
- Kocak, B.; Pınarcı, İ.; Güvenç, U.; Kocak, Y. Prediction of compressive strengths of pumice-and diatomite-containing cement mortars with artificial intelligence-based applications. Constr. Build. Mater. 2023, 385, 131516. [Google Scholar] [CrossRef]
- Karpova, E.; Skripkiūnas, G.; Barauskas, I.; Barauskienė, I.; Hodul, J. Influence of carbon nanotubes and polycarboxylate superplasticiser on the Portland cement hydration process. Constr. Build. Mater. 2021, 304, 124648. [Google Scholar] [CrossRef]
- Xu, Y.; He, T.; Ma, X. The influence of calcium nitrate/sodium nitrate on the hydration process of cement paste mixed with alkali free liquid accelerator. Constr. Build. Mater. 2022, 347, 128555. [Google Scholar] [CrossRef]
- Ji, X.; Pan, T.; Fu, C.; Han, F.; Zhao, W.; Sha, J.; Liu, J. Hydration, microstructure and mechanical properties of cement-based materials with heat-modified autoclaved aerated concrete waste. Constr. Build. Mater. 2024, 419, 135482. [Google Scholar] [CrossRef]
- Li, J.; Chang, J.; Wang, T.; Zeng, T.; Li, J.; Zhang, J. Effects of phosphogypsum on hydration properties and strength of calcium aluminate cement. Constr. Build. Mater. 2022, 347, 128398. [Google Scholar] [CrossRef]
- Mohan, M.K.; Rahul, A.V.; De Schutter, G.; Van Tittelboom, K. Early age hydration, rheology and pumping characteristics of CSA cement-based 3D printable concrete. Constr. Build. Mater. 2021, 275, 122136. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, T.; Li, Z.; Zhou, Z.; Zhang, J. Mechanism of retarder on hydration process and mechanical properties of red mud-based geopolymer cementitious materials. Constr. Build. Mater. 2022, 356, 129306. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, J.; Zhan, B.; Gao, P.; Yu, Q.; Li, R.; Wang, J.; Wang, A.; Liu, G.; Zhang, Y. Study on hydration characteristics and mechanism of recycled powder-cement binary and multivariate systems. Constr. Build. Mater. 2024, 420, 135646. [Google Scholar] [CrossRef]
- Gupta, S.; Muthukrishnan, S.; Kua, H.W. Comparing influence of inert biochar and silica rich biochar on cement mortar–Hydration kinetics and durability under chloride and sulfate environment. Constr. Build. Mater. 2021, 268, 121142. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, Y.; Huang, L.; Liu, X.; Han, F.; Yan, P. A new hydration kinetic model based on boundary nucleation and growth mechanism with time-dependent growth rate: Application to quantitively characterize the influence of alkali on the early hydration of cement. Constr. Build. Mater. 2023, 411, 134616. [Google Scholar] [CrossRef]
- Li, Z.; Lin, L.; Yu, J.; Tang, H.; Qin, J.; Qian, J. Performance of magnesium silicate hydrate cement modified with dipotassium hydrogen phosphate. Constr. Build. Mater. 2022, 323, 126389. [Google Scholar] [CrossRef]
- Zhutovsky, S.; Shishkin, A. Recycling of hydrated Portland cement paste into new clinker. Constr. Build. Mater. 2021, 280, 122510. [Google Scholar] [CrossRef]
- Liu, P.; Mo, L.; Zhang, Z. Effects of carbonation degree on the hydration reactivity of steel slag in cement-based materials. Constr. Build. Mater. 2023, 370, 130653. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, B.; Sun, Z.; Li, Q.; Wang, S.; Lu, X.; Liu, J.; Zhang, S. Preparation and hydration process of copper slag-granulated blast furnace slag-cement composites. Constr. Build. Mater. 2024, 421, 135717. [Google Scholar] [CrossRef]
- Ouyang, X.; Wang, L.; Fu, J.; Xu, S.; Ma, Y. Surface properties of clay brick powder and its influence on hydration and strength development of cement paste. Constr. Build. Mater. 2021, 300, 123958. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Y.; Lyu, Z.; Wei, X. Investigation of the effect of waterborne epoxy resins on the hydration kinetics and performance of cement blends. Constr. Build. Mater. 2021, 301, 124045. [Google Scholar] [CrossRef]
- Yang, R.; He, T. Influence of liquid accelerators combined with mineral admixtures on early hydration of cement pastes. Constr. Build. Mater. 2021, 295, 123659. [Google Scholar] [CrossRef]
- Zhang, S.; Niu, D. Hydration and mechanical properties of cement-steel slag system incorporating different activators. Constr. Build. Mater. 2023, 363, 129981. [Google Scholar] [CrossRef]
- Lin, R.S.; Lee, H.S.; Han, Y.; Wang, X.Y. Experimental studies on hydration–strength–durability of limestone-cement-calcined Hwangtoh clay ternary composite. Constr. Build. Mater. 2021, 269, 121290. [Google Scholar] [CrossRef]
- Lu, B.; Huo, Z.; Xu, Q.; Hou, G.; Wang, X.; Liu, J.; Hu, X. Characteristics of CSH under carbonation and its effects on the hydration and microstructure of cement paste. Constr. Build. Mater. 2023, 364, 129952. [Google Scholar] [CrossRef]
- Aodkeng, S.; Sinthupinyo, S.; Chamnankid, B.; Hanpongpun, W.; Chaipanich, A. Effect of carbon nanotubes/clay hybrid composite on mechanical properties, hydration heat and thermal analysis of cement-based materials. Constr. Build. Mater. 2022, 320, 126212. [Google Scholar] [CrossRef]
- Wang, L.; Jin, M.; Wu, Y.; Zhou, Y.; Tang, S. Hydration, shrinkage, pore structure and fractal dimension of silica fume modified low heat Portland cement-based materials. Constr. Build. Mater. 2021, 272, 121952. [Google Scholar] [CrossRef]
- Dai, T.; Fang, C.; Liu, T.; Zheng, S.; Lei, G.; Jiang, G. Waste glass powder as a high temperature stabilizer in blended oil well cement pastes: Hydration, microstructure and mechanical properties. Constr. Build. Mater. 2024, 439, 137359. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, G.; Liang, C.; Huang, T.; Zhang, P. Insight into the early hydration characteristics of Portland cement with hydroxyethyl methyl cellulose highlighted by 1H low-field NMR. Constr. Build. Mater. 2024, 424, 135904. [Google Scholar] [CrossRef]
- Han, S.; Zhong, J.; Ding, W.; Ou, J. Strength, hydration, and microstructure of seawater sea-sand concrete using high-ferrite Portland cement. Constr. Build. Mater. 2021, 295, 123703. [Google Scholar] [CrossRef]
- Lam, W.L.; Cai, Y.; Sun, K.; Shen, P.; Poon, C.S. Roles of ultra-fine waste glass powder in early hydration of Portland cement: Hydration kinetics, mechanical performance, and microstructure. Constr. Build. Mater. 2024, 415, 135042. [Google Scholar] [CrossRef]
- Cheng, L.; Jin, H.; Wu, Y.; Ren, Y.; Liu, J.; Xing, F. Influence of municipal solid waste incineration bottom ash particle size on cement hydration and performance. Constr. Build. Mater. 2024, 432, 158059. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, P. Effects of different composite mineral admixtures on the early hydration and long-term properties of cement-based materials: A comparative study. Constr. Build. Mater. 2021, 294, 123547. [Google Scholar] [CrossRef]
- Zhang Ting Ma, B.; Jiang, D.; Jiang, Q.; Jin, Z. Comparative research on the effect of various mineral admixtures on the early hydration process of cement. Constr. Build. Mater. 2021, 301, 124372. [Google Scholar] [CrossRef]
- Li, H.W.; Wang, R.; Wei, M.W.; Lei, N.Z.; Sun, H.X.; Fan, J.J. Mechanical properties and hydration mechanism of high-volume ultra-fine iron ore tailings cementitious materials. Constr. Build. Mater. 2022, 353, 129100. [Google Scholar] [CrossRef]
- Heikal, M.; Zaki, M.E.A.; Ibrahim, S.M. Characterization, hydration, durability of nano-Fe2O3-composite cements subjected to sulphates and chlorides media. Constr. Build. Mater. 2021, 269, 121310. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Lu, Z.; Chen, J. Properties and hydration mechanism of cement pastes in presence of nano-ZnO. Constr. Build. Mater. 2021, 289, 123080. [Google Scholar] [CrossRef]
- Zhang Tao Wu, P.; Jiang, Q.; Liu, Q.; Wang, Q.; Qiu, J.; Hu, S.; Lyu, X. The competitive hydration of SO42− and Cl− in alkali-activated slag cementitious materials. Constr. Build. Mater. 2023, 396, 132267. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, Z.; Wang, H. Hydration mechanisms and durability of hybrid alkaline cements (HACs): A review. Constr. Build. Mater. 2021, 266, 121039. [Google Scholar] [CrossRef]
- Shao, Z.; Cao, M. Hydration mechanism of limestone calcined clay cement containing calcined coal gangue. Constr. Build. Mater. 2024, 438, 136906. [Google Scholar] [CrossRef]
- Huo, B.; Zhang, Y. Effects of dicalcium ferrite on hydration and microstructure of cementitious material. Constr. Build. Mater. 2024, 411, 134604. [Google Scholar] [CrossRef]
- Dorn, T.; Blask, O.; Stephan, D. Acceleration of cement hydration—A review of the working mechanisms, effects on setting time, and compressive strength development of accelerating admixtures. Constr. Build. Mater. 2022, 323, 126554. [Google Scholar] [CrossRef]
- Sun Jinxiao Song, Z.; Zhang, Y.; Zhang, Y.; Zhao, S.; Guo, M.Z.; Jiang, L. Effect of red mud and phosphate on water resistance and hydration mechanism of magnesium oxychloride cement. Constr. Build. Mater. 2024, 413, 134844. [Google Scholar] [CrossRef]
- Wei, X.; Li, D.; Ming, F.; Yang, C.; Chen, L.; Liu, Y. Influence of low-temperature curing on the mechanical strength, hydration process, and microstructure of alkali-activated fly ash and ground granulated blast furnace slag mortar. Constr. Build. Mater. 2021, 269, 121811. [Google Scholar] [CrossRef]
- Ma, M.; Mehdizadeh, H.; Guo, M.Z.; Ling, T.C. Effect of direct carbonation routes of basic oxygen furnace slag (BOFS) on strength and hydration of blended cement paste. Constr. Build. Mater. 2021, 304, 124628. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, J.; Zhang, G.; Wang, Y.; Wang, Y. Effect of aluminum sulfate alkali-free liquid accelerator with compound alkanol lamine on the hydration processes of Portland cement. Constr. Build. Mater. 2021, 308, 125101. [Google Scholar] [CrossRef]
- Wang, J.; Ma, B.; Tan, H.; Du, C.; Chu, Z.; Luo, Z.; Wang, P. Hydration and mechanical properties of cement-marble powder system incorporating triisopropanolamine. Constr. Build. Mater. 2021, 266, 121068. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, X.; Shi, C.; Zhang, Z.; Zhu, D. A review on seawater sea-sand concrete: Mixture proportion, hydration, microstructure and properties. Constr. Build. Mater. 2021, 295, 123602. [Google Scholar] [CrossRef]
- Jia, L.; Jia, Z.; Zhang, Z.; Tang, Z.; Wang, W.; Cao, R.; Zhang, Y. Effect of recycled brick powder with various particle features on early-age hydration, water state, and rheological properties of blended cement paste in the context of 3D Printing. Constr. Build. Mater. 2024, 418, 135428. [Google Scholar] [CrossRef]
- Qiu, X.; Chen, W.; Yuan, J.; Shu, X.; Tan, X.; Wu, G.; Tian, H.; Cai, L. Study on early hydration and mechanical properties of ferrite-rich calcium sulfoaluminate cement-based grouting materials. Constr. Build. Mater. 2024, 411, 134324. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, J.; Yan, C.; Yin, L.; Wang, X.; Liu, S. Hydration characteristics of low carbon cementitious materials with multiple solid wastes. Constr. Build. Mater. 2022, 322, 126366. [Google Scholar] [CrossRef]
- Stopic, S.; Dertmann, C.; Modolo, G.; Kegler, P.; Neumeier, S.; Kremer, D.; Wotruba, H.; Etzold, S.; Telle, R.; Rosani, D.; et al. Synthesis of magnesium carbonate via carbonation under high pressure in an autoclave. Metals 2018, 8, 993. [Google Scholar] [CrossRef]
- BS EN 197-1; Cement–Composition, Specifications and Conformity Criteria for Common Cements. British Standards Institute: London, UK, 2011.
- BS EN 196-1; Methods of Testing Cement–Determination of Strength. Turkish Standards Institute: Ankara, Turkey, 2016.
- BS EN 196-6; Methods of Testing Cement–Determination of Fineness. BSI: New York, NY, USA, 2018. [CrossRef]
- Meng, J.; Zhao, Z.; Wang, X.; Wu, X.; Zheng, A.; Huang, Z.; Zhao, K.; Li, H. Effects of catalyst preparation parameters and reaction operating conditions on the activity and stability of thermally fused Fe-olivine catalyst in the steam reforming of toluene. Int. J. Hydrogen Energy 2018, 43, 127–138. [Google Scholar] [CrossRef]
- Genuchten, C.M.; Van Hamaekers, H.; Fraiquin, D.; Hollanders, S.; Ahmad, A. Heavy metal removal potential of olivine. Water Res. 2023, 245, 120583. [Google Scholar] [CrossRef]
- Mo, L.; Deng, M.; Tang, M.; Al-Tabbaa, A. MgO expansive cement and concrete in China: Past, present and future. Cem. Concr. Res. 2014, 57, 1–12. [Google Scholar] [CrossRef]
- Hay, R.; Celik, K. Hydration, carbonation, strength development and corrosion resistance of reactive MgO cement-based composites. Cem. Concr. Res. 2020, 128, 105941. [Google Scholar] [CrossRef]
- Djifack, J.E.; Kanouo, N.S.; Sabiha, A.B.; Hamadou, T.; Basua, E.A.A. Marbles and meta-schists from Bidzar (North Region of Cameroon): Characteristics and the use of meta-schists as additives in experimenting blended cements production. Eng. Res. Express 2024, 6, 045004. [Google Scholar] [CrossRef]
- Li Yuanrui Ma, Y.; Shen, X.; Meng, Q.; Li, Y. Clinkering and hydration of alite-belite-ye’elimite cement with increasing ye’elimite percentage. Constr. Build. Mater. 2024, 426, 136224. [Google Scholar] [CrossRef]
- Anirudh, M.; Rekha, K.S.; Venkatesh, C.; Nerella, R. Characterization of red mud based cement mortar; Mechanical and microstructure studies. Mater. Today Proc. 2020, 43, 1587–1591. [Google Scholar] [CrossRef]
- Wang, F.; Dreisinger, D.; Jarvis, M.; Hitchins, T. Kinetic evaluation of mineral carbonation of natural silicate samples. Chem. Eng. J. 2021, 404, 126522. [Google Scholar] [CrossRef]
- Bernasconi, D.; Viani, A.; Zárybnická, L.; Bordignon, S.; Godinho, J.R.A.; Maximenko, A.; Celikutku, C.; Jafri, S.F.; Borfecchia, E.; Wehrung, Q.; et al. Setting reaction of a olivine-based Mg-phosphate cement. Cem. Concr. Res. 2024, 186, 107694. [Google Scholar] [CrossRef]
- Song, Q.; Su, J.; Nie, J.; Li, H.; Hu, Y.; Chen, Y.; Li, R.; Deng, Y. The occurrence of MgO and its influence on properties of clinker and cement: A review. Constr. Build. Mater. 2021, 293, 123494. [Google Scholar] [CrossRef]
- Yan, X.; Tang, W.; Cui, H. Effect of MWCNTs-OH on the mechanical properties of cement composites: From macro to micro perspective. Constr. Build. Mater. 2024, 444, 137652. [Google Scholar] [CrossRef]
- Sangadji, S. Can Self-healing Mechanism Helps Concrete Structures Sustainable? Procedia Eng. 2017, 171, 238–249. [Google Scholar] [CrossRef]
- Wang, Y.; He, F.; Wang, J.; Hu, Q. Comparison of effects of sodium bicarbonate and sodium carbonate on the hydration and properties of Portland cement paste. Materials 2019, 12, 1033. [Google Scholar] [CrossRef] [PubMed]
- Nemeş, N.S.; Negrea, A. Infrared and visible spectroscopy: Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy. In Microbial Electrochemical Technologies: Fundamentals and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2024; Volume 1–2, pp. 133–162. [Google Scholar] [CrossRef]
- Xu, D.; Qi, G.; Wang, D.; Zhang, D.; Zhu, C.; Zhang, S.; Liu, Z. Phase evolution and microstructure changes induced by accelerated carbonation in natural hydraulic lime paste with GGBFS addition. Constr. Build. Mater. 2024, 448, 138256. [Google Scholar] [CrossRef]
- Heinemann, R.; Kroll, H.; Kirfel, A.; Barbier, B. Order and anti-order in olivine I: Structural response to temperature. Eur. J. Mineral. 2006, 18, 673–689. [Google Scholar] [CrossRef]
- Semberg, P.; Andersson, C.; Bjorkman, B. Interaction between iron oxides and olivine in magnetite pellets during reduction at 500°–1300°C. Miner. Metall. Process. 2014, 31, 126–135. [Google Scholar] [CrossRef]
- Briki, Y.; Avet, F.; Zajac, M.; Bowen, P.; Haha, M.B.; Scrivener, K. Understanding of the factors slowing down metakaolin reaction in limestone calcined clay cement (LC3) at late ages. Cem. Concr. Res. 2021, 146, 106477. [Google Scholar] [CrossRef]
- Andrade Neto, J.S.; de Matos, P.R.; De la Torre, A.G.; Campos, C.E.M.; Torres, S.M.; Monteiro, P.J.M.; Kirchheim, A.P. Hydration and interactions between pure and doped C3S and C3A in the presence of different calcium sulfates. Cem. Concr. Res. 2022, 159, 106893. [Google Scholar] [CrossRef]
- Li, P.; Jiang, Z.; An, X.; Maekawa, K.; Du, S. Time-dependent retardation effect of epoxy latexes on cement hydration: Experiments and multi-component hydration model. Constr. Build. Mater. 2022, 320, 126282. [Google Scholar] [CrossRef]
- Gelli, R.; Tonelli, M.; Martini, F.; Calucci, L.; Borsacchi, S.; Ridi, F. Effect of borax on the hydration and setting of magnesium phosphate cements. Constr. Build. Mater. 2022, 348, 128686. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, Z.; Wang, H. Early hydration kinetics and microstructure development of hybrid alkali activated cements (HAACs) at room temperature. Cem. Concr. Compos. 2021, 123, 104200. [Google Scholar] [CrossRef]
- Özen, S.; Altun, M.G.; Yasin, M.; Yıldırım, M. 5 th International Conference on Applied Engineering and Natural Sciences. In Proceedings of the Silis Dumanı Kullanımının Kolemanit ve Kolemanit Atığı İçeren Harç Karışımların Dayanımına Etkisi, Konya, Turkey, 10–12 July 2023; pp. 996–1004. [Google Scholar]
- Mendoza Reales, O.A.; Dias Toledo Filho, R. A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites. Constr. Build. Mater. 2017, 154, 697–710. [Google Scholar] [CrossRef]
- Seifi, S.; Levacher, D.; Razakamanantsoa, A.; Sebaibi, N. Microstructure of dry mortars without cement: Specific surface area, pore size and volume distribution analysis. Appl. Sci. 2023, 13, 5616. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, K.Q.; Lee, H.S. Prediction of compressive strength development for blended cement mortar considering fly ash fineness and replacement ratio. Constr. Build. Mater. 2021, 271, 121532. [Google Scholar] [CrossRef]
- Damineli, B.L.; Pileggi, R.G.; Lagerblad, B.; John, V.M. Effects of Filler Mineralogy on the Compressive Strength of Cementitious Mortars. Constr. Build. Mater. 2021, 299, 124363. [Google Scholar] [CrossRef]
Purpose | Results | Researcher(s) |
---|---|---|
They investigated the usability of olivine aggregate in calcium lime mortars. | They determined that olivine aggregate reacts with lime and carbon dioxide in humid environments to form dolomite within the mortar, thereby improving mechanical properties and increasing CO2 absorption capacity. | [15] |
They studied the CO2 capture efficiency of olivine aggregate in cement and lime mortars from the atmosphere. | They found that between lime and cement mortars, lime mortars captured more CO2 and produced stable compounds. | [18] |
They researched the feasibility of utilizing volcanic slag in cement. | They indicated that olivine and other mineralogical components in volcanic slag contained high levels of magnesium oxide (MgO), hematite (Fe2O3), calcium oxide (CaO), and titanium dioxide (TiO2), suggesting that volcanic slag less exposed to weathering conditions would be suitable as an additive in cement production. | [19] |
They characterized lightweight, olivine nano-silica-activated slag-fly ash composites. | They discovered that using olivine nano-silica as an activator reduced carbon emissions by approximately 25%. | [20] |
They examined the performance of olivine in environments with low and high pH values. | They determined that olivine enhances the leakage resistance of well wall cement through carbonation (CSH and CH), reacts with hydrochloric acid (HCl) aqueous solution at pH values between 1.0 and 1.92, and shows no significant reactivity in other liquids. | [21] |
They investigated the effects of olivine nano-silica addition on the mixture stability, rheology, and hydration degree of oil well cement. | They found that olivine nano-silica accelerates oil well cement reactions and enhances mechanical properties. | [22] |
They studied the CO2 sequestration efficiency of Mg2+ ions obtained through olivine dissolution. | They established that olivine applications would provide limited benefits during carbon remediation strategies, while the use of magnesium (Mg)-based cement would increase efficiency. | [23] |
They researched the potential use of silica recovered from olivine through an acid digestion process as an additive in cement. | They determined that silica recovered from olivine improves the binding properties of cement and provides significant environmental benefits. | [24] |
They examined the behavior of mineral-added mortars under high-temperature conditions. | They found that across all temperature values, the best results were obtained from specimens containing 10% basalt, pyrophyllite, and olivine. | [25] |
They developed and characterized the material properties of a highly dispersed colloidal olivine nano-silica (C-OnS). | They discovered that C-OnS enhances the early-age performance of ultra-high-performance concrete due to its high silanol content, surface area, and dispersity. | [26] |
Specimen | CaO (%) | Fe2O3 (%) | Al2O3 (%) | MgO (%) | Na2O (%) | K2O (%) | SiO2 (%) | SO3 (%) |
---|---|---|---|---|---|---|---|---|
Olivine | 3.18 | 9.45 | - | 46.20 | - | - | 38.14 | - |
CEM IV 32.5 N | 62.57 | 2.56 | 4.60 | 1.53 | 0.26 | 0.66 | 20.36 | 3.32 |
Notation | Substitution Rates (%) | Water (g) | Cement (g) | Olivine (g) | Standard Sand (g) |
---|---|---|---|---|---|
Ref | 0 | 225 | 450 | 0 | 1350 |
10Sub | 10 | 405 | 45 | ||
20Sub | 20 | 360 | 90 |
Experiment | Parameter | Standard |
---|---|---|
Sieve analysis | Classification according to material size | [87] |
Specific surface area (Blaine) | Specific surface area | [87] |
Specific weight | Specific weight | |
Compressive strength | Compression | [86] |
XRD | Mineral phase analysis | |
FT-IR | Material identification and verification | |
DTA-TG | Thermal analysis | |
SEM | Surface morphology | |
EDS | Chemical composition |
Notation | Grain Size >45 μm >90 μm (%) | Specific Gravity (g/cm3) | Blaine Specific Surface Area (cm2/g) | |
---|---|---|---|---|
Ref | 0.0 | 1.2 | 2.95 | 3822 |
10Sub | 2.5 | 1.1 | 3.11 | 3720 |
20Sub | 3.8 | 1.7 | 3.11 | 3550 |
Notation | TG Start (mg) | TG End (mg) | Mass Loss (mg) | Mass Loss (%) |
---|---|---|---|---|
Ref | 3815.15 | 3577.95 | 237.20 | 6.22 |
10Sub | 6991.51 | 6531.44 | 460.07 | 6.58 |
20Sub | 7976.78 | 7526.51 | 450.27 | 5.64 |
Reference | 10Sub | 20Sub | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Element | Weight | Atomic | Oxide | Weight | Atomic | Oxide | Weight | Atomic | Oxide | |||
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | ||||
C | 4.03 | 4.78 | CO2 | 14.62 | 3.51 | 3.19 | CO2 | 12.87 | 3.00 | 2.77 | CO2 | 9.56 |
Mg | 0.76 | 0.90 | - | 0.75 | 2.52 | 2.29 | - | 2.53 | - | - | - | - |
Na | - | - | - | - | - | - | - | - | 6.90 | 6.36 | Na2O | 8.08 |
Al | 5.66 | 6.73 | Al2O3 | 10.60 | 2.21 | 2.00 | Al2O3 | 4.17 | 10.46 | 9.65 | Al2O3 | 17.17 |
Si | 5.81 | 6.91 | SiO2 | 12.32 | 13.79 | 12.53 | SiO2 | 29.55 | 31.69 | 29.22 | SiO2 | 58.87 |
S | 1.32 | 1.57 | SO3 | 3.27 | 1.29 | 1.17 | SO3 | 3.21 | - | - | - | - |
Ca | 33.85 | 40.22 | CaO | 46.94 | 31.76 | 28.86 | CaO | 44.49 | 5.20 | 4.80 | CaO | 6.32 |
Fe | 8.11 | 9.64 | Fe2O3 | 11.50 | 2.22 | 2.02 | Fe2O3 | 3.18 | - | - | - | - |
O | 24.63 | 29.26 | - | 31.18 | 52.75 | 47.94 | - | 12.37 | 51.20 | 47.21 | - | 7.75 |
Reference | 10Sub | 20Sub | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Element | Weight | Atomic | Oxide | Weight | Atomic | Oxide | Weight | Atomic | Oxide | |||
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | ||||
C | 3.07 | 2.87 | CO2 | 14.16 | 1.34 | 1.17 | CO2 | 6.08 | 5.59 | 5.48 | CO2 | 22.26 |
Mg | - | - | - | - | 2.27 | 1.98 | - | 2.82 | 1.95 | 1.92 | - | 2.12 |
Al | 4.80 | 4.49 | Al2O3 | 11.41 | 2.67 | 2.33 | Al2O3 | 6.25 | 1.74 | 1.71 | Al2O3 | 3.58 |
Si | 15.76 | 14.72 | SiO2 | 42.38 | 12.16 | 10.61 | SiO2 | 32.26 | 9.86 | 9.67 | SiO2 | 22.93 |
S | - | - | - | - | 1.62 | 1.41 | SO3 | 5.01 | 1.54 | 1.51 | SO3 | 4.19 |
K | 7.75 | 7.23 | K2O | 11.73 | 0.52 | 0.27 | K2O | 0.90 | - | - | - | - |
Ca | 11.55 | 10.78 | CaO | 20.31 | 25.67 | 22.40 | CaO | 44.54 | 28.43 | 27.88 | CaO | 43.23 |
Fe | - | - | - | - | 1.05 | 0.38 | Fe2O3 | 2.14 | 1.08 | 1.06 | Fe2O3 | 1.68 |
O | 64.15 | 59.91 | - | 31.35 | 67.05 | 58.51 | - | 37.51 | 51.77 | 50.77 | - | 12.52 |
Reference | 10Sub | 20Sub | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Element | Weight | Atomic | Oxide | Weight | Atomic | Oxide | Weight | Atomic | Oxide | |||
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | ||||
Mg | 1.03 | 0.99 | - | 1.35 | - | - | - | - | 1.81 | 1.57 | - | 2.03 |
Al | 1.79 | 1.71 | Al2O3 | 4.41 | 0.15 | 0.17 | Al2O3 | 0.36 | 8.19 | 7.07 | Al2O3 | 17.33 |
Si | 6.83 | 6.51 | SiO2 | 19.04 | 9.34 | 10.21 | SiO2 | 24.65 | 16.68 | 14.40 | SiO2 | 39.98 |
S | 0.81 | 0.78 | SO3 | 2.65 | 0.16 | 0.18 | SO3 | 0.50 | 0.82 | 0.71 | SO3 | 2.30 |
K | - | - | - | - | 0.62 | 0.68 | K2O | 0.92 | - | - | - | - |
Ca | 38.78 | 36.99 | CaO | 70.70 | 41.26 | 45.11 | CaO | 71.21 | 23.69 | 20.46 | CaO | 37.14 |
Fe | 1.00 | 0.96 | Fe2O3 | 1.87 | 1.34 | 1.47 | Fe2O3 | 2.36 | 0.76 | 0.66 | Fe2O3 | 1.22 |
O | 54.59 | 52.07 | - | 36.76 | 38.59 | 42.19 | - | 16.98 | 63.85 | 55.14 | - | 29.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altuncı, Y.T.; Öcal, C. Assessment of Time-Dependent Hydration Products in Olivine-Substituted Cement Mortars. Materials 2025, 18, 4212. https://doi.org/10.3390/ma18174212
Altuncı YT, Öcal C. Assessment of Time-Dependent Hydration Products in Olivine-Substituted Cement Mortars. Materials. 2025; 18(17):4212. https://doi.org/10.3390/ma18174212
Chicago/Turabian StyleAltuncı, Yusuf Tahir, and Cenk Öcal. 2025. "Assessment of Time-Dependent Hydration Products in Olivine-Substituted Cement Mortars" Materials 18, no. 17: 4212. https://doi.org/10.3390/ma18174212
APA StyleAltuncı, Y. T., & Öcal, C. (2025). Assessment of Time-Dependent Hydration Products in Olivine-Substituted Cement Mortars. Materials, 18(17), 4212. https://doi.org/10.3390/ma18174212