Failure Prediction of Lithium Disilicate and Composition-Gradient Multilayered Zirconia Occlusal Veneers: A Fractographic and Theoretical Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Fractographic Analysis
2.3. Theoretical Analysis
3. Results
3.1. Fatigue Exposure
3.2. Calculations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OV | Occlusal veneer |
3Y-TZP | 3 mol% Yttria-stabilized Tetragonal Zirconia Polycrystals |
4Y-PSZ | 4 mol% Yttria Partially Stabilized Zirconia |
5Y-PSZ | 5 mol% Yttria Partially Stabilized Zirconia |
CAD | Computer-Aided Design |
SEM | Scanning Electron Microscopy |
BSE | Backscattered Electron |
DC | Dual Curing |
PM | PrograMill |
Hz | Hertz |
GPa | Gigapascal |
MPa | Megapascal |
N | Newton |
µm | Micrometer |
°C | Degrees Celsius |
References
- Czechowski, Ł.; Dejak, B.; Konieczny, B.; Krasowski, M. Evaluation of Fracture Resistance of Occlusal Veneers Made of Different Types of Materials Depending on Their Thickness. Materials 2023, 16, 6006. [Google Scholar] [CrossRef]
- Kumar, H.C.; Kumar, T.P.; Hemchand, S.; Suneelkumar, C.; Subha, A. Accuracy of marginal adaptation of posterior fixed dental prosthesis made from digital impression technique: A systematic review. J. Indian. Prosthodont. Soc. 2020, 20, 123–130. [Google Scholar] [CrossRef]
- Ladino, L.; Sanjuan, M.E.; Valdez, D.J.; Eslava, R.A. Clinical and Biomechanical Performance of Occlusal Veneers: A Scoping Review. J. Contemp. Dent. Pract. 2021, 22, 1327–1337. [Google Scholar] [CrossRef]
- Sirous, S.; Navadeh, A.; Ebrahimgol, S.; Atri, F. Effect of preparation design on marginal adaptation and fracture strength of ceramic occlusal veneers: A systematic review. Clin. Exp. Dent. Res. 2022, 8, 1391–1403. [Google Scholar] [CrossRef]
- Fouda, A.M.; Atta, O.; Özcan, M.; Stawarczyk, B.; Glaum, R.; Bourauel, C. An investigation on fatigue, fracture resistance, and color properties of aesthetic CAD/CAM monolithic ceramics. Clin. Oral Investig. 2023, 27, 2653–2665. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yeung, A.W.K.; Pow, E.H.N.; Tsoi, J.K.H. Current status and research trends of lithium disilicate in dentistry: A bibliometric analysis. J. Prosthet. Dent. 2021, 126, 512–522. [Google Scholar] [CrossRef]
- Ivoclar Vivadent. IPS e.max CAD. 2022. Available online: https://dam.ivoclarvivadent.com/downloadcenter/?dc=global&lang=en#lang=de (accessed on 1 September 2025).
- Willard, A.; Gabriel Chu, T.M. The science and application of IPS e.max dental ceramic. Kaohsiung J. Med. Sci. 2018, 34, 238–242. [Google Scholar] [CrossRef]
- Del Cisne Maldonado, K.; Espinoza, J.A.; Astudillo, D.A.; Delgado, B.A.; Bravo, W.D. Resistance of CAD/CAM composite resin and ceramic occlusal veneers to fatigue and fracture in worn posterior teeth: A systematic review. Dent. Med. Probl. 2024, 61, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Schlichting, L.H.; Resende, T.H.; Reis, K.R.; Raybolt Dos Santos, A.; Correa, I.C.; Magne, P. Ultrathin CAD-CAM glass-ceramic and composite resin occlusal veneers for the treatment of severe dental erosion: An up to 3-year randomized clinical trial. J. Prosthet. Dent. 2022, 128, 158.e1–158.e12. [Google Scholar] [CrossRef]
- Nejat, A.H. Overview of Current Dental Ceramics. Dent. Clin. 2025, 69, 155–171. [Google Scholar] [CrossRef]
- Fulde, N.; Wille, S.; Kern, M. Fracture Resistance and Wear Behavior of Ultra-Thin Occlusal Veneers Made From Translucent Zirconia Ceramics Bonded to Different Tooth Substrates. J. Esthet. Restor. Dent. 2025, 37, 1463–1473. [Google Scholar] [CrossRef] [PubMed]
- Arcila, L.V.C.; Ramos, N.C.; Campos, T.M.B.; Dapieve, K.S.; Valandro, L.F.; de Melo, R.M.; Bottino, M.A. Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses. J. Adv. Prosthodont. 2021, 13, 385–395. [Google Scholar] [CrossRef]
- Cesar, P.F.; Miranda, R.B.P.; Santos, K.F.; Scherrer, S.S.; Zhang, Y. Recent advances in dental zirconia: 15 years of material and processing evolution. Dent. Mater. 2024, 40, 824–836. [Google Scholar] [CrossRef]
- Machry, R.V.; Dapieve, K.S.; Cadore-Rodrigues, A.C.; Werner, A.; de Jager, N.; Pereira, G.K.R.; Valandro, L.F.; Kleverlaan, C.J. Mechanical characterization of a multi-layered zirconia: Flexural strength, hardness, and fracture toughness of the different layers. J. Mech. Behav. Biomed. Mater. 2022, 135, 105455. [Google Scholar] [CrossRef] [PubMed]
- Michailova, M.; Elsayed, A.; Fabel, G.; Edelhoff, D.; Zylla, I.M.; Stawarczyk, B. Comparison between novel strength-gradient and color-gradient multilayered zirconia using conventional and high-speed sintering. J. Mech. Behav. Biomed. Mater. 2020, 111, 103977. [Google Scholar] [CrossRef]
- Rosentritt, M.; Preis, V.; Schmid, A.; Strasser, T. Multilayer zirconia: Influence of positioning within blank and sintering conditions on the in vitro performance of 3-unit fixed partial dentures. J. Prosthet. Dent. 2022, 127, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Schönhoff, L.M.; Lümkemann, N.; Buser, R.; Hampe, R.; Stawarczyk, B. Fatigue resistance of monolithic strength-gradient zirconia materials. J. Mech. Behav. Biomed. Mater. 2021, 119, 104504. [Google Scholar] [CrossRef]
- Koo, P.J.; Lee, J.H.; Ha, S.R.; Seo, D.G.; Ahn, J.S.; Choi, Y.S. Changes in the Properties of Different Zones in Multilayered Translucent Zirconia Used in Monolithic Restorations During Aging Process. J. Funct. Biomater. 2025, 16, 96. [Google Scholar] [CrossRef]
- Pantea, M.; Ciocan, L.T.; Vasilescu, V.G.; Voicu, G.; Nicoară, A.I.; Miculescu, F.; Ciocoiu, R.; Țâncu, A.M.C.; Banu, E.G.; Imre, M. Effects of Different Surface Treatments and Accelerated Aging on Dental Zirconia-An In Vitro Study. J. Funct. Biomater. 2025, 16, 263. [Google Scholar] [CrossRef]
- Winter, A.; Schurig, A.; Odenthal, A.L.; Schmitter, M. Impact of different layers within a blank on mechanical properties of multi-layered zirconia ceramics before and after thermal aging. Dent. Mater. 2022, 38, e147–e154. [Google Scholar] [CrossRef]
- Scherrer, S.S.; Lohbauer, U.; Della Bona, A.; Vichi, A.; Tholey, M.J.; Kelly, J.R.; van Noort, R.; Cesar, P.F. ADM guidance-Ceramics: Guidance to the use of fractography in failure analysis of brittle materials. Dent. Mater. 2017, 33, 599–620. [Google Scholar] [CrossRef]
- Yurtoglu, N.; Tozum, T.F.; Uysal, S. Evaluation of Peri-Implant Bone Changes with Fractal Analysis. J. Clin. Med. 2025, 14, 3820. [Google Scholar] [CrossRef]
- Lohbauer, U.; Fabris, D.C.N.; Lubauer, J.; Abdelmaseh, S.; Cicconi, M.R.; Hurle, K.; de Ligny, D.; Goetz-Neunhoeffer, F.; Belli, R. Glass science behind lithium silicate glass-ceramics. Dent. Mater. 2024, 40, 842–857. [Google Scholar] [CrossRef]
- Bruhnke, M.; Awwad, Y.; Müller, W.D.; Beuer, F.; Schmidt, F. Mechanical Properties of New Generations of Monolithic, Multi-Layered Zirconia. Materials 2022, 16, 276. [Google Scholar] [CrossRef]
- 3M ESPE. Z100 MP Restorative. Product Information. According to the Manufacturer’s Information. 2014. Available online: https://www.mwdental.de/pub/media/documents/8ec3607d416f4c4d8/GBA_Z100%20MP%20Restorative_116154.pdf (accessed on 1 September 2025).
- Ivoclar Vivadent. IPS e.max ZirCAD Labside. 2023. Available online: https://www.ivoclar.com/en_US/downloadcenter/#dc=us&lang=en&search-text=zir%20cad%20prime (accessed on 1 September 2025).
- Ivoclar Vivadent. Variolink Esthetic. Product Information. According to the Manufacturer’s Information. 2022. Available online: https://www.ivoclar.com/de_de/products/cementation/variolink-esthetic (accessed on 1 September 2025).
- Kern, M.; Strub, J.R.; Lu, X.Y. Wear of composite resin veneering materials in a dual-axis chewing simulator. J. Oral Rehabil. 1999, 26, 372–378. [Google Scholar] [CrossRef]
- Rosentritt, M.; Behr, M.; van der Zel, J.M.; Feilzer, A.J. Approach for valuating the influence of laboratory simulation. Dent. Mater. 2009, 25, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Delong, R.; Sakaguchi, R.L.; Douglas, W.H.; Pintado, M.R. The wear of dental amlgam in an artifical mouth: A clinical correlation. Dent. Mater. 1985, 1, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Prott, L.S.; Harlaß, M.; Marksteiner, A.; Spitznagel, F.A.; Langner, R.; Zhang, Y.; Blatz, M.B.; Gierthmuehlen, P.C. Fatigue performance and failure load of minimally invasive occlusal veneers made of lithium disilicate and composition-gradient multilayered zirconia: An in vitro study. J Prosthodont Res. 2025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sailer, I.; Lawn, B.R. Fatigue of dental ceramics. J. Dent. 2013, 41, 1135–1147. [Google Scholar] [CrossRef]
- Kim, J.H.; Miranda, P.; Kim, D.K.; Lawn, B.R. Effect of an adhesive interlayer on the fracture of a brittle coating on a supporting substrate. J. Mater. Res. 2003, 18, 222–227. [Google Scholar] [CrossRef]
- Timoshenko, S.; Woinowsky-Krieger, S. Theory of Plates and Shells, 2nd ed.; McGraw-Hill: New York City, NY, USA, 1959. [Google Scholar]
- Yan, J.; Kaizer, M.R.; Zhang, Y. Load-bearing capacity of lithium disilicate and ultra-translucent zirconias. J. Mech. Behav. Biomed. Mater. 2018, 88, 170–175. [Google Scholar] [CrossRef]
- Zhang, Y.; Vardhaman, S.; Rodrigues, C.S.; Lawn, B.R. A Critical Review of Dental Lithia-Based Glass–Ceramics. J. Dent. Res. 2023, 102, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Miranda, P.; Pajares, A.; Guiberteau, F.; Deng, Y.; Lawn, B.R. Designing damage-resistant brittle-coating structures: I. Bilayers. Acta Mater. 2003, 51, 4347–4356. [Google Scholar] [CrossRef]
- Hu, X.Z.; Lawn, B.R. A simple indentation stress-strain relation for contacts with spheres on bilayer structures. Thin Solid. Films 1998, 322, 225–232. [Google Scholar] [CrossRef]
- Gao, H.J.; Chiu, C.H.; Lee, J. Elastic Contact Versus Indentation Modeling of Multilayered Materials. Int. J. Solids Struct. 1992, 29, 2471–2492. [Google Scholar] [CrossRef]
- Kelly, J.R.; Rungruanganunt, P.; Hunter, B.; Vailati, F. Development of a clinically validated bulk failure test for ceramic crowns. J. Prosthet. Dent. 2010, 104, 228–238. [Google Scholar] [CrossRef]
- Zhang, Y.; Lawn, B. Long-term strength of ceramics for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 69, 166–172. [Google Scholar] [CrossRef]
- Zarone, F.; Di Mauro, M.I.; Ausiello, P.; Ruggiero, G.; Sorrentino, R. Current status on lithium disilicate and zirconia: A narrative review. BMC Oral Health 2019, 19, 134. [Google Scholar] [CrossRef]
- Borba, M.; de Araújo, M.D.; Fukushima, K.A.; Yoshimura, H.N.; Cesar, P.F.; Griggs, J.A.; Della Bona, A. Effect of the microstructure on the lifetime of dental ceramics. Dent. Mater. 2011, 27, 710–721. [Google Scholar] [CrossRef]
- Taskonak, B.; Mecholsky, J.J., Jr.; Anusavice, K.J. Residual stresses in bilayer dental ceramics. Biomaterials 2005, 26, 3235–3241. [Google Scholar] [CrossRef] [PubMed]
- Almohammed, S.N.; Dourado, A.M.; Al Quran, F.A. Fracture Resistance and Failure Mode of Monolithic Zirconia, Veneered Zirconia, and Metal-Ceramic Full-Coverage Restorations: A Comparative In Vitro Study. Int. J. Prosthodont. 2024, 37, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, C.C.; Cesar, P.F.; Miranda, W.G.; Yoshimura, H.N. Slow crack growth and reliability of dental ceramics. Dent. Mater. 2011, 27, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Kahler, B.; Moule, A.; Stenzel, D. Bacterial contamination of cracks in symptomatic vital teeth. Aust. Endod. J. 2000, 26, 115–118. [Google Scholar] [CrossRef]
- Ricucci, D.; Siqueira, J.F., Jr.; Loghin, S.; Berman, L.H. The cracked tooth: Histopathologic and histobacteriologic aspects. J. Endod. 2015, 41, 343–352. [Google Scholar] [CrossRef]
- Paradowska-Stolarz, A.; Wieckiewicz, M.; Kozakiewicz, M.; Jurczyszyn, K. Mechanical Properties, Fractal Dimension, and Texture Analysis of Selected 3D-Printed Resins Used in Dentistry That Underwent the Compression Test. Polymers 2023, 15, 1772. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prott, L.S.; Gierthmuehlen, P.C.; Blatz, M.B.; Zhang, Y. Failure Prediction of Lithium Disilicate and Composition-Gradient Multilayered Zirconia Occlusal Veneers: A Fractographic and Theoretical Analysis. Materials 2025, 18, 4287. https://doi.org/10.3390/ma18184287
Prott LS, Gierthmuehlen PC, Blatz MB, Zhang Y. Failure Prediction of Lithium Disilicate and Composition-Gradient Multilayered Zirconia Occlusal Veneers: A Fractographic and Theoretical Analysis. Materials. 2025; 18(18):4287. https://doi.org/10.3390/ma18184287
Chicago/Turabian StylePrott, Lea S., Petra C. Gierthmuehlen, Markus B. Blatz, and Yu Zhang. 2025. "Failure Prediction of Lithium Disilicate and Composition-Gradient Multilayered Zirconia Occlusal Veneers: A Fractographic and Theoretical Analysis" Materials 18, no. 18: 4287. https://doi.org/10.3390/ma18184287
APA StylePrott, L. S., Gierthmuehlen, P. C., Blatz, M. B., & Zhang, Y. (2025). Failure Prediction of Lithium Disilicate and Composition-Gradient Multilayered Zirconia Occlusal Veneers: A Fractographic and Theoretical Analysis. Materials, 18(18), 4287. https://doi.org/10.3390/ma18184287