Methods for Enhancing the Formation of Hydroxyl Radicals When Polishing Single Crystal SiC
Abstract
1. Introduction
2. Experiment and Methods
2.1. Abrasive Tool Preparation Process
2.2. Methyl Orange Degradation Experiment
2.3. Polishing Experiment
3. Results and Discussion
3.1. Catalytic Performance of Fe3O4/ZnO/Graphite Hybrid
3.2. Polishing Performance Using Catalytic Abrasive Tool
3.3. Material Removal Mechanism of SiC Polishing Using Catalytic Abrasive Tool
4. Conclusions
- (1)
- The Fe3O4/ZnO/graphite hybrid catalyst demonstrated exceptional •OH generation efficiency, enabling complete methyl orange degradation under optimized conditions. Integration of this catalyst into SiC polishing systems enhances •OH oxidation, significantly boosting the MRR.
- (2)
- A phenolic resin-based abrasive tool embedded with Fe3O4/ZnO/graphite was successfully fabricated via hot-pressing at 180 °C for 2 h, providing a scalable platform for catalytic-assisted polishing.
- (3)
- Water polishing achieved an MRR of 2.800 mg/h (6.057 μm/h) and a surface roughness of Sa 12.955 nm. Hydrogen peroxide polishing achieved an MRR of 4.733 mg/h (10.239 μm/h) and Sa 4.593 nm, which is the highest efficiency and best surface quality. Mechanistic analysis confirmed that catalytic •OH generation reduced mechanical scratch depth while increasing oxidation-driven material removal.
- (4)
- Compared to dry polishing, water and hydrogen peroxide polishing reduced surface roughness by 51% and 83%, respectively, while increasing MRR by 282% and 546%, demonstrating their potential for high efficiency polishing of SiC.
- (5)
- Based on the Fe3O4/ZnO/graphite abrasive tool, further research into the atomic-level polishing processes of water polishing and hydrogen peroxide polishing holds promise for developing an efficient, ultra-precise, and environmentally friendly polishing method.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suchikova, Y.; Kovachov, S.; Bohdanov, I.; Kozlovskiy, A.L.; Zdorovets, M.V.; Popov, A.I. Improvement of β-SiC Synthesis Technology on Silicon Substrate. Technologies 2023, 11, 152. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Gong, Y.; Wang, K.; Chen, Y.; Song, X.; Lin, J.; Shen, B.; He, S.; Bian, X. Analysis of the Electrical and Thermal Properties for Magnetic Fe3O4-Coated SiC-Filled Epoxy. Composites. Polymers 2021, 13, 3028. [Google Scholar] [CrossRef]
- Shuai, Z.B.; He, S.; Xue, Y.R.; Zheng, Y.J.; Gai, J.T.; Li, Y.H.; Li, G.H.; Li, J.Q. Junction temperature estimation of a SiC MOSFET module for 800V high-voltage application in electric vehicles. eTransportation 2023, 16, 100241. [Google Scholar] [CrossRef]
- Li, S.Q.; Lu, S.Z.; Mi, C.C. Revolution of Electric Vehicle Charging Technologies Accelerated by Wide Bandgap Devices. Proc. IEEE 2021, 109, 985–1003. [Google Scholar] [CrossRef]
- Hu, G.J.; Zhong, G.L.; Xiong, X.X.; Li, H.D.; Shao, H.Y.; Zhao, L.B.; Li, X.M.; Yang, X.L.; Chen, X.F.; Xie, X.J.; et al. Improvement of the resistivity uniformity of 8-inch 4H-SiC wafers by optimizing the thermal field. Vacuum 2024, 222, 112961. [Google Scholar] [CrossRef]
- Makhdoom, S.; Ren, N.; Wang, C.; Lin, C.B.; Wu, Y.D.; Sheng, K. Comprehensive Short Circuit Behavior and Failure Analysis of 1.2kV SiC MOSFETs Across Multiple Vendors and Generations. IEEE Access 2024, 12, 191442–191460. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Tang, C.; Zhao, H.Y.; Zhou, D.Q.; Si, J.L.; Yang, L.T. Effect of slurry and fixed abrasive pad on chemical mechanical polishing of SiC wafer. Mater. Sci. Semicond. Process. 2025, 188, 109202. [Google Scholar] [CrossRef]
- Chen, S.T.; Lo, P.; Hu, C.H. A hybrid process technology of SiC die separation. Mater. Manuf. Process. 2024, 39, 1277–1289. [Google Scholar] [CrossRef]
- Wang, W.T.; Lu, X.S.; Wu, X.K.; Zhang, Y.Q.; Wang, R.; Yang, D.R.; Pi, X.D. Chemical-Mechanical Polishing of 4H Silicon Carbide Wafers. Adv. Mater. Interfaces 2023, 10, 2202369. [Google Scholar] [CrossRef]
- Wu, M.; Huang, H.; Luo, Q.F.; Wu, Y.Q. A novel approach to obtain near damage-free surface/subsurface in machining of single crystal 4H-SiC substrate using pure metal mediated friction. Appl. Surf. Sci. 2022, 588, 152963. [Google Scholar] [CrossRef]
- Wu, M.; Huang, H.; Wu, Y.Q.; Xu, Z.T.; Li, T.K.; Macleod, I.; Wu, X.L. Mechanism of friction-induced chemical reaction high-efficient polishing single crystal 4H-SiC wafer using pure iron. Tribol. Int. 2024, 193, 109450. [Google Scholar] [CrossRef]
- Yagi, K.; Murata, J.; Kubota, A.; Sano, Y.; Hara, H.; Okamoto, T.; Arima, K.; Mimura, H.; Yamauchi, K. Catalyst-referred etching of 4H-SiC substrate utilizing hydroxyl radicals generated from hydrogen peroxide molecules. Surf. Interface Anal. 2008, 40, 998–1001. [Google Scholar] [CrossRef]
- Yang, X.; Yang, X.Z.; Kawai, K.; Arima, K.; Yamamura, K. Novel SiC wafer manufacturing process employing three-step slurryless electrochemical mechanical polishing. J. Manuf. Process. 2021, 70, 350–360. [Google Scholar] [CrossRef]
- Sun, R.Y.; Kinoshita, R.; Aoki, K.; Hayakawa, S.; Hori, K.; Yasuda, K.; Ohkubo, Y.; Yamamura, K. Oxidation mechanism of 4H-SiC in slurry-less ECMP with weak alkaline electrolyte. CIRP Annals 2024, 73, 277–280. [Google Scholar] [CrossRef]
- Deng, H.; Monna, K.; Tabata, T.; Endo, K.; Yamamura, K. Optimization of the plasma oxidation and abrasive polishing processes in plasma-assisted polishing for highly effective planarization of 4H-SiC. Cirp. Annals 2014, 63, 529–532. [Google Scholar] [CrossRef]
- Shen, J.F.; Chen, H.B.; Chen, J.P.; Lin, L.; Gu, Y.Y.; Jiang, Z.L.; Li, J.; Sun, T. Mechanistic difference between Si-face and C-face polishing of 4H-SiC substrates in aqueous and non-aqueous slurries. Ceram. Int. 2023, 49, 7274–7283. [Google Scholar] [CrossRef]
- Ni, Z.; Chen, G.; Xu, L.; Bai, Y.; Li, Q.; Zhao, Y. Effect of Different Oxidizers on Chemical Mechanical Polishing of 6H-SiC. Jixie Gongcheng Xuebao J. Mech. Eng. 2018, 54, 224–231. [Google Scholar] [CrossRef]
- Zhou, Y.; Pan, G.S.; Shi, X.L.; Xu, L.; Zou, C.L.; Gong, H.; Luo, G.H. XPS, UV-vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP). Appl. Surf. Sci. 2014, 316, 643–648. [Google Scholar] [CrossRef]
- Wang, W.T.; Zhang, B.G.; Shi, Y.H.; Ma, T.D.; Zhou, J.K.; Wang, R.; Wang, H.X.; Zeng, N.Y. Improvement in chemical mechanical polishing of 4H-SiC wafer by activating persulfate through the synergistic effect of UV and TiO2. J. Mater. Process. Tech. 2021, 295, 117150. [Google Scholar] [CrossRef]
- Chen, G.P.; Li, J.G.; Long, J.Y.; Luo, H.M.; Zhou, Y.; Xie, X.Z.; Pan, G.S. Surface modulation to enhance chemical mechanical polishing performance of sliced silicon carbide Si-face. Appl. Surf. Sci. 2021, 536, 147963. [Google Scholar] [CrossRef]
- Xie, X.Z.; Peng, Q.F.; Chen, G.P.; Li, J.G.; Long, J.Y.; Pan, G.S. Femtosecond laser modification of silicon carbide substrates and its influence on CMP process. Ceram. Int. 2021, 47, 13322–13330. [Google Scholar] [CrossRef]
- Deng, J.Y.; Lu, J.B.; Yan, Q.S.; Pan, J.S. Enhancement mechanism of chemical mechanical polishing for single-crystal 6H-SiC based on Electro-Fenton reaction. Diam. Relat. Mater. 2021, 111, 108147. [Google Scholar] [CrossRef]
- Hu, D.; Lu, J.B.; Deng, J.Y.; Yan, Q.S.; Long, H.T.; Luo, Y.R. The polishing properties of magnetorheological-elastomer polishing pad based on the heterogeneous Fenton reaction of single-crystal SiC. Precis. Eng. 2023, 79, 78–85. [Google Scholar] [CrossRef]
- Yuan, Z.W.; He, Y.; Sun, X.W.; Wen, Q. UV-TiO2 photocatalysis-assisted chemical mechanical polishing 4H-SiC wafer. Mater. Manuf. Process. 2018, 33, 1214–1222. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Zhu, R.L.; Xi, Y.F.; Zhu, J.X.; Zhu, G.Q.; He, H.P. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Appl. Catal. B Environ. 2019, 255, 117739. [Google Scholar] [CrossRef]
- Deng, J.Y.; Pan, J.S.; Zhang, Q.X.; Yan, Q.S.; Lu, J.B. The mechanism of Fenton reaction of hydrogen peroxide with single crystal 6H-SiC substrate. Surf. Interfaces 2020, 21, 100730. [Google Scholar] [CrossRef]
- Shi, D.; Zhou, W.; Zhao, T.C. Polishing of diamond, SiC, GaN based on the oxidation modification of hydroxyl radical: Status, challenges and strategies. Mater. Sci. Semicond. Process. 2023, 166, 107737. [Google Scholar] [CrossRef]
- Saleh, R.; Taufik, A. Degradation of methylene blue and congo-red dyes using Fenton, photo-Fenton, sono-Fenton, and sonophoto-Fenton methods in the presence of iron (II,III) oxide/zinc oxide/graphene (Fe3O4/ZnO/graphene) composites. Sep. Purif. Technol. 2019, 210, 563–573. [Google Scholar] [CrossRef]
- Ivanova, D.K.; Stefanov, B.I.; Kaneva, N.V. A Highly Efficient Tribocatalysis of La/ZnO Powders for Degradation of Rhodamine B. Catalysts 2024, 14, 527. [Google Scholar] [CrossRef]
- Lei, H.; Cui, X.D.; Jia, X.C.; Qi, J.Q.; Wang, Z.; Chen, W.P. Enhanced Tribocatalytic Degradation of Organic Pollutants by ZnO Nanoparticles of High Crystallinity. Nanomaterials 2023, 13, 46. [Google Scholar] [CrossRef] [PubMed]
Component | Proportion (%) | Mass (g) |
---|---|---|
Diamond | 20 | 12 |
PR | 30 | 18 |
Fe3O4 | 5 | 3 |
ZnO | 5 | 3 |
Graphite | 5 | 3 |
Na2CO3 | 20 | 12 |
CaO | 8 | 4.8 |
PFA | 7 | 4.2 |
Reagent | Control Group | a | b | c | d |
---|---|---|---|---|---|
Methyl Orange (mg) | 5 | 5 | 5 | 5 | 5 |
30% H2O2 (mL) | 0 | 5 | 5 | 5 | 5 |
Fe3O4 (g) | 0 | 1 | 1 | 1 | 0 |
ZnO (g) | 0 | 1 | 0 | 1 | 1 |
Graphite (g) | 0 | 1 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, D.; Feng, K.; Zhao, T. Methods for Enhancing the Formation of Hydroxyl Radicals When Polishing Single Crystal SiC. Materials 2025, 18, 4276. https://doi.org/10.3390/ma18184276
Shi D, Feng K, Zhao T. Methods for Enhancing the Formation of Hydroxyl Radicals When Polishing Single Crystal SiC. Materials. 2025; 18(18):4276. https://doi.org/10.3390/ma18184276
Chicago/Turabian StyleShi, Dong, Kaiping Feng, and Tianchen Zhao. 2025. "Methods for Enhancing the Formation of Hydroxyl Radicals When Polishing Single Crystal SiC" Materials 18, no. 18: 4276. https://doi.org/10.3390/ma18184276
APA StyleShi, D., Feng, K., & Zhao, T. (2025). Methods for Enhancing the Formation of Hydroxyl Radicals When Polishing Single Crystal SiC. Materials, 18(18), 4276. https://doi.org/10.3390/ma18184276