Experimental Study of the Application of Calcined Shield Muck Powder as a Substitute for Fly Ash in Synchronous Tunnel Grouting Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Methods
2.2.1. Calcination and Reactivity Analysis of Shield Mud
2.2.2. Performance Testing of Synchronous Grouting Materials
2.2.3. Experimental Methods for Testing Microstructure
3. Results and Discussion
3.1. Reactivity Analysis of CSMP
3.2. Performance Test Results of Synchronous Grouting Materials
3.2.1. Fluidity and Consistency
3.2.2. Bleeding Rate and Hardening Rate
3.2.3. Setting Time and Compressive Strength
3.3. Microstructural Analysis
3.3.1. XRD
3.3.2. SEM
3.3.3. MIP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, H.; Chen, B.L.; Hu, H.S.; Ma, S.S.; Wu, X.T.; Huang, C.H. Research progressintreatment and disposaltechnology of metro shield muck. Guangzhou Archit. 2023, 51, 141–144. (In Chinese) [Google Scholar]
- Cheng, X.S.; Zhao, L.S.; Zheng, G.; Sou, X.M.; Wu, X.L. Influence of proportioning on the performance of inert slurry in shield tunnel construction. J. Chongqing Jiaotong Univ. (Nat. Sci.) 2023, 42, 15–20+49. (In Chinese) [Google Scholar]
- Guo, W.S.; Wang, B.Q.; Li, Z.Y.; Mo, S. Status quo and prospect of harmless disposal and reclamation of shield muck in china. Tunn. Constr. 2020, 40, 1101–1112. (In Chinese) [Google Scholar]
- Wang, Z.; Zhang, D.; Gong, F.; Mehrpay, S.; Ueda, T. Multiscale modeling and simulation of ice-strengthening effects in mesocracks of saturated frost-damaged concrete under freezing temperature. J. Mater. Civ. Eng. 2021, 33, 04020443. [Google Scholar] [CrossRef]
- Li, W.; Chen, G.; Cao, T.B.; Yang, F.S.; Chen, K.Y.; Wu, H.Y. Carbon emission intensity and carbon reduction potential in recycling and disposal of subway-related shield muck. Environ. Eng. 2023, 41, 53–60. (In Chinese) [Google Scholar]
- Wang, W.; Wang, N.; Bao, Y.; Wang, Q.F.; Chang, X.D.; Sha, F.; Chen, X.D. Research and implementation of eco-grouting material derived from shield tunneling muck. Case Stud. Constr. Mater. 2024, 21, e03852. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, D.; Li, S.; Li, H.; Zhang, S.; Hou, Y.K.; Hu, W.Z.; Zheng, H. Preliminary study on preparation of unfired bricks using filter cake from tunnel muck. J. Build. Eng. 2022, 60, 105175. [Google Scholar] [CrossRef]
- Faris, F.; Fawu, W. Investigation of the initiation mechanism of an earthquake-induced landslide during rainfall: A case study of the Tandikat landslide, West Sumatra, Indonesia. Geoenviron. Disasters 2014, 1, 1–18. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Y.; Tu, Y.; Han, P.W.; Liu, X.; Ye, S.F. Green treatment of cyanide tailings using a “Filter press backwash–Chemical precipitation–Gaseous membrane absorption” method. Appl. Sci. 2021, 11, 2091. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Zhuang, J.; Kou, Z.J.; Liu, C.S. Multiple parameter collaborative optimization of a particle separation equipment for coal cleaning production. J. Environ. Chem. Eng. 2021, 9, 105646. [Google Scholar] [CrossRef]
- Liu, H.; Xue, D.H.; Wu, L.Y.; Liu, J.; Zhang, Y.; Ding, Z.; Sun, X.H. Status quo and improvement measures of shield waste onsite treatment in Shenzhen. J. Shenzhen Univ. Sci. Eng. 2022, 39, 152–158. (In Chinese) [Google Scholar] [CrossRef]
- Taqa, A.A.; Al-Ansari, M.; Taha, R.; Senouci, A.; Al-Zubi, G.M.; Mohsen, M.O. Performance of concrete mixes containing TBM muck as partial coarse aggregate replacements. Materials 2021, 14, 6263. [Google Scholar] [CrossRef]
- Gertsch, L.; Fjeld, A.; Nilsen, B.; Gertsch, R. Use of TBM muck as construction material. Tunn. Undergr. Space Technol. 2000, 15, 379–402. [Google Scholar] [CrossRef]
- Hao, T.; Li, X.; Leng, F.; Wang, S. Sychronous grouting materials for shield slag in silty clay of Zhengzhou metro. J. Chang. Univ. (Nat. Sci. Ed.) 2020, 40, 53–62. (In Chinese) [Google Scholar]
- Zhang, C.; Yang, J.; Fu, J.; Wang, S.; Yin, J.; Xie, Y. Recycling of discharged soil from EPB shield tunnels as a sustainable raw material for synchronous grouting. J. Clean Prod. 2020, 268, 18. [Google Scholar] [CrossRef]
- Chen, S.B.; Jiang, H.; Xing, H.T.; Wang, J.; Huang, Y.L.; Wei, G.B.; Zhang, Y.J.; Hou, D.S.; Tang, S.W. Research on Preparation and Performance of Clay-Based Shield Tunnel Nonsintered Bricks. Adv. Mater. Sci. Eng. 2021, 2021, 8186851. [Google Scholar] [CrossRef]
- Habert, G.; Choupay, N.; Escadeillas, G.; Guillaume, D.; Montel, J.M. Clay content of argillites: Influence on cement based mortars. Appl. Clay Sci. 2009, 43, 322–330. [Google Scholar] [CrossRef]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Amin, N.; Alam, S.; Gul, S. Effect of thermally activated clay on corrosion and chloride resistivity of cement mortar. J. Clean. Prod. 2016, 111, 155–160. [Google Scholar] [CrossRef]
- Hao, T.; Wang, S.; Li, X.X.; Wang, C.L.; Wu, X.M. Feasibility Study on Preparation of Cement Mixture by Shield Muck. Bull. Chin. Ceram. Soc. 2019, 38, 1018–1023. (In Chinese) [Google Scholar]
- Zheng, D.P.; Liang, X.W.; Cui, H.Z.; Tang, W.C.; Liu, W.; Zhou, D. Study of performances and microstructures of mortar with calcined low-grade clay. Constr. Build. Mater. 2022, 327, 10. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, S.; Zheng, X.; Qi, C. Application of geopolymer in synchronous grouting for reusing of the shield muck in silty clay layer. Constr. Build. Mater. 2024, 419, 135345. [Google Scholar] [CrossRef]
- Cui, Y.; Tan, Z.; Wang, J.; Shi, Y.X.; Bai, Z.; Cao, Y.X. Research on reuse of shield soil dregs on synchronous grouting materials and its application. Constr. Build. Mater. 2023, 408, 133700. [Google Scholar] [CrossRef]
- Niu, X.-J.; Li, Q.-B.; Hu, Y.; Tan, Y.-S.; Liu, C.-F. Properties of cement-based materials incorporating nano-clay and calcined nano-clay: A review. Constr. Build. Mater. 2021, 284, 122820. [Google Scholar] [CrossRef]
- Badogiannis, E.; Tsivilis, S. Exploitation of poor Greek kaolins: Durability of metakaolin concrete. Cem. Concr. Compos. 2009, 31, 128–133. [Google Scholar] [CrossRef]
- Guo, K.Y. Study on the Macro-and Micro-Mechanisms of Flocculation (Filter Pressing) and Solidification of Waste Slurry; Shenzhen University: Shenzhen, China, 2022. (In Chinese) [Google Scholar]
- Ptáček, P.; Frajkorová, F.; Šoukal, F.; Opravil, T. Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite. Powder Technol. 2014, 264, 439–445. [Google Scholar] [CrossRef]
- Shvarzman, A.; Kovler, K.; Grader, G.S.; Shter, G.E. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cem. Concr. Res. 2003, 33, 405–416. [Google Scholar] [CrossRef]
- Li, Y.; Yi, P.; Du, H.; Liu, W.; Mi, T.W.; Huang, L.M.; Guo, X.; Sun, X.H.; Xing, F. Activation of locally excavated spoil for utilization in limestone calcined clay cement (LC3). Constr. Build. Mater. 2024, 420, 135518. [Google Scholar] [CrossRef]
- Thapa, V.B.; Waldmann, D.; Simon, C. Gravel wash mud, a quarry waste material as supplementary cementitious material (SCM). Cem. Concr. Res. 2019, 124, 105833. [Google Scholar] [CrossRef]
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). State Administration for Market Regulation: Beijing, China, 2021.
- ASTM C618; Standard Specification for Coal Fly Ash and Raw Or Calcined Natural Pozzolan for Use in Concrete. American Society for Testing and Materials: Beijing, China, 2003.
- Wei, X.J.; Zhang, B.; Lu, L.L.; Liu, Y.J.; Zhu, H.H.; Wang, H.L. A Discussion on Several Core Issues of Synchronous Grouting in Shield Tunnelling. Mod. Tunn. Technol. 2022, 59, 10–22. (In Chinese) [Google Scholar]
- Yang, Z.; He, Z.H.; Liu, Y.; Chen, P.S.; Li, D.J. Recycle application of the shield waste slurry in backfill grouting material: A case study of a slurry shield tunnelling in the river-crossing Fuzhou metro. Mod. Tunn. Technol. 2019, 56, 192–199+205. (In Chinese) [Google Scholar]
- EN 14199; Execution of Special Geotechnical Works—Micropiles. National Standards Authority of Ireland Glasnevin: Beijing, China, 2005.
- T/CECS 563-2018; Technical Specification for Simultaneous Grouting Material in Shield Projects. China Association for Engineering Construction Standardization: Beijing, China, 2018.
- JGJ/T 70-2009; Standard for Test Method of Performance on Building Mortar. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2009.
- GB/T 2419-2005; Test Method for Fluidity of Cement Mortar. China Academy of Building Research: Beijing, China, 2005.
- Zhang, J.; Scherer, G.W. Comparison of methods for arresting hydration of cement. Cem. Concr. Res. 2011, 41, 1024–1036. [Google Scholar] [CrossRef]
- Ren, J.; Guo, J.; Jin, Y.; Liu, F.; Liu, B.; Yan, S.; Yan, W.; Lu, C.; Shi, S. Enhancing workability of high-volume calcined clay blend cement pastes through optimized addition sequences of PCE superplasticizer. Case Stud. Constr. Mater. 2024, 21, e03541. [Google Scholar] [CrossRef]
- Ding, X.B.; Du, H.Y.; Wu, E.F.; Yi, P.; Li, Y.Q.; Luo, Y.M.; Liu, W. Investigating the Hydration, Mechanical Properties, and Pozzolanic Activity of Cement Paste Containing Co-Combustion Fly Ash. Buildings 2024, 14, 1305. [Google Scholar] [CrossRef]
- Du, H.J.; Pang, S.D. Value-added utilization of marine clay as cement replacement for sustainable concrete production. J. Clean. Prod. 2018, 198, 867–873. [Google Scholar] [CrossRef]
- Liu, Y.Y. Application and Theoretical Study of Coal Kaolin Activation and Cement Admixture. Maste’s Thesis, Wuhan University of Technology, Wuhan, China, 2018. (In Chinese). [Google Scholar]
- Taylor, H.F.W. Cement Chemistry; Thomas Telford: London, UK, 1997. [Google Scholar]
- Heikal, M.; Zaki, M.E.A.; Alshammari, A. Preparation and characterization of an eco-friendly binder from alkali-activated aluminosilicate solid industrial wastes containing CKD and GGBS. J. Mater. Civ. Eng. 2018, 30, 04018093. [Google Scholar] [CrossRef]
- Chen, X.; Wu, S. Influence of water-to-cement ratio and curing period on pore structure of cement mortar. Constr. Build. Materials 2013, 38, 804–812. [Google Scholar] [CrossRef]
- Ke, G.J.; Zhang, J.; Liu, Y.Z.; Xie, S.X. Pore characteristics of calcium sulfoaluminate cement paste with impact of supplementary cementitious materials and water to binder ratio. Powder Technol. 2021, 387, 146–155. [Google Scholar] [CrossRef]
Density (g/cm3) | Specific Area (m2/kg) | Compressive Strength (MPa) | Flexural Strength (MPa) | ||
---|---|---|---|---|---|
3 d | 28 d | 3 d | 28 d | ||
3.15 | 340 | 29.4 | 50.3 | 5.9 | 8.6 |
Materials | SiO2 | Al2O3 | CaO | Fe2O3 | K2O | MgO | Na2O | TiO2 | P2O5 | SO3 | Others |
---|---|---|---|---|---|---|---|---|---|---|---|
Cement | 23.08 | 6.46 | 61.62 | 2.94 | 0.91 | 1.77 | - | 0.27 | - | 2.44 | 0.51 |
Shield Mud | 65.80 | 28.45 | 1.05 | 1.51 | 1.55 | 0.57 | 0.26 | 0.37 | - | - | 0.44 |
Fly Ash | 44.31 | 20.68 | 15.31 | 9.16 | 1.21 | 1.99 | 3,81 | - | 0.32 | 1.59 | 1.7 |
Bentonite | 67.57 | 18.26 | 2.33 | 3.82 | 2.66 | 1.95 | 2.59 | 0.47 | 0.15 | 0.08 | 0.12 |
Performance | Fluidity (mm) | Consistency (mm) | Setting Time (h) | Bleeding Rate (%) | Hardening Rate (%) | Compressive Strength (MPa) | |
---|---|---|---|---|---|---|---|
3 d | 28 d | ||||||
Measured value | 261 | 126 | 15.8 | 1.4 | 97.8 | 0.71 | 3.16 |
Standard limit [29] | >160 | 100–130 | 10–24 | <3.5 | >95.0 | >0.50 | >2.50 |
Spectrum | O | Mg | Al | Si | Ca | Na | Fe | K |
---|---|---|---|---|---|---|---|---|
1 | 49.05 | 2.23 | 3.81 | 8.56 | 20.42 | 0.51 | 3.46 | 0.22 |
2 | 49.86 | 1.11 | 3.90 | 11.83 | 17.75 | 0.64 | 1.90 | 0.35 |
3 | 53.88 | 0.75 | 12.24 | 12.48 | 4.68 | - | 1.28 | 2.17 |
4 | 53.18 | 0.97 | 8.09 | 8.03 | 13.58 | - | 1.33 | 0.37 |
5 | 55.00 | 2.16 | 7.52 | 9.77 | 10.53 | - | 1.65 | 0.33 |
6 | 49.45 | 4.51 | 8.06 | 13.09 | 4.27 | - | 4.76 | 2.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wu, E.; Du, H.; Liu, H.; Liu, S.; Chang, K.; Li, Y. Experimental Study of the Application of Calcined Shield Muck Powder as a Substitute for Fly Ash in Synchronous Tunnel Grouting Materials. Materials 2025, 18, 482. https://doi.org/10.3390/ma18030482
Liu W, Wu E, Du H, Liu H, Liu S, Chang K, Li Y. Experimental Study of the Application of Calcined Shield Muck Powder as a Substitute for Fly Ash in Synchronous Tunnel Grouting Materials. Materials. 2025; 18(3):482. https://doi.org/10.3390/ma18030482
Chicago/Turabian StyleLiu, Wei, Enfeng Wu, Hangyu Du, Hu Liu, Suyun Liu, Kangqi Chang, and Yongqiang Li. 2025. "Experimental Study of the Application of Calcined Shield Muck Powder as a Substitute for Fly Ash in Synchronous Tunnel Grouting Materials" Materials 18, no. 3: 482. https://doi.org/10.3390/ma18030482
APA StyleLiu, W., Wu, E., Du, H., Liu, H., Liu, S., Chang, K., & Li, Y. (2025). Experimental Study of the Application of Calcined Shield Muck Powder as a Substitute for Fly Ash in Synchronous Tunnel Grouting Materials. Materials, 18(3), 482. https://doi.org/10.3390/ma18030482