Effects of Multiple Welding Thermal Cycles on Stress Corrosion of L360N Steel in a Simulated Shale Gas Gathering Environment Containing Sulfate-Reducing Bacteria
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bacterial Cultivation and Inoculation
2.3. Test Solution
2.4. Welding Thermal Simulation
2.5. Microstructure Analysis
2.6. Transmission Electron Microscopy (TEM)
2.7. Mechanical Properties
2.8. Stress Corrosion Test
3. Results and Discussion
3.1. Bacterial Growth Monitoring
3.2. Microstructure Analysis
3.3. EBSD Results
3.4. TEM Results
3.5. Tensile Properties
3.6. Hardness Test
3.7. Electrochemical Tests
3.7.1. OCP and Linear Polarization Resistance (RP)
3.7.2. Electrochemical Impedance Spectroscopy (EIS)
3.8. Characterization of Corrosion Products
3.9. Characterization of Morphology After Removal of the Corrosion Products
3.10. Pits Analysis
3.11. Cross-Sectional Morphology
- a.
- Crack initiation occurred at the metal surface, followed by vertical propagation into the material;
- b.
- The cracks were long and narrow, with lengths exceeding 10 μm;
- c.
- A characteristic “cloth-bag-shaped” morphology was observed.
4. Conclusions
- Significant microstructural differences were observed between the base metal (BM) and various HAZ subzones. When the peak temperature (Tp) reached 1020 °C, coarse microstructures and Widmanstätten structures formed in the HAZ due to high heat input. The dislocation structure evolved markedly, with a reduction in dislocation density and the disappearance of entanglement and accumulation. These changes led to microstructural softening, resulting in reduced strength and increased plasticity.
- In the simulated environment, the corrosion behavior of the HAZ samples differed from that of the BM. The IGHAZ primarily exhibited uniform corrosion, while the FGHAZ showed pitting corrosion. The CGHAZ displayed the most severe corrosion in the form of widespread uniform attack and fine pits. In the presence of SRB, localized pitting corrosion was significantly intensified in both the BM and HAZs, with the CGHAZ showing the most pronounced degradation.
- When the Tp reaches 1020 °C, the CGHAZ was softened by multiple thermal cycles (MTCs), and noticeable microcrack growth occurred in the simulated shale gas environment. This indicates that the CGHAZ is particularly susceptible to SCC under service conditions. In the presence of SRB, the crack morphology changed notably—cracks initiated at the metal surface and propagated vertically downward. SRB activity further increased the SCC sensitivity of the CGHAZ by promoting pit-induced crack initiation and propagation.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, G.Y.; Wang, J.L.; Yuan, X.; Xu, D.L. Reaserch and application of corrosion control technonlogy in gathering and transportation system of shale gas field. Chem. Eng. Oil Gas. 2022, 51, 64–69. [Google Scholar] [CrossRef]
- Liu, D.; Jia, R.; Xu, D.; Yang, H.; Zhao, Y.; Khan, M.S.; Huang, S.; Wen, J.; Yang, K.; Gu, T. Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti. J. Mater. Sci. Technol. 2019, 35, 2494–2502. [Google Scholar] [CrossRef]
- Xu, D.; Li, Y.; Song, F.; Gu, T. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corros. Sci. 2013, 77, 385–390. [Google Scholar] [CrossRef]
- Kholodenko, V.P.; Jigletsova, S.K.; Chugunov, V.A.; Rodin, V.B.; Kobelev, V.S.; Karpov, S.V. Chemicomicrobiological diagnostics of stress corrosion cracking of trunk pipelines. Appl. Biochem. Micro. 2000, 36, 594–601. [Google Scholar] [CrossRef]
- Hou, B.; Yan, J.; Wu, G.; Guan, F.; Dong, X.; Ren, Q.; Pei, Y.; Duan, J. Status and trend of microbiologically influenced corrosion and control technologies of pipelines in oil and gas field exploitation. Chem. Eng. Oil Gas. 2022, 51, 71–79. [Google Scholar] [CrossRef]
- Al-Nabulsi, K.M.; Al-Abbas, F.M.; Rizk, T.Y.; Salameh, A.A.E.M. Microbiologically assisted stress corrosion cracking in the presence of nitrate reducing bacteria. Eng. Fail. Anal. 2015, 58, 165–172. [Google Scholar] [CrossRef]
- Wei, B.; Xu, J.; Cheng, Y.F.; Sun, C.; Yu, C.; Wang, Z. Effect of uniaxial elastic stress on corrosion of X80 pipeline steel in an acidic soil solution containing sulfate-reducing bacteria trapped under disbonded coating. Corros. Sci. 2021, 193, 109893. [Google Scholar] [CrossRef]
- Wu, T.; Jin, X.; Yan, M.; Cheng, S.; Yu, C.; Wei, K. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution. Corros. Sci. 2021, 83, 38–47. [Google Scholar] [CrossRef]
- Wu, T.; Ma, Y.; Zeng, D.; Xu, J.; Sun, C.; Yu, C.; Ke, W. Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria. J. Mater. Sci. Technol. 2015, 31, 413–422. [Google Scholar] [CrossRef]
- Ramachandran, D.C.; Moon, J.; Lee, C.H.; Kim, S.D.; Chung, J.H.; Biro, E.; Park, Y.D. Role of bainitic microstructures with M-A constituent on the toughness of an HSLA steel for seismic resistant structural applications. Mater. Sci. Eng. A 2021, 801, 140390. [Google Scholar] [CrossRef]
- Ashari, R.; Eslami, A.; Shamanian, M.; Asghari, S. Effect of weld heat input on corrosion of dissimilar welded pipeline steels under simulated coating disbondment protected by cathodic protection. J. Mater. Res. Technol. 2020, 9, 2136–2145. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, X.; Ma, Q.; Wu, T.; Liu, M.; Zhang, M.; Li, Z.; Yin, F. Selected corrosion of X80 pipeline steel welded joints induced by Desulfovibrio desulfuricans. Corros. Sci. 2022, 202, 110313. [Google Scholar] [CrossRef]
- Yan, M.; Wei, B.; Xu, J.; Li, Y.; Hu, Y.; Cai, Z.; Sun, C. Insight into sulfate-reducing bacteria corrosion behavior of X80 pipeline steel welded joint in a soil solution. J. Mater. Res. Technol. 2023, 24, 5839–5863. [Google Scholar] [CrossRef]
- Zhang, S.; Pang, X.; Wang, Y.; Gao, K. Corrosion behavior of steel with different microstructures under various elastic loading conditions. Corros. Sci. 2013, 75, 293–299. [Google Scholar] [CrossRef]
- Feng, S.; Li, Y.; Liu, H.; Liu, Q.; Chen, X.; Yu, H.; Chen, C. Microbiologically influenced corrosion of carbon steel pipeline in shale gas field produced water containing CO2 and polyacrylamide inhibitor. J. Sci. Gas. Sci. Eng. 2020, 80, 103395. [Google Scholar] [CrossRef]
- Zhao, W.; Du, T.; Li, X.; Sun, H.; Li, B.; Yuan, S. Effects of multiple welding thermal cycles on hydrogen permeation parameters of X80 steel. Corros. Sci. 2021, 192, 109797. [Google Scholar] [CrossRef]
- Orłowska, M.; Ura-Bińczyk, E.; Olejnik, L.; Lewandowska, M. The effect of grain size and grain boundary misorientation on the corrosion resistance of commercially pure aluminium. Corros. Sci. 2019, 148, 57–70. [Google Scholar] [CrossRef]
- Lynch, S.P. Mechanistic and fractographic aspects of stress-corrosion cracking (SCC). In Stress Corrosion Cracking; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Baghdadi, A.H.; Rajabi, A.; Selamat, N.F.M.; Sajuri, Z.; Omar, M.Z. Effect of post-weld heat treatment on the mechanical behavior and dislocation density of friction stir welded Al6061. Mater. Sci. Eng. A 2019, 754, 728–734. [Google Scholar] [CrossRef]
- Ye, F.; Yu, Y.; Zhang, B.; Rong, J.; He, D.; Han, B.; Ma, X.; Zeng, Y.; Xu, Y.; Wu, S. Influence of pre-stretching at ambient and cryogenic temperatures on dislocation configuration, precipitation behaviour, and mechanical properties of 2195 Al-Cu-Li alloy. J. Mater. Res. Technol. 2023, 22, 2983–2995. [Google Scholar] [CrossRef]
- Brug, G.J.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedance complicated by the presence of a constant phase element. J. Electroanal. Chem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Hsu, C.H.; Mansour, F.M. Concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 2001, 57, 747–748. [Google Scholar] [CrossRef]
- Xu, L.Y.; Su, X.; Yin, Z.X.; Tang, Y.H.; Cheng, Y.F. Development of a real-time AC/DC data acquisition technique for studies of AC corrosion of pipelines. Corros. Sci. 2012, 61, 215–223. [Google Scholar] [CrossRef]
- Gu, T.; Wang, D.; Lekbach, Y.; Xu, D. Extracellular electron transfer in microbial biocorrosion. Curr. Opin. Electrochem. 2021, 29, 100763. [Google Scholar] [CrossRef]
- Xu, D.; Gu, T. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int. Biodeterior. Biodegrad. 2014, 91, 74–81. [Google Scholar] [CrossRef]
- Xu, D.; Li, Y.; Gu, T. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry 2016, 110, 52–58. [Google Scholar] [CrossRef]
- Peng, L.; Wen, S.; Yan, J.; Yu, H.; Wen, Z.; Wang, Z. Inhibition effect of triphenylmethane dyes for the corrosion of carbon steel in CO2-saturated NaCl corrosion medium. Materials 2024, 17, 1094. [Google Scholar] [CrossRef]
- Gutman, E.M. Mechanochemistry of Materials; Cambridge Interscience Publishing: Cambridge, UK, 1998. [Google Scholar]
- Starosvetsky, D.; Khaselev, O.; Starosvetsky, J.; Armon, R.; Yahalom, J. Effect of iron exposure in SRB media on pitting initiation. Corros. Sci. 2000, 42, 345–359. [Google Scholar] [CrossRef]
- Li, Y.; Feng, S.; Liu, H.; Tian, X.; Xia, Y.; Li, M.; Xu, K.; Yu, H.; Liu, Q.; Chen, C. Bacterial distribution in SRB biofilm affects MIC pitting of carbon steel studied using FIB-SEM. Corros. Sci. 2020, 170, 108512. [Google Scholar] [CrossRef]
- Wang, D.; Xie, F.; Wu, M.; Liu, G.; Zong, Y.; Li, X. Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Acid Soil Environment with SRB. Metall. Mater. Trans. A 2017, 48, 2999–3007. [Google Scholar] [CrossRef]
- Xu, D.; Li, Y.; Gu, T. A synergistic D-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm. World J. Microbiol. Biotechnol. 2012, 28, 3067–3074. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Sun, C.; Yan, M.; Wang, F. Variations of Microenvironments with and without SRB for Steel Q235 under a Simulated Disbonded Coating. Ind. Eng. Chem. Res. 2013, 52, 12838–12845. [Google Scholar] [CrossRef]
Chemical | NaHCO3 | NaCl | CaCl2 | Na2SO4 | K2SO4 | MgSO4 |
---|---|---|---|---|---|---|
Concentration (mg L−1) | 2900 | 20,000 | 395 | 260 | 170 | 50 |
No. | Heating Rate ωH/(°C·s−1) | Peak Temperature Tp/°C | Holding Time t/s | Cooling Time t8/5/s | Cooling Time t5/3/s |
---|---|---|---|---|---|
1 | 160 | 880 | 1 | 8 | 30 |
2 | 160 | 950 | 1 | 8 | 30 |
3 | 160 | 1020 | 1 | 8 | 30 |
Samples | Yielding Strength σ0.2 (MPa) | Tensile Strength σb (MPa) | σ0.2/σb |
---|---|---|---|
Base metal | 540 | 680 | 0.79 |
IGHAZ | 495 | 650 | 0.76 |
FGHAZ | 500 | 655 | 0.76 |
CGHAZ | 320 | 413 | 0.77 |
Samples | Time (Day) | ||||||
---|---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 10 | 14 | ||
Base metal | Sterile | −0.73 | −0.72 | −0.71 | −0.70 | −0.70 | −0.69 |
SRB | −0.76 | −0.79 | −0.80 | −0.81 | −0.82 | −0.83 | |
IGHAZ | Sterile | −0.75 | −0.74 | −0.73 | −0.72 | −0.71 | −0.70 |
SRB | −0.78 | −0.80 | −0.82 | −0.83 | −0.84 | −0.85 | |
FGHAZ | Sterile | −0.76 | −0.75 | −0.74 | −0.73 | −0.72 | −0.71 |
SRB | −0.89 | −0.86 | −0.83 | −0.84 | −0.85 | −0.86 | |
CGHAZ | Sterile | −0.78 | −0.87 | −0.86 | −0.85 | −0.84 | −0.83 |
SRB | −0.81 | −0.83 | −0.85 | −0.86 | −0.83 | −0.88 |
Samples | C | O | Na | Si | Cl | Ca | P | Fe |
---|---|---|---|---|---|---|---|---|
Base metal | 8.48 | 5.45 | 3.82 | 0.65 | 0.53 | 2.03 | 79.04 | |
IGHAZ | 7.07 | 7.32 | 4.46 | - | - | - | 3.12 | 78.03 |
FGHAZ | 5.78 | 5.80 | 3.09 | - | - | - | 2.09 | 83.24 |
CGHAZ | 7.06 | 12.12 | 1.73 | 2.22 | 2.34 | 74.53 |
Samples | C | O | Na | Si | Cl | Ca | P | Fe |
---|---|---|---|---|---|---|---|---|
Base metal | 7.71 | 13.99 | - | 1.04 | 2.47 | 5.78 | 0.71 | 68.30 |
IGHAZ | 4.28 | 8.73 | - | - | 3.41 | 2.09 | - | 81.49 |
FGHAZ | 6.87 | 11.17 | - | - | 4.35 | 2.11 | - | 75.49 |
CGHAZ | 12.41 | 14.79 | 2.85 | 0.42 | 5.43 | 10.31 | 1.36 | 52.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Wang, S.; Xu, Y.; Liao, K.; Wu, G.; Yan, J.; Wang, Y.; Peng, L.; Li, P. Effects of Multiple Welding Thermal Cycles on Stress Corrosion of L360N Steel in a Simulated Shale Gas Gathering Environment Containing Sulfate-Reducing Bacteria. Materials 2025, 18, 4255. https://doi.org/10.3390/ma18184255
Xiao J, Wang S, Xu Y, Liao K, Wu G, Yan J, Wang Y, Peng L, Li P. Effects of Multiple Welding Thermal Cycles on Stress Corrosion of L360N Steel in a Simulated Shale Gas Gathering Environment Containing Sulfate-Reducing Bacteria. Materials. 2025; 18(18):4255. https://doi.org/10.3390/ma18184255
Chicago/Turabian StyleXiao, Jie, Shouxi Wang, Yong Xu, Kexi Liao, Guiyang Wu, Jing Yan, Yongbo Wang, Lincai Peng, and Puzhi Li. 2025. "Effects of Multiple Welding Thermal Cycles on Stress Corrosion of L360N Steel in a Simulated Shale Gas Gathering Environment Containing Sulfate-Reducing Bacteria" Materials 18, no. 18: 4255. https://doi.org/10.3390/ma18184255
APA StyleXiao, J., Wang, S., Xu, Y., Liao, K., Wu, G., Yan, J., Wang, Y., Peng, L., & Li, P. (2025). Effects of Multiple Welding Thermal Cycles on Stress Corrosion of L360N Steel in a Simulated Shale Gas Gathering Environment Containing Sulfate-Reducing Bacteria. Materials, 18(18), 4255. https://doi.org/10.3390/ma18184255