Comparative Review of Marshall and Superpave Mix Designs: Enhancing Asphalt Performance with Polymers
Abstract
1. Overview of Asphalt Mix Design
2. Types of Polymers
3. Methodology
3.1. Design
3.2. Study Question
3.3. Data Filtering
- 1
- The green cluster focuses on the performance of asphalt mixtures, particularly the behavior of reclaimed asphalt under various conditions (e.g., moisture, stress, temperature, and aging). It addresses critical issues such as rutting, fatigue, cracking, and durability.
- 2
- The red cluster concentrates on the mechanical properties of asphalt mixtures, especially when recycled materials are incorporated. Key aspects include durability, toughness, strength, and microstructure, often examined within a broader sustainability framework.
- 3
- The blue cluster examines the rheological and material properties of asphalt binders and mixtures, especially when modified with polymers, rejuvenators, additives, and recycled materials.
- 4
- The yellow cluster investigates rejuvenators and binders, focusing on the use of soft bitumen and rejuvenating agents to restore aged asphalt binders in reclaimed mixtures. This cluster emphasizes improving flexibility and ensuring compatibility with high percentages of RAP.
4. Discussion
4.1. Elastomer Modified Asphalt in Comparison of Marshall Versus Superpave Method
4.1.1. Styrene Butadiene Styrene (SBS)
4.1.2. Styrene Butadiene Resin (SBR)
4.2. Plastomers Modified Asphalt in Comparison of Marshall Versus Superpave Method
4.2.1. Polyethylene (PE)
4.2.2. Polypropylene (PP)
4.3. Rejuvenators
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PMB | Polymer-Modified Bitumen |
PMA | Polymer-Modified Asphalt |
SBS | Styrene–Butadiene–Styrene |
SBR | Styrene–Butadiene Rubber |
SEBS | Styrene–Ethylene–Butylene–Styrene |
RAP | Reclaimed Asphalt Pavement |
RCA | Recycled Concrete Aggregate |
DSR | Dynamic Shear Rheometer |
PG | Performance Grade |
ITS | Indirect Tensile Strength |
ITSR | Indirect Tensile Strength Ratio |
EVA | Ethylene-Vinyl Acetate |
PE | Polyethylene |
LDPE | Low-Density Polyethylene |
HDPE | High-Density Polyethylene |
XRD | X-ray Diffraction |
PHBV | β-hydroxybutyrate-co-β-hydroxy valerate |
FTIR | Fourier Transform Infrared Spectroscopy |
References
- Malluru, S.; Islam, S.M.I.; Saidi, A.; Baditha, A.K.; Chiu, G.; Mehta, Y. A State-of-the-Practice Review on the Challenges of Asphalt Binder and a Roadmap Towards Sustainable Alternatives—A Call to Action. Materials 2025, 18, 2312. [Google Scholar] [CrossRef]
- Lee, J.-S.; Lee, S.-Y.; Le, T.H.M. Developing Performance-Based Mix Design Framework Using Asphalt Mixture Performance Tester and Mechanistic Models. Polymers 2023, 15, 1692. [Google Scholar] [CrossRef]
- Zumrawi, M.M.E.; Edrees, S.A.S. Comparison of Marshall and Superpave Asphalt Design Methods for Sudan Pavement Mixes. Int. J. Sci. Tech. Adv. 2016, 2, 29–35. [Google Scholar]
- Al Kaaf, K.; Ibeabuchi, V.T. Marshall Asphalt Mix and Superior Performance Asphalt Mix in Oman: A Comparative Study. Eng. Technol. Appl. Sci. Res. 2023, 13, 12258–12263. [Google Scholar] [CrossRef]
- Farooq, G.; Hussain, A.; Yanjun, Q.; Ding, H.; Shamim, A. Performance Evaluation of Marshall and Superpave Asphalt Mix Design Methods: A Volumetrics-Analysis Based Approach. Aust. J. Civ. Eng. 2025, 38, 1–15. [Google Scholar] [CrossRef]
- Meng, Y.; Li, H.; Yang, X.; Li, G.; Li, Y.; Xu, G. Study on the Adhesion Properties of SBS Modified Asphalt-Aggregate with Polyphosphoric Acid and Sugarcane Bagasse Fiber under Salt Erosion. Constr. Build. Mater. 2025, 466, 140269. [Google Scholar] [CrossRef]
- Vijayan, V.; Manthos, E.; Mantalovas, K.; Di Mino, G. Multi-Recyclability of Asphalt Mixtures Modified with Recycled Plastic: Towards a Circular Economy. Results Eng. 2024, 23, 102523. [Google Scholar] [CrossRef]
- Mushtaq, F.; Huang, Z.; Shah, S.A.R.; Zhang, Y.; Gao, Y.; Azab, M.; Hussain, S.; Anwar, M.K. Performance Optimization Approach of Polymer Modified Asphalt Mixtures with PET and PE Wastes: A Safety Study for Utilizing Eco-Friendly Circular Economy-Based SDGs Concepts. Polymers 2022, 14, 2493. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, J.; Wang, X.; Wang, D.; Xie, N.; Shi, X. A Review of Polymer-Modified Asphalt Binder: Modification Mechanisms and Mechanical Properties. Clean. Mater. 2024, 12, 100255. [Google Scholar] [CrossRef]
- Sengoz, B.; Isikyakar, G. Analysis of Styrene-Butadiene-Styrene Polymer Modified Bitumen Using Fluorescent Microscopy and Conventional Test Methods. J. Hazard. Mater. 2008, 150, 424–432. [Google Scholar] [CrossRef]
- Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742. [Google Scholar] [CrossRef]
- Freedonia Group. Global Asphalt (Bitumen) Report. 2025. Available online: https://www.freedoniagroup.com/industry-study/global-asphalt-bitumen (accessed on 29 May 2025).
- Bastidas-Martínez, J.G.; Rondón-Quintana, H.A. Assessment of Asphalt Binder Content, Temperature and Loading Rate in Indirect Tensile Strength and Resilient Modulus Tests of a Hot-Mix Asphalt—Comparison with Marshall Design Method. Constr. Build. Mater. 2024, 426, 136158. [Google Scholar] [CrossRef]
- Pipintakos, G.; Škulteckė, J.; Vaitkus, A.; Šernas, O.; Soenen, H.; Van Den Bergh, W. Optimising Bitumen Modification: How Styrene–Butadiene–Styrene (SBS) Characteristics and Content Affect Bitumen Behaviour. Road Mater. Pavement Des. 2025, 26, 443–463. [Google Scholar] [CrossRef]
- Ruge Cárdenas, J.C.; Lozano, D.A.; Moreno, L.A.; Gomez, F.A.M.; Bastidas, J.G. Asphalts and Modified Dense Bituminous Mixtures with Rubber of Military Boots. DYNA 2020, 87, 120–128. [Google Scholar] [CrossRef]
- Naser, A.M.; Abd El–Wahab, H.; Moustafa El Nady, M.A.E.F.; Mostafa, A.E.A.; Lin, L.; Sakr, A.G. Preparation and Characterisation of Modified Reclaimed Asphalt Using Nanoemulsion Acrylate Terpolymer. Pigm. Resin Technol. 2019, 48, 363–374. [Google Scholar] [CrossRef]
- Alataş, T.; Yilmaz, M. Effects of Different Polymers on Mechanical Properties of Bituminous Binders and Hot Mixtures. Constr. Build. Mater. 2013, 42, 161–167. [Google Scholar] [CrossRef]
- Jasso, M.; Perez Jaimes, J.S.; Tellez Vega, E.F. Mechanism and Development of Thermo-Rheological Properties of Asphalts Modified by Reactive Polymer Systems. Materials 2023, 16, 6631. [Google Scholar] [CrossRef]
- Emtiaz, M.; Imtiyaz, M.N.; Majumder, M.; Idris, I.I.; Mazumder, R.; Rahaman, M.M. A Comprehensive Literature Review on Polymer-Modified Asphalt Binder. CivilEng 2023, 4, 901–933. [Google Scholar] [CrossRef]
- Lin, P.; Huang, W.; Tang, N.; Xiao, F. Performance Characteristics of Terminal Blend Rubberized Asphalt with SBS and Polyphosphoric Acid. Constr. Build. Mater. 2017, 141, 171–182. [Google Scholar] [CrossRef]
- Dong, R.; Gao, A.; Zhu, Y.; Xu, B.; Du, J.; Ping, S. The Development of a New Thermoplastic Elastomer (TPE)-Modified Asphalt. Buildings 2023, 13, 1451. [Google Scholar] [CrossRef]
- Fernandes, S.; Peralta, J.; Oliveira, J.; Williams, R.; Silva, H. Improving Asphalt Mixture Performance by Partially Replacing Bitumen with Waste Motor Oil and Elastomer Modifiers. Appl. Sci. 2017, 7, 794. [Google Scholar] [CrossRef]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer Modification of Bitumen: Advances and Challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef]
- Xie, J.; Wu, S.; Lin, J.; Cai, J.; Chen, Z.; Wei, W. Recycling of Basic Oxygen Furnace Slag in Asphalt Mixture: Material Characterization & Moisture Damage Investigation. Constr. Build. Mater. 2012, 36, 467–474. [Google Scholar] [CrossRef]
- Ameri, M.; Mansourian, A.; Sheikhmotevali, A.H. Investigating Effects of Ethylene Vinyl Acetate and Gilsonite Modifiers upon Performance of Base Bitumen Using Superpave Tests Methodology. Constr. Build. Mater. 2012, 36, 1001–1007. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, J. The Research for High-Performance SBR Compound Modified Asphalt. Constr. Build. Mater. 2010, 24, 410–418. [Google Scholar] [CrossRef]
- Moretti, L.; Fabrizi, N.; Fiore, N.; D’Andrea, A. Mechanical Characteristics of Graphene Nanoplatelets-Modified Asphalt Mixes: A Comparison with Polymer- and Not-Modified Asphalt Mixes. Materials 2021, 14, 2434. [Google Scholar] [CrossRef]
- Di Mino, G.; Vijayan, V.; Eskandarsefat, S.; Venturini, L.; Mantalovas, K. Investigating the Multi-Recyclability of Recycled Plastic-Modified Asphalt Mixtures. Infrastructures 2023, 8, 84. [Google Scholar] [CrossRef]
- D’angelo, S.; Ferrotti, G.; Cardone, F.; Canestrari, F. Asphalt Binder Modification with Plastomeric Compounds Containing Recycled Plastics and Graphene. Materials 2022, 15, 516. [Google Scholar] [CrossRef]
- Bruno, S.; Carpani, C.; Loprencipe, G.; Venturini, L.; Vita, L. Modified Asphalt with Graphene-Enhanced Polymeric Compound: A Case Study. Infrastructures 2024, 9, 39. [Google Scholar] [CrossRef]
- Abdalfattah, I.A.; Mogawer, W.S.; Stuart, K. Recycled Polyethylene (RPE) Modified Asphalt Mixtures: Performance Predictions Using Pavement Mechanistic-Empirical Design and Evaluation of Return on Investment. Constr. Build. Mater. 2022, 356, 129164. [Google Scholar] [CrossRef]
- Polacco, G.; Berlincioni, S.; Biondi, D.; Stastna, J.; Zanzotto, L. Asphalt Modification with Different Polyethylene-Based Polymers. Eur. Polym. J. 2005, 41, 2831–2844. [Google Scholar] [CrossRef]
- Eldouma, I.B.; Xiaoming, H. Evaluation of the Additives’ Behaviour to Determine the Best Modifier for Improving Asphalt Performance at High Temperature. Adv. Civ. Eng. 2021, 2021, 8879415. [Google Scholar] [CrossRef]
- Punith, V.S.; Veeraragavan, A. Behavior of Asphalt Concrete Mixtures with Reclaimed Polyethylene as Additive. J. Mater. Civ. Eng. 2007, 19, 500–507. [Google Scholar] [CrossRef]
- Polymer Modified Bitumen Market Size, Share, Growth Analysis, By Product (Elastomeric Polymers, Plastomeric Polymers), By Grade (PMB 40, PMB 70), By Application (Road Construction, Roofing Systems), By Region-Industry Forecast 2024–2031. Available online: https://www.giiresearch.com/report/sky1596895-polymer-modified-bitumen-market-size-share-growth.html?utm_source=chatgpt.com (accessed on 28 May 2025).
- Asphalt Additives Market Size, Share|Industry Report, 2019–2025. Available online: https://www.grandviewresearch.com/industry-analysis/asphalt-additives-market (accessed on 26 August 2025).
- Spadoni, S.; Paolo Ingrassia, L.; Mocelin, D.; Richard Kim, Y.; Canestrari, F. Comparison of Asphalt Mixtures Containing Polymeric Compounds and Polymer-Modified Bitumen Based on the VECD Theory. Constr. Build. Mater. 2022, 349, 128725. [Google Scholar] [CrossRef]
- Jexembayeva, A.; Konkanov, M.; Aruova, L.; Kirgizbayev, A.; Zhaksylykova, L. Performance Optimization Approach of Polymer-Modified Asphalt Mixtures with PET and PE Waste. Polymers 2024, 16, 3308. [Google Scholar] [CrossRef]
- Xu, L.; Du, Y.; Loprencipe, G.; Moretti, L. Rheological and Fatigue Characteristics of Asphalt Mastics and Mixtures Containing Municipal Solid Waste Incineration (MSWI) Residues. Sustainability 2023, 15, 8356. [Google Scholar] [CrossRef]
- Tabaković, A.; Lemmens, J.; Tamis, J.; van Vliet, D.; Nahar, S.; Suitela, W.; van Loosdrecht, M.; Leegwater, G. Bio-Polymer Modified Bitumen. Constr. Build. Mater. 2023, 406, 133321. [Google Scholar] [CrossRef]
- Duan, Y.; Wu, K.; Serrat, C.; Arteaga-Larios, F.; Brown, H.; DuBois, C.J.; Buttlar, W.G.; Deng, B. Assessment of Microplastics Production from Waste Plastics-Modified Asphalt Pavement. Resour. Conserv. Recycl. 2024, 202, 107329. [Google Scholar] [CrossRef]
- Phillips, M.; Reed, J.B.; Zwicky, D.; Van Epps, A.S.; Buhler, A.G.; Rowley, E.M.; Zhang, Q.; Cox, J.M.; Zakharov, W. Systematic Reviews in the Engineering Literature: A Scoping Review. IEEE Access 2024, 12, 62648–62663. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. Declaración PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Rev. Española De Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Viscione, N.; Lo Presti, D.; Veropalumbo, R.; Oreto, C.; Biancardo, S.A.; Russo, F. Performance-Based Characterization of Recycled Polymer Modified Asphalt Mixture. Constr. Build. Mater. 2021, 310, 125243. [Google Scholar] [CrossRef]
- Sabouri, M. Evaluation of Performance-Based Mix Design for Asphalt Mixtures Containing Reclaimed Asphalt Pavement (RAP). Constr. Build. Mater. 2020, 235, 117545. [Google Scholar] [CrossRef]
- Zaumanis, M.; Poulikakos, L.D.; Partl, M.N. Performance-Based Design of Asphalt Mixtures and Review of Key Parameters. Mater. Des. 2018, 141, 185–201. [Google Scholar] [CrossRef]
- Gul, W.A.; Guler, M. Rutting Susceptibility of Asphalt Concrete with Recycled Concrete Aggregate Using Revised Marshall Procedure. Constr. Build. Mater. 2014, 55, 341–349. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, S.; Qian, G.; Zhang, C.; Shi, C.; Yao, D.; Ge, J. Evaluation of the Microscale Structure and Performance of Asphalt Mixtures under Different Design Methods. Constr. Build. Mater. 2023, 400, 132810. [Google Scholar] [CrossRef]
- Kassab, T.G. Comparative Study of Hot Asphalt Mixtures Properties Designed by Marshall and Superpave Methods. MEJ-Mansoura Eng. J. 2021, 46, 41–51. [Google Scholar] [CrossRef]
- Jafari Haghighatpour, P.; Aliha, M.R.M. Effect of Marshal and Gyratory Compaction Methods on Cracking Characteristics of Hot Mix Asphalt Concrete Materials under All Three Basic Modes of Fracture. Theor. Appl. Fract. Mech. 2022, 117, 103207. [Google Scholar] [CrossRef]
- Ceccon Carlesso, G.; Trichês, G.; Staub De Melo, J.V.; Marcon, M.F.; Padilha Thives, L.; Da Luz, L.C. Evaluation of Rheological Behavior, Resistance to Permanent Deformation, and Resistance to Fatigue of Asphalt Mixtures Modified with Nanoclay and SBS Polymer. Appl. Sci. 2019, 9, 2697. [Google Scholar] [CrossRef]
- Daryaee, D.; Ameri, M.; Mansourkhaki, A. Utilizing of Waste Polymer Modified Bitumen in Combination with Rejuvenator in High Reclaimed Asphalt Pavement Mixtures. Constr. Build. Mater. 2020, 235, 117516. [Google Scholar] [CrossRef]
- Asi, I.M. Performance Evaluation of SUPERPAVE and Marshall Asphalt Mix Designs to Suite Jordan Climatic and Traffic Conditions. Constr. Build. Mater. 2007, 21, 1732–1740. [Google Scholar] [CrossRef]
- Jitsangiam, P.; Chindaprasirt, P.; Nikraz, H. An Evaluation of the Suitability of SUPERPAVE and Marshall Asphalt Mix Designs as They Relate to Thailand’s Climatic Conditions. Constr. Build. Mater. 2013, 40, 961–970. [Google Scholar] [CrossRef]
- Kaya, F.; Aslan, Ş.; Fahad, M.; Madarász, K.; Rosta, S.; Nagy, R.; Fischer, S. Performance of PMMA and SBS Modified Asphalt Mixtures in Railway Supplementary Layers and Road Pavements. Period. Polytech. Transp. Eng. 2025, 53, 334–346. [Google Scholar] [CrossRef]
- Polacco, G.; Kříž, P.; Filippi, S.; Stastna, J.; Biondi, D.; Zanzotto, L. Rheological Properties of Asphalt/SBS/Clay Blends. Eur. Polym. J. 2008, 44, 3512–3521. [Google Scholar] [CrossRef]
- Sun, X.; Qin, X.; Liu, Z.; Yin, Y. Damaging Effect of Fine Grinding Treatment on the Microstructure of Polyurea Elastomer Modifier Used in Asphalt Binder. Measurement 2025, 242, 115984. [Google Scholar] [CrossRef]
- Babagoli, R.; Ameli, A.; Shahriari, H. Laboratory Evaluation of Rutting Performance of Cold Recycling Asphalt Mixtures Containing SBS Modified Asphalt Emulsion. Pet. Sci. Technol. 2016, 34, 309–313. [Google Scholar] [CrossRef]
- Xu, S.; Fan, Y.; Feng, Z.; Ke, Y.; Zhang, C.; Huang, H. Comparison of Quantitative Determination for SBS Content in SBS Modified Asphalt. Constr. Build. Mater. 2021, 282, 122733. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, H.; Shi, C. Investigation of Aging Performance of SBS Modified Asphalt with Various Aging Methods. Constr. Build. Mater. 2017, 145, 445–451. [Google Scholar] [CrossRef]
- Gou, J.; Guo, M.; Xie, X.; Du, X. Unravelling the Adhesion Mechanism of Recycled SBS-Modified Asphalt: Integrating Surface Free Energy, Atomic Force Microscopy and Molecular Dynamics. Constr. Build. Mater. 2025, 483, 141672. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Lin, J.; Yang, J.; Yao, Y. Study on the Effect of SBS/HVA/CRM Composite-Modified Asphalt on the Performance of Recycled Asphalt Mixtures. Polymers 2024, 16, 3226. [Google Scholar] [CrossRef]
- Eskandarsefat, S.; de Ferrariis, L.; Allen, B.; Roworth, P.; Venturini, L.; Fumagalli, M. Asphalt Mixture Modification via a Recycled-Plastic Modifier: Laboratory Studies and Pavement Analysis. In Proceedings of the 8th Eurasphalt & Eurobitume Congress, Budapest, Hungary, 19–21 June 2024. [Google Scholar]
- Russo, F.; Eskandarsefat, S.; Venturini, L.; Viscione, N. A Complete Study on an Asphalt Concrete Modified with Graphene and Recycled Hard-Plastics: A Case Study. Case Stud. Constr. Mater. 2022, 17, e01437. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y. Physico-Chemo-Rheological Characterization of Neat and Polymer-Modified Asphalt Binders. Constr. Build. Mater. 2019, 199, 471–482. [Google Scholar] [CrossRef]
- Lin, P.; Yan, C.; Huang, W.; Li, Y.; Zhou, L.; Tang, N.; Xiao, F.; Zhang, Y.; Lv, Q. Rheological, Chemical and Aging Characteristics of High Content Polymer Modified Asphalt. Constr. Build. Mater. 2019, 207, 616–629. [Google Scholar] [CrossRef]
- Xu, X.; Sreeram, A.; Leng, Z.; Yu, J.; Li, R.; Peng, C. Challenges and Opportunities in the High-Quality Rejuvenation of Unmodified and SBS Modified Asphalt Mixtures: State of the Art. J. Clean. Prod. 2022, 378, 134634. [Google Scholar] [CrossRef]
- The Research for High-Performance SBR Compound Modified Asphalt—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0950061809003407 (accessed on 4 June 2025).
- Ren, X.; Sha, A.; Jiang, W.; Wu, W.; Jiao, W.; Li, J.; Li, J. Effect of EVA on the Rheological Properties of SBR-Modified Asphalt Binder and Its Behavioral Evolution during the Thermo-Oxidative Aging Process. Constr. Build. Mater. 2024, 454, 139159. [Google Scholar] [CrossRef]
- Liang, P.; Liang, M.; Fan, W.; Zhang, Y.; Qian, C.; Ren, S. Improving Thermo-Rheological Behavior and Compatibility of SBR Modified Asphalt by Addition of Polyphosphoric Acid (PPA). Constr. Build. Mater. 2017, 139, 183–192. [Google Scholar] [CrossRef]
- Cháves-Pabón, S.B.; Rondón-Quintana, H.A.; Bastidas-Martínez, J.G. AGING OF ASPHALT BINDERS AND ASPHALT MIXTURES. SUMMARY PART II: AGING SIMULATION AND AGING REDUCTION TECHNIQUES. Int. J. Civ. Eng. Technol. 2019, 10, 274–287. [Google Scholar]
- Li, Y.; Wu, S.; Dai, Y.; Li, C.; Song, W.; Li, H.; Li, C.; Shu, B. Transitions of Component, Physical, Rheological and Self-Healing Properties of Petroleum Bitumen from the Loose Bituminous Mixture after UV Irradiation. Fuel 2020, 262, 116507. [Google Scholar] [CrossRef]
- Ren, S.; Liang, M.; Fan, W.; Zhang, Y.; Qian, C.; He, Y.; Shi, J. Investigating the Effects of SBR on the Properties of Gilsonite Modified Asphalt. Constr. Build. Mater. 2018, 190, 1103–1116. [Google Scholar] [CrossRef]
- Zhang, Q.; Hou, D.; Li, Z.; Wang, H.; Dong, S. Evaluation of the Thermal Stability and Micro-Modification Mechanism of SBR/PP-Modified Asphalt. Polymers 2024, 16, 456. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, H.; Xu, G.; Shi, C. Aging Rheological Characteristics of SBR Modified Asphalt with Multi-Dimensional Nanomaterials. Constr. Build. Mater. 2017, 151, 388–393. [Google Scholar] [CrossRef]
- Han, Y.; Tian, J.; Ding, J.; Shu, L.; Ni, F. Evaluating the Storage Stability of SBR-Modified Asphalt Binder Containing Polyphosphoric Acid (PPA). Case Stud. Constr. Mater. 2022, 17, e01214. [Google Scholar] [CrossRef]
- Wang, F.; Ma, R.; Li, Y.; Sun, M.; Wang, Y.; Sun, Y.; Cheng, P. Weathering Aging Resistance in Seasonal Frozen Regions: A Comparative Study of SBS- and SBR-Modified Asphalt Binders through Rheological and Morphological Characterization. Sci. Rep. 2025, 15, 13625. [Google Scholar] [CrossRef]
- Al-Shawabkeh, A.F.; Awwad, M.T.; Al-Rousan, T.M. Using Recycled Plastic Waste to Improve the Performance of Hot-Mix Asphalt. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2022, 176, 118–128. [Google Scholar] [CrossRef]
- Vargas, C.; Hanandeh, A.E. The Utilisation of Polyethylene Waste Pyrolytic Wax as an Additive to Enhance the Performance of Virgin and Polypropylene-Modified Bitumen. Int. J. Pavement Res. Technol. 2024, 17, 929–951. [Google Scholar] [CrossRef]
- Usman, N.; Idrus Bin Mohd Masirin, M.; Abdullahi Ahmad, K.; Ahmed Wurochekke, A. Reinforcement of Asphalt Concrete Mixture Using Recycle Polyethylene Terephthalate Fibre. Indian J. Sci. Technol. 2016, 9, 107143. [Google Scholar] [CrossRef]
- Dalhat, M.A.; Al-Abdul Wahhab, H.I. Performance of Recycled Plastic Waste Modified Asphalt Binder in Saudi Arabia. Int. J. Pavement Eng. 2017, 18, 349–357. [Google Scholar] [CrossRef]
- Mehmood, S.A.; Khan, M.I.; Ahmed, S.; Al-Nawasir, R.; Choudhry, R.M. From Waste to Roads: Improving Pavement Performance and Achieving Sustainability with Recycled Steel Slag and Low-Density Polyethylene. Buildings 2025, 15, 476. [Google Scholar] [CrossRef]
- Olukanni, D.O.; Adegoke, D.A.; Akinmejiwa, A.A.; Bassey, D.E.; Adediran, J.A. EVALUATION OF ASPHALT PRODUCED FROM WASTE TYRE AND POLYETHYLENE TEREPHTHALATE-BASED BITUMEN WITH PARAFFIN WAX AS REJUVENATOR. J. Solid Waste Technol. Manag. 2023, 49, 270–279. [Google Scholar] [CrossRef]
- Ullah, S.; Qabur, A.; Ullah, A.; Aati, K.; Abdelgiom, M.A. Enhancing High-Temperature Performance of Flexible Pavement with Plastic-Modified Asphalt. Polymers 2024, 16, 2399. [Google Scholar] [CrossRef]
- Ullah, R.; Hafeez, I.; Haroon, W.; Haider, S. Evaluating the Effect of Plastomer Modified Asphalt Mixture on High/Low Temperature Performance. Mehran Univ. Res. J. Eng. Technol. 2021, 40, 680–691. [Google Scholar] [CrossRef]
- Masad, E.; Roja, K.L.; Rehman, A.; Abdala, A.A. A Review of Asphalt Modification Using Plastics: A Focus on Polyethylene; Texas A&M University at Qatar: Doha, Qatar, 2020. [Google Scholar] [CrossRef]
- Souza, R.S.; Visconte, L.L.Y.; Da Silva, A.L.N.; Costa, V.G. Thermal and Rheological Formulation and Evaluation of Synthetic Bitumen from Reprocessed Polypropylene and Oil. Int. J. Polym. Sci. 2018, 2018, 7940857. [Google Scholar] [CrossRef]
- Kathari, P.M. Rheological Properties of Polypropylene Reinforced Asphalt Binder. Transp. Infrastruct. Geotech. 2016, 3, 109–126. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Kim, K. Evaluation of Thermal Aging Susceptibility of Recycled Waste Plastic Aggregates (Low-Density Polyethylene, High-Density Polyethylene, and Polypropylene) in Recycled Asphalt Pavement Mixtures. Polymers 2025, 17, 731. [Google Scholar] [CrossRef]
- Cháves-Pabón, S.B.; Rondón-Quintana, H.A.; Bastidas-Martínez, J.G. AGING OF ASPHALT BINDERS AND ASPHALT MIXTURES. SUMMARY PART I: EFFECT ON PHYSICAL-CHEMICAL PROPERTIES. Int. J. Civ. Eng. Technol. 2019, 10, 259–273. [Google Scholar]
- Gholampour, A.; Hosseini-Poul, S.-A.; MohammadNezhad, S.; Nematzadeh, M.; Ozbakkaloglu, T. Effect of Polypropylene and Polyvinyl Alcohol Fibers on Mechanical Behavior and Durability of Geopolymers Containing Lead Slag: Testing, Optimization, and Life Cycle Assessment. Constr. Build. Mater. 2025, 462, 139960. [Google Scholar] [CrossRef]
- Zhou, G.; Li, C.; Wang, H.; Zeng, W.; Ling, T.; Jiang, L.; Li, R.; Liu, Q.; Cheng, Y.; Zhou, D. Preparation of Wax-Based Warm Mixture Additives from Waste Polypropylene (PP) Plastic and Their Effects on the Properties of Modified Asphalt. Materials 2022, 15, 4346. [Google Scholar] [CrossRef]
- Mohammed, S.F.; Ismael, M.Q. Effect of Polypropylene Fibers on Moisture Susceptibility of Warm Mix Asphalt. Civ. Eng. J. 2021, 7, 988–997. [Google Scholar] [CrossRef]
- Al-Hadidy, A.I. Engineering Behavior of Aged Polypropylene-Modified Asphalt Pavements. Constr. Build. Mater. 2018, 191, 187–192. [Google Scholar] [CrossRef]
- Wu, S.; Montalvo, L. Repurposing Waste Plastics into Cleaner Asphalt Pavement Materials: A Critical Literature Review. J. Clean. Prod. 2021, 280, 124355. [Google Scholar] [CrossRef]
- Abdalla, A.; Alsalihi, M.; Khafagy, M.; Ibrahim, H.; Faheem, A.F. Upcycled Waste for Sustainable Roads: Exploring the Synergistic Effects of off-Spec Fly Ashes and Rejuvenators on Asphalt Binder Aging. Constr. Build. Mater. 2025, 467, 140377. [Google Scholar] [CrossRef]
- Hu, Y.; Omairey, E.; Hughes, D.; Bailey, H.; Watkins, M.; Twitchen, J.; Airey, G.D.; Sreeram, A. Recovering the Properties of Aged Bitumen Using Bio-Rejuvenators Derived from Municipal Wastes. Constr. Build. Mater. 2024, 438, 137268. [Google Scholar] [CrossRef]
- Zaumanis, M.; Mallick, R.B.; Frank, R. 100% Recycled Hot Mix Asphalt: A Review and Analysis. Resour. Conserv. Recycl. 2014, 92, 230–245. [Google Scholar] [CrossRef]
- Cabette, M.; Micaelo, R.; Pais, J. The Use of Bio-Oil from Biodiesel Production for Enhancing the Bitumen Healing. Constr. Build. Mater. 2023, 409, 134033. [Google Scholar] [CrossRef]
- Yan, K.; Lan, H.; Duan, Z.; Liu, W.; You, L.; Wu, S.; Miljković, M. Mechanical Performance of Asphalt Rejuvenated with Various Vegetable Oils. Constr. Build. Mater. 2021, 293, 123485. [Google Scholar] [CrossRef]
- Bilema, M.; Aman, M.Y.; Hassan, N.A.; Memon, Z.A.; Omar, H.A.; Yusoff, N.I.M.; Milad, A. Mechanical Performance of Reclaimed Asphalt Pavement Modified with Waste Frying Oil and Crumb Rubber. Materials 2021, 14, 2781. [Google Scholar] [CrossRef]
- Hashim, T.M.; Nasr, M.S.; Jebur, Y.M.; Kadhim, A.; Alkhafaji, Z.; Baig, M.G.; Adekunle, S.K.; Al-Osta, M.A.; Ahmad, S.; Yaseen, Z.M. Evaluating Rutting Resistance of Rejuvenated Recycled Hot-Mix Asphalt Mixtures Using Different Types of Recycling Agents. Materials 2022, 15, 8769. [Google Scholar] [CrossRef]
Asphalt Binder | 160/220 Grade Asphalt (Control) | SBS (5% by Weight) | SEBS (3% by Weight) | SBR (5% by Weight) | Polybutadiene Rubber (1.5% by Weight) |
---|---|---|---|---|---|
Penetration @ 25 °C (dmm) | 160–220 | 70–110 | 60–100 | 100–130 | 106 |
Softening point (°C) | 35–43 | 75–95 | 65–85 | 56 | 48 |
Elastic recovery, @ 5 °C (%) | N/d | >50 | >50 | >70 | >80 |
Fraass breaking point (°C) | −15 | −20 | −18 | −15 | −30 |
Polymers | 70/100 Grade Asphalt (Control) | EVA 18/150 (5% by Weight) | EVA 30/45 (5% by Weight) | LDPE (4% by Weight) |
---|---|---|---|---|
Penetration at 25 °C (dmm) | 70–100 | 38–48 | 55 | 47 |
softening point (°C) | 43–51 | 58–68 | 57 | 53 |
Elastic Recovery, @ 5 °C (%) | 20 | 50 | 50 | 82 |
Frass breaking point (°C) | −10 | −18 | −18 | −3 |
Characteristics | Elastomers | Plastomers |
---|---|---|
Nature | Thermoplastic elastomers behave like rubber | Thermoplastics (behave like plastic) |
Main Types Used | SBS, SBR, SEBS, SIS | PE, EVA, PP, EBA |
Cost | Higher cost, but effective in small doses | Lower-cost, recycled plastics are widely available |
Compatibility with Asphalt | Excellent compatibility forms a network in the binder | Moderate to poor requires compatibilizers |
Elastic Recovery | Excellent elastic recovery | Limited elastic behavior |
Rutting Resistance | Very high especially for SBS mixtures | High at higher temperatures especially with EVA |
Low-Temperature Performance | Provides excellent flexibility and crack resistance | Poor brittle at low temps |
Sustainability | Some options use reclaimed rubber (SBR) | PE, PP sourced from waste |
Challenges | Oxidation of butadiene (SBR) | Crystallization, storage stability, and low elasticity |
Question 1 | How PMB improves the performance of the mixture. |
Question 2 | Have the recent changes in approach to mix design led to any substantial differences in results between Marshall and Superpave using PMA? |
ScienceDirect | Scopus | Web of Science | |
---|---|---|---|
asphalt mixtures OR Polymer modified asphalt AND Rejuvenators OR recycled aggregate OR Marshall OR Superpave | TITLE-ABS-KEY (asphalt mixtures OR Polymer modified asphalt AND Rejuvenators OR recycled aggregate OR Marshall OR Superpave) AND PUBYEAR > 2015 AND PUBYEAR < 2026 AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”)) AND (LIMIT-TO (LANGUAGE, “English”)) | “(TS = ((“asphaltic mixture” OR asphalt OR bitumen OR “asphalt concrete” OR pavement) AND (polymer OR “polymeric compound” OR polyethylene OR polypropylene OR “polymer modifier” OR “polymer additive” OR “plastic waste”) AND (“reclaimed aggregate” OR “recycled aggregate” OR RAP OR “reclaimed asphalt pavement” OR “construction and demolition waste” OR C&DW)) AND DT = (Article OR Review))” | |
580 | 234 | 301 | |
Total | 1115 |
Refs. | Materials | Tests and Methods | Key Takeaways | Gaps or Limitations |
---|---|---|---|---|
[9] | Plastomers Elastomers Rubber | Dynamic Shear Rheometer Viscosity Elastic recovery Multiple Stress Creep and Recovery PG Grading Creep | Enhanced rutting resistance, improved fatigue resistance, increased high temperature stiffness, and reduced cracking. Plastomers improve high temperature stiffness but may be brittle Elastomers enhances resistance to rutting and fatigue Rubber improves resistance to fatigue but has dispersion issues. | Lack of long-term performance data and issues with rubber dispersion. |
[11] | SBS, SBR, EVA, Rubber | Rheological Analysis Spectroscopy Microscopy XRD | SBS improves rutting and aging resistance, SBR enhances elasticity, and wax enhances workability in the mixture. | Limited focus with SBS on high temperature stability. |
[45] | Recycled plastics (dry/wet process), SBS, EVA, PE, PP, PET | wheel tracker tests stiffness rutting fatigue | Enhanced stiffness, resistance fatigue, rutting, superior moisture recycled plastic modified asphalts. Recycled plastic enhances rutting and fatigue resistance. | The need for further research on the performance of Superpave with high recycled content. |
[5] | SBS, SBR | Dynamic modulus and fatigue resistance | Improved fatigue resistance and moisture susceptibility, better rutting resistance than Marshall. SBS and SBR improve fatigue and rutting resistance. | Lack of long-term field validation and economic feasibility. |
[3] | SBS, SBR | Volumetrics Mechanical characteristics of Marshall and Superpave | Improved rutting and fatigue resistance especially in high-temperature fluctuations. Superpave outperforms Marshall under heavy traffic and extreme temperatures. | Limited data on Superpave’s applicability in low-income regions. |
[46] | SBS, RAP Virgin Asphalt | Gyratory Compaction Dynamic modulus test Cyclic direct tension test FlexPaveTM (version 1.1) software | Enhanced rutting resistance with high RAP content but may reduce flexibility. | Performance effect of high RAP content on low temperature remains underexplored. |
[47] | SBR, SBS and Crumb Rubber | Fatigue test and wheel tracking | Enhanced fatigue and aging resistance particularly at high temperatures. SBS and SBR performs enhanced high temperature fatigue resistance while crumb rubber provides better ductility. | Limited studies on long term field performance on crumb rubber modified asphalts. |
[48] | Recycled concrete aggregate | Marshall compaction, creep test, tensile strength ratios | Lower deformation resistance with fine graded mixtures, improved rutting resistance in coarse mixtures. Mixtures gradation has bigger impact on rutting resistance than RCA content. | Lack of long-term performance with recycled concrete aggregate (RCA) in asphalt mixtures. |
[49] | SBS, PE | tensile strength ratios uniaxial dynamic modulus testing | Enhanced stiffness and moisture susceptibility resistance. SBS enhance flexibility and PE improves high temperature stability. | Need for more studies on EVA modified asphalt in low-temperature areas. |
[50] | PE, EVA | Tensile strength dynamic modulus | Improved rutting and cracking resistance, particularly in heavy-traffic and high-temperature areas. PE and EVA enhance high temperature performance; EVA may cause brittleness at low temperatures. | Need for more studies on EVA long term field performance. |
[30] | Graphene, recycled plastic | Lab tests, Falling Weight Deflectometer, fatigue and rutting test. | Improved stiffness, fatigue resistance, and rutting performance. Graphene enhances stiffness and fatigue resistance, while recycled plastics reduce carbon footprint. | Need for long-term filed performance data for graphene modified asphalt. |
[28] | Recycled plastic | Rheological tests, stiffness and penetration | Multicycle recyclability without loss of performance, stable binder properties, recycled plastics shows high recyclability with stable binder properties across multiple cycles and hence promotes sustainability. | Limited research on environmental impact assessment (EIA), and performance in extreme climates. |
[7] | Recycled plastic, EVA | Fatigue test | Recycled plastic offers excellent sustainability and mechanical performance across multiple cycles. | Need for more studies on impact of recycled materials aging. |
[51] | RAP, virgin asphalt | Gyratory compaction, fracture toughness test | RAP improves fracture resistance but may decrease shear resistance | Further investigation on RAP’s impact on cracking and shear resistance needed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jatoi, G.H.; Loprencipe, G.; Moretti, L. Comparative Review of Marshall and Superpave Mix Designs: Enhancing Asphalt Performance with Polymers. Materials 2025, 18, 4273. https://doi.org/10.3390/ma18184273
Jatoi GH, Loprencipe G, Moretti L. Comparative Review of Marshall and Superpave Mix Designs: Enhancing Asphalt Performance with Polymers. Materials. 2025; 18(18):4273. https://doi.org/10.3390/ma18184273
Chicago/Turabian StyleJatoi, Gulzar Hussain, Giuseppe Loprencipe, and Laura Moretti. 2025. "Comparative Review of Marshall and Superpave Mix Designs: Enhancing Asphalt Performance with Polymers" Materials 18, no. 18: 4273. https://doi.org/10.3390/ma18184273
APA StyleJatoi, G. H., Loprencipe, G., & Moretti, L. (2025). Comparative Review of Marshall and Superpave Mix Designs: Enhancing Asphalt Performance with Polymers. Materials, 18(18), 4273. https://doi.org/10.3390/ma18184273