Calcium Hydroxyapatite Combined with Photobiomodulation for Bone Tissue Repair: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Study Design
2.2. Eligibility Criteria
- -
- Studies on animals and humans;
- -
- In vivo/in vitro studies;
- -
- Case reports;
- -
- Publications in English;
- -
- Access to the full article.
- -
- No association with the healing process;
- -
- Systematic review articles or book chapters;
- -
- Unpublished abstracts;
- -
- Theses or dissertations;
- -
- Absence of the combined use of CaHA or calcium phosphate;
- -
- Non-English languages or restricted access.
2.3. Literature Research
2.4. Study Selection and Data Extraction
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pinheiro, A.L.B.; Gerbi, M.E.M.M. Photoengineering of bone repair processes. Photomed. Laser Surg. 2006, 24, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Boutinguiza, M.; Pou, J.; Comesaña, R.; Lusquiños, F.; De Carlos, A.; León, B. Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. C 2012, 32, 478–486. [Google Scholar] [CrossRef]
- Chiatti, F.; Corno, M.; Ugliengo, P. Stability of the dipolar (001) surface of hydroxyapatite. J. Phys. Chem. C 2012, 116, 6108–6114. [Google Scholar] [CrossRef]
- Piccirillo, C.; Castro, P.M.L. Calcium hydroxyapatite-based photocatalysts for environment remediation: Characteristics, performances and future perspectives. J. Environ. Manag. 2017, 193, 79–91. [Google Scholar] [CrossRef]
- Mohd Pu’ad, N.A.S.; Abdul Haq, R.H.; Mohd Noh, H.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Synthesis method of hydroxyapatite: A review. Mater. Today Proc. 2020, 29, 233–239. [Google Scholar] [CrossRef]
- Bianchi, S.; Bernardi, S.; Mattei, A.; Cristiano, L.; Mancini, L.; Torge, D.; Varvara, G.; Macchiarelli, G.; Marchetti, E. Morphological and biological evaluations of human periodontal ligament fibroblasts in contact with different bovine bone grafts treated with low-temperature deproteinisation protocol. Int. J. Mol. Sci. 2022, 23, 5273. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphate-based bioceramics. Materials 2013, 6, 3840–3942. [Google Scholar] [CrossRef]
- Nathanael, A.J.; Hong, S.I.; Oh, T.H.; Seo, Y.H.; Singh, D.; Han, S.S. Enhanced cell viability of hydroxyapatite nanowires by surfactant mediated synthesis and its growth mechanism. RSC Adv. 2016, 6, 25070–25081. [Google Scholar] [CrossRef]
- Graivier, M.H.; Lorenc, Z.P.; Bass, L.M.; Fitzgerald, R.; Goldberg, D.J. Calcium hydroxyapatite (CaHA) indication for hand rejuvenation. Aesthetic Surg. J. 2018, 38, S24–S28. [Google Scholar] [CrossRef]
- Reis, C.H.B.; Buchaim, R.L.; Pomini, K.T.; Hamzé, A.L.; Zattiti, I.V.; Duarte, M.A.H.; Alcalde, M.P.; Barraviera, B.; Júnior, R.S.F.; Pontes, F.M.L.; et al. Effects of a biocomplex formed by two scaffold biomaterials, hydroxyapatite/tricalcium phosphate ceramic and fibrin biopolymer, with photobiomodulation, on bone repair. Polymers 2022, 14, 2075. [Google Scholar] [CrossRef]
- Pomini, K.T.; Buchaim, D.V.; Bighetti, A.C.C.; Andreo, J.C.; Rosso, M.P.d.O.; Escudero, J.S.B.; Della Coletta, B.B.; Alcalde, M.P.; Duarte, M.A.H.; Pitol, D.L.; et al. Use of photobiomodulation combined with fibrin sealant and bone substitute improving the bone repair of critical defects. Polymers 2022, 14, 4170. [Google Scholar] [CrossRef] [PubMed]
- Fortaleza, L.M.d.M.; Alves, A.M.M.; Filho, A.L.M.M.; Ferreira, D.C.L.; Costa, C.L.S.; Viana, V.G.F.; Santos, J.Z.L.V.; Oliveira, R.A.; Viana, B.C.; Gusmão, G.O.M.; et al. Raman spectroscopy analysis of bone regeneration in a rat model by implantation of a biocompatible membrane scaffold with and without led photobiomodulation (λ 945 ± 20 nm). Vib. Spectrosc. 2020, 111, 103154. [Google Scholar] [CrossRef]
- Soares, L.G.P.; Marques, A.M.C.; Barbosa, A.F.S.; Santos, N.R.; Aciole, J.M.S.; Souza, C.M.C.; Pinheiro, A.L.B.; Silveira, L. Raman study of the repair of surgical bone defects grafted with biphasic synthetic microgranular ha+β-calcium triphosphate and irradiated or not with λ780 nm laser. Lasers Med. Sci. 2014, 29, 1539–1550. [Google Scholar] [CrossRef] [PubMed]
- Macedo, A.A.P.; Santos, T.D.; Cunha, J.L.S.; de Souza Matos, F.; de Albuquerque Júnior, R.L.C.; Ribeiro, M.A.G. Effect of laser photobiomodulation associated with a bioceramic cement on the repair of bone tissue in the femur of rats. J. Photochem. Photobiol. B 2020, 205, 111813. [Google Scholar] [CrossRef]
- de Oliveira, G.J.P.L.; Aroni, M.A.T.; Medeiros, M.C.; Marcantonio, E.; Marcantonio, R.A.C. Effect of low-level laser therapy on the healing of sites grafted with coagulum, deproteinized bovine bone, and biphasic ceramic made of hydroxyapatite and β-tricalcium phosphate. in vivo study in rats. Lasers Surg. Med. 2018, 50, 651–660. [Google Scholar] [CrossRef]
- Pinheiro, A.L.B.; Martinez Gerbi, M.E.; De Assis Limeira, F.; Carneiro Ponzi, E.A.; Marques, A.M.C.; Carvalho, C.M.; De Carneiro Santos, R.; Oliveira, P.C.; Nóia, M.; Ramalho, L.M.P. Bone repair following bone grafting hydroxyapatite guided bone regeneration and infra-red laser photobiomodulation: A histological study in a rodent model. Lasers Med. Sci. 2009, 24, 234–240. [Google Scholar] [CrossRef]
- Cruel, P.T.E.; dos Santos, C.P.C.; Cueto, T.M.; Avila, L.P.V.; Buchaim, D.V.; Buchaim, R.L. Calcium hydroxyapatite in its different forms in skin tissue repair: A literature review. Surgeries 2024, 5, 640–659. [Google Scholar] [CrossRef]
- Akhtar, K.; Pervez, C.; Zubair, N.; Khalid, H. Calcium hydroxyapatite nanoparticles as a reinforcement filler in dental resin nanocomposite. J. Mater. Sci. Mater. Med. 2021, 32, 129. [Google Scholar] [CrossRef]
- Theodoro, L.H.; Rocha, G.S.; Ribeiro, V.L.; Sakakura, C.E.; De Mello Neto, J.M.; Garcia, V.G.; Ervolino, E.; Marcantonio, E. Bone formed after maxillary sinus floor augmentation by bone autografting with hydroxyapatite and low-level laser therapy: A randomized controlled trial with histomorphometrical and immunohistochemical analyses. Implant Dent. 2018, 27, 547–554. [Google Scholar] [CrossRef]
- Gao, J.; Hao, L.S.; Ning, B.B.; Zhu, Y.K.; Guan, J.B.; Ren, H.W.; Yu, H.P.; Zhu, Y.J.; Duan, J.L. Biopaper based on ultralong hydroxyapatite nanowires and cellulose fibers promotes skin wound healing by inducing angiogenesis. Coatings 2022, 12, 479. [Google Scholar] [CrossRef]
- Ouyang, Q.; Kong, S.; Huang, Y.; Ju, X.; Li, S.; Li, P.; Luo, H. Preparation of nano-hydroxyapatite/chitosan/tilapia skin peptides hydrogels and its burn wound treatment. Int. J. Biol. Macromol. 2021, 181, 369–377. [Google Scholar] [CrossRef]
- Brawn, P.R.; Kwong-Hing, A. Histologic comparison of light emitting diode phototherapy-treated hydroxyapatite-grafted extraction sockets: A same-mouth case study. Implant Dent. 2007, 16, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Rando, R.G.; Buchaim, D.V.; Cola, P.C.; Buchaim, R.L. Effects of photobiomodulation using low-level laser therapy on alveolar bone repair. Photonics 2023, 10, 734. [Google Scholar] [CrossRef]
- Pinheiro, A.L.B.; Soares, L.G.P.; da Silva, A.C.P.; Santos, N.R.S.; da Silva, A.P.L.T.; Neves, B.L.R.C.; Soares, A.P.; Silveira, L. Raman spectroscopic study of the effect of the use of laser/led phototherapy on the repair of complete tibial fracture treated with internal rigid fixation. Photodiagnosis Photodyn. Ther. 2020, 30, 101773. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.G.; Marques, A.M.; Aciole, J.M.; da Guarda, M.G.; Cangussú, M.C.; Silveira, L., Jr.; Pinheiro, A.L. Do laser/LED phototherapies influence the outcome of the repair of surgical bone defects grafted with biphasic synthetic microgranular HA + β-tricalcium phosphate? A Raman spectroscopy study. Lasers Med. Sci. 2014, 29, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Nissan, J.; Assif, D.; Gross, M.D.; Yaffe, A.; Binderman, I. Effect of low intensity laser irradiation on surgically created bony defects in rats. J. Oral Rehabil. 2006, 33, 619–924. [Google Scholar] [CrossRef] [PubMed]
- Ghamsari, S.M.; Taguchi, K.; Abe, N.; Acorda, J.A.; Sato, M.; Yamada, H. Evaluation of low level laser therapy on primary healing of experimentally induced full thickness teat wounds in dairy cattle. Vet. Surg. 1997, 26, 114–120. [Google Scholar] [CrossRef]
- Webb, C.; Dyson, M.; Lewis, W.H.P. Stimulatory effect of 660 nm low level laser energy on hypertrophic scar-derived fibroblasts: Possible mechanisms for increase in cell counts. Lasers Surg. Med. 1998, 22, 294–301. [Google Scholar] [CrossRef]
- Soriano, F.; Campana, V.; Moya, M.; Gavotto, A.; Simes, J.; Soriano, M.; Soriano, R.; Spitale, L.; Palma, J. Photobiomodulation of pain and inflammation in microcrystalline arthropathies. Photomed. Laser Surg. 2006, 24, 140–150. [Google Scholar] [CrossRef]
- Franco, G.R.; Laraia, I.O.; Maciel, A.A.; Miguel, N.M.; Dos Santos, G.R.; Fabrega-Carvalho, C.A.; Pinto, C.A.; Pettian, M.S.; Cunha, M.R. Effects of chronic passive smoking on the regeneration of rat femoral defects filled with hydroxyapatite and stimulated by laser therapy. Injury 2013, 44, 908–913. [Google Scholar] [CrossRef]
- Kazancioglu, H.O.; Ezirganli, S.; Aydin, M.S. Effects of laser and ozone therapies on bone healing in the calvarial defects. J. Craniofac. Surg. 2013, 24, 2141–2146. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, A.L.B.; Santos, N.R.S.; Oliveira, P.C.; Aciole, G.T.S.; Ramos, T.A.; Gonzalez, T.A.; Da Silva, L.N.; Barbosa, A.F.S.; Silveira, L. The efficacy of the use of ir laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with wire osteosynthesis: A comparative laser fluorescence and raman spectral study on rabbits. Lasers Med. Sci. 2013, 28, 815–822. [Google Scholar] [CrossRef] [PubMed]
- de Castro, I.C.; Rosa, C.B.; Dos Reis Júnior, J.A.; Moreira, L.G.; Aragão, J.S.; Barbosa, A.F.; Silveira, L., Jr.; Pinheiro, A.L. Assessment of the use of led phototherapy on bone defects grafted with hydroxyapatite on rats with iron-deficiency anemia and nonanemic: A raman spectroscopy analysis. Lasers Med. Sci. 2014, 29, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, A.L.B.; Aciole, G.T.S.; Ramos, T.A.; Gonzalez, T.A.; Da Silva, L.N.; Soares, L.G.P.; Aciole, J.M.S.; Dos Santos, J.N. The Efficacy of the Use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: A histological and histomorphometric study on rabbits. Lasers Med. Sci. 2014, 29, 279–288. [Google Scholar] [CrossRef]
- Soares, L.G.P.; Marques, A.M.C.; Guarda, M.G.; Aciole, J.M.S.; Dos Santos, J.N.; Pinheiro, A.L.B. Influence of the Λ780 nm laser light on the repair of surgical bone defects grafted or not with biphasic synthetic micro-granular hydroxylapatite + beta-calcium triphosphate. J. Photochem. Photobiol. B 2014, 131, 16–23. [Google Scholar] [CrossRef]
- Pinheiro, A.L.B.; Soares, L.G.P.; Marques, A.M.C.; Aciole, J.M.S.; De Souza, R.A.; Silveira, L. Raman ratios on the repair of grafted surgical bone defects irradiated or not with laser (Λ780 nm) or LED (Λ850 nm). J. Photochem. Photobiol. B 2014, 138, 146–154. [Google Scholar] [CrossRef]
- Hilal, A.; Vardi, N.; Özgür, C.; Acar, A.H.; Yolcu, Ü.; Doğan, D.O. Comparison of the effects of low-level laser therapy and ozone therapy on bone healing. J. Craniofac. Surg. 2015, 26, e396–e400. [Google Scholar] [CrossRef]
- Pinheiro, A.L.B.; Soares, L.G.P.; Marques, A.M.C.; Cangussú, M.C.T.; Pacheco, M.T.T.; Silveira, L. Biochemical changes on the repair of surgical bone defects grafted with biphasic synthetic micro-granular ha + β-tricalcium phosphate induced by laser and LED phototherapies and assessed by raman spectroscopy. Lasers Med. Sci. 2017, 32, 663–672. [Google Scholar] [CrossRef]
- Prado, R.F.D.; Ankha, M.D.V.E.A.; Bueno, D.A.G.; Santos, E.L.S.; Tini, Í.R.P.; Ramos, C.J.; Spalding, M.; Vasconcellos, L.G.O.; Vasconcellos, L.M.R. CaP coating and low-level laser therapy to stimulate early bone formation and improve fixation of rough threaded implants. Implant Dent. 2018, 27, 660–666. [Google Scholar] [CrossRef]
- Luca, R.E.; Giuliani, A.; Mănescu, A.; Heredea, R.; Hoinoiu, B.; Constantin, G.D.; Duma, V.F.; Todea, C.D. Osteogenic potential of bovine bone graft in combination with laser photobiomodulation: An ex vivo demonstrative study in wistar rats by cross-linked studies based on synchrotron microtomography and histology. Int. J. Mol. Sci. 2020, 21, 778. [Google Scholar] [CrossRef]
- de Oliveira, G.J.P.L.; Aroni, M.A.T.; Pinotti, F.E.; Marcantonio, E., Jr.; Marcantonio, R.A.C. Low-level laser therapy (LLLT) in sites grafted with osteoconductive bone substitutes improves osseointegration. Lasers Med. Sci. 2020, 35, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Della Coletta, B.B.; Jacob, T.B.; Moreira, L.A.C.; Pomini, K.T.; Buchaim, D.V.; Eleutério, R.G.; Pereira, E.S.B.M.; Roque, D.D.; Rosso, M.P.O.; Shindo, J.V.T.C.; et al. Photobiomodulation therapy on the guided bone regeneration process in defects filled by biphasic calcium phosphate associated with fibrin biopolymer. Molecules 2021, 26, 847. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Li, L.; Kou, N.; Bai, Y.; Zhang, Y.; Lu, Y.; Gao, L.; Wang, F. Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis. Stem Cell Res. Ther. 2021, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Dalapria, V.; Marcos, R.L.; Bussadori, S.K.; Anselmo, G.; Benetti, C.; da Silva Santana, A.C.A.; Marinho, N.S.R.; Pinto, R.S.; de Sales, R.S.; de França, L.S.; et al. LED photobiomodulation therapy combined with biomaterial as a scaffold promotes better bone quality in the dental alveolus in an experimental extraction model. Lasers Med. Sci. 2022, 37, 1583–1592. [Google Scholar] [CrossRef]
- De Marco, A.C.; Cavassini, T.L.; Camacho, R.T.; Moretto, N.C.; Vicensotto, B.A.; Martins, M.C.C.; Alberto, P.K.; Neves, J.M.A.; Pedrine, S.M. Effect of photobiomodulation therapy associated with biphasic phosphate calcium on bone repair: A histomorphometric study in rats. J. Lasers Med. Sci. 2022, 13, e33. [Google Scholar] [CrossRef]
- Kim, H.B.; Kang, M.H.; Baik, K.Y.; Kim, J.E.; Park, S.B.; Choung, P.H.; Chung, J.H. Integration of blue light with near-infrared irradiation accelerates the osteogenic differentiation of human dental pulp stem cells. J. Photochem. Photobiol. B 2023, 245, 112752. [Google Scholar] [CrossRef]
- Cho, K.; Lee, K.; Kang, K.; Kim, M. Treatment of a large defect induced by atrophic nonunion of femoral fracture in a dog with autogenous coccygeal bone grafting. Vet. Sci. 2023, 10, 388. [Google Scholar] [CrossRef]
- Allam, A.F.; Zaky, A.A.; Elshenawy, H.M.; Safwat, E.M.; Hassan, M.L.; DI Lauro, A.E.; Nassar, M.A.; Taha, S.K. Efficacy of photobiomodulation using diode laser 650 nm combined with nano-cellulose and nano-amorphous calcium phosphate in bone healing of rabbit tibial defects assessed by H&E staining and computed tomography. Minerva Dent. Oral Sci. 2024, 73, 109–118. [Google Scholar] [CrossRef]
- Comunian, C.R.; Custódio, A.L.N.; de Oliveira, L.J.; Dutra, C.E.A.; D’almeida Ferreira Neto, M.; Rezende, C.M.F. Photobiomodulation with LED and laser in repair of mandibular socket rabbit: Clinical evaluation, histological, and histomorphometric. Oral Maxillofac. Surg. 2017, 21, 201–206. [Google Scholar] [CrossRef]
- Vitoriano, N.A.M.; Mont’Alverne, D.G.B.; Martins, M.I.S.; Silva, P.S.; Martins, C.A.; Teixeira, H.D.; Miranda, C.B.; Bezerra, L.M.M.; Montenegro, R.M.; Tatmatsu-Rocha, J.C. Comparative study on laser and led influence on tissue repair and improvement of neuropathic symptoms during the treatment of diabetic ulcers. Lasers Med. Sci. 2019, 34, 1365–1371. [Google Scholar] [CrossRef]
- Barros, M.C.G.; Dias, B.; Faria, K.; Tibério, L.; Silva, V.A. Padronização do registro do uso da fotobiomodulação com uso de laser de baixo potencial e LED azul como adjuvantes no tratamento de feridas. Rev. Eletrônica SimTec 2023, 8, e0220901. [Google Scholar]
- De Freitas, L.F.; Hamblin, M.R. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 348–364. [Google Scholar] [CrossRef] [PubMed]
- de Vasconcellos, L.M.; Barbara, M.A.; Deco, C.P.; Junqueira, J.C.; do Prado, R.F.; Anbinder, A.L.; de Vasconcellos, L.G.; Cairo, C.A.; Carvalho, Y.R. Healing of normal and osteopenic bone with titanium implant and low-level laser therapy (GaAlAs): A histomorphometric study in rats. Lasers Med. Sci. 2014, 29, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yeung, K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017, 2, 224–247. [Google Scholar] [CrossRef]
- Avanzi, I.R.; Parisi, J.R.; Souza, A.; Cruz, M.A.; Martignago, C.C.S.; Ribeiro, D.A.; Braga, A.R.C.; Renno, A.C. 3D-Printed Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Systematic Review in Experimental Animal Studies. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 203–219. [Google Scholar] [CrossRef]
- Oliveira, H.L.; Da Rosa, W.L.O.; Cuevas-Suárez, C.E.; Carreño, N.L.V.; da Silva, A.F.; Guim, T.N.; Dellagostin, O.A.; Piva, E. Histological Evaluation of Bone Repair with Hydroxyapatite: A Systematic Review. Calcif. Tissue Int. 2017, 101, 341–354. [Google Scholar] [CrossRef]
- Li, B.; Lei, Y.; Hu, Q.; Li, D.; Zhao, H.; Kang, P. Porous Copper- And Lithium-Doped Nano-Hydroxyapatite Composite Scaffold Promotes Angiogenesis and Bone Regeneration in the Repair of Glucocorticoids-Induced Osteonecrosis of the Femoral Head. Biomed. Mater. 2021, 16, 065012. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Song, P.; Pei, X.; Sun, H.; Wu, L.; Zhou, C.; Wang, K.; Fan, Y.; Zhang, X. 3D printed bone tissue regenerative pla/ha scaffolds with comprehensive performance optimizations. Mater. Des. 2021, 201, 109490. [Google Scholar] [CrossRef]
- Enwemeka, C.S.; Parker, J.C.; Dowdy, D.S.; Harkness, E.E.; Sanford, L.E.; Woodruff, L.D. The efficacy of low-power lasers in tissue repair and pain control: A meta-analysis study. Photomed. Laser Surg. 2004, 22, 323–329. [Google Scholar] [CrossRef]
- Hamblin, M.R.; Huang, Y.Y.; Sharma, S.K.; Carroll, J. Biphasic dose response in low level light therapy—An update. Dose Response 2011, 9, 602–618. [Google Scholar] [CrossRef]
- Biolonv, P.B.; Karu, T. Primary and secondary mechanisms of action of visible to near-ir radiation on cells. J. Photochem. Photobiol. B 1999, 49, 1–17. [Google Scholar] [CrossRef]
- Hamblin, M.R.; Demidova, T.N. Mechanisms of low level light therapy. In Proceedings of the Mechanisms for Low-Light Therapy; The International Society for Optical Engineering: Bellingham, WA, USA, 2006; Volume 6140, p. 614001. [Google Scholar] [CrossRef]
- Barolet, D.; Boucher, A. Prophylactic low-level light therapy for the treatment of hypertrophic scars and keloids: A case series. Lasers Surg. Med. 2010, 42, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Bjordal, J.M. A systematic review of low-level laser therapy with location-specific doses for pain from chronic joint disorders. Aust. J. Physiother. 2006, 52, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Posten, W.; Wrone, D.A.; Dover, J.S.; Arndt, K.A.; Silapunt, S.; Alam, M. Low-level laser therapy for wound healing: Mechanism and efficacy. Dermatol. Surg. 2006, 31, 334–340. [Google Scholar] [CrossRef]
- Baxter, G.D. Therapeutic Lasers: Theory and Practice, 1st ed.; Laser Therapy in Clinical Practice; Churchill Livingstone: London, UK, 1994; ISBN 10 0443052433. [Google Scholar]
Biomaterial | Target Tissue Bone Sites | Subject | Laser Type | Laser Specifications | Duration | Limitations | Results | References |
---|---|---|---|---|---|---|---|---|
CaHA Crystals | Joints of the hind limbs | Female Suquia rats, ≈0.44 lb | He-Ne (632.8 nm) l | 6 mW, energy density 8 J/cm2, direct use | Daily laser irradiation for 21 days | Limited model for replicating humans | PBM matched diclofenac in acute arthritis and excelled in chronic cases. | Soriano et al., 2006 [29] |
Biphasic calcium phosphate (CaHA + β-tricalcium phosphate) | Femur | Male and female Wistar rats, ≈0.66 lb | Low-intensity laser (LPBM—λ 830 nm) | 40 mW; continuous, spot size 0.6 mm; dose per point: 4 J/cm2; dose per session: 16 J/cm2; total dose: 112 J/cm2 | Repeated 15 and 30 days | Preliminary results; difficulty in understanding the precise mechanism of biomodulation | PBM boosted bone repair and GBR with CaHA improved early healing. | Pinheiro et al., 2009 [16] |
Biphasic calcium phosphate (CaHA + β-tricalcium phosphate) | Femur | Female Wistar rats | Gallium-aluminum-arsenide diode laser, 904 nm | 100 mW, 5 J/cm2, total dose 20 J/cm2 | 3 times a week for 8 weeks | Prolonged exposure to smoke, limited LLLT protocols | Smoke impairs osseointegration; LLLT and HA limited efficacy. | Franco et al., 2013 [30] |
Biphasic calcium phosphate | Calvaria | Male Wistar rats, ≈0.66 lb | Diode laser, 808 nm | 0.1 W, 4 J/cm2 per session | 3 days a week, for 2 weeks | Short period, lack of clinical validation. | Laser and ozone therapies increased bone formation; ozone was more effective. | Kazancioglu et al., 2013 [31] |
Biphasic calcium phosphate (CaHA + β-tricalcium phosphate) | Tibia | Male adult New Zealand rabbits with a mean, 4.4 lb | Infrared laser (λ 780 nm) | 50 mW. continuous Wave (CW), spot size 0.5 cm2. Dose 16 J/cm2 (4 × 4 J/cm2 per point) | Alternate days for 2 weeks | Preliminary results require clinical validation. Short evaluation period (30 days) | CaHA and PBM improved bone healing by increasing CaHA deposition and reducing organic components. | Pinheiro et al., 2013 [32] |
Biphasic calcium phosphate (CaHA + β-tricalcium phosphate) | Tibia | Wistar rats, 1.10 lb | Infrared Light Emitting Diode (LED) (λ 850 ± 10 nm). | 150 mW, continuous wave, spot size 0.5 cm2. 16 J/cm2 per application | Every 48 h for 15 days | Anemia affected graft integration; further research on inflammation needed. Short evaluation period (30 days). | LED phototherapy enhanced CaHA and improved bone repair in anemic conditions. | de Castro et al., 2014 [33] |
Biphasic calcium phosphate (CaHA + β-tricalcium phosphate) | Femur | Male Wistar rats, ≈0.66 lb | Diode laser (λ 780 nm) | 70 mW; continuous, spot size 0.4 cm2; dose/session 20 J/cm2; total dose 140 J/cm2 | 48-h intervals for two weeks | Non-critical size defect; limited to preclinical model | The Laser + Biomaterial group showed improved bone healing. | Soares et al., 2014 [13] |
Synthetic biphasic microgranular CaHA (70% HA, 30% β-tricalcium phosphate) | Tibia | Male New Zealand rabbits, ≈4.4 lb | Infrared laser (λ780 nm) | 50 mW; continuous, spot size: 0.5 cm2; Dose/session: 16 J/cm2; Total dose: 112 J/cm2 | 48-h intervals for two weeks | Short observation period; limited to a rabbit model. | Laser with graft and GBR improved bone repair in irradiated groups. | Pinheiro et al., 2014 [34] |
Synthetic biphasic CaHA (70% HA, 30% β-tricalcium phosphate) | Tibia | Male Wistar rats, ≈0.66 lb | Diode laser (λ 780 nm) | 70 mW; continuous, spot size 0.4 cm2; dose/session 20 J/cm2; total dose 140 J/cm2 | 48-h intervals for two weeks | Non-critical size defect; findings need further validation in clinical settings. | Laser and graft with GBR enhanced bone repair in irradiated groups. | Soares et al., 2014 [35] |
Synthetic biphasic microgranular CaHA (70% CaHA, 30% β-tricalcium phosphate) | Femur | Male Wistar rats, ≈0.66 lb | Diode Laser (780 nm) or LED (850 nm) | Laser: 70 mW, spot size 0.4 cm2; LED: 150 mW, spot size 0.5 cm2; Dose/session: 20 J/cm2; Total dose: 140 J/cm2 | 48-h intervals for two weeks | Non-critical size defect; results specific to preclinical model | Synthetic CaHA + Beta-TCP graft improved bone repair, with or without Laser/LED. | Pinheiro et al., 2014 [36] |
Biphasic calcium phosphate (CaHA + β-tricalcium phosphate) | Femur | Male Wistar albino rats, ≈0.55 lb | Gallium-aluminum-arsenide diode laser (λ 810 ± 10 nm) | 300 mW, Point irradiation: 12 J/cm2 Mode: Not specified | 3 times per week for 4 weeks | No significant differences between ozone and LLLT; further studies are needed. | At week 8, the PBM group showed increased osteocalcin and bone formation. Further studies are needed. | Hilal et al., 2015 [37] |
Synthetic biphasic microgranular CaHA (70% HA, 30% β-tricalcium phosphate) | Tibia | Male Wistar rats, ≈0.66 lb | Diode laser (λ 780 nm); LED phototherapy (λ 850 ± 10 nm) | 70 mW, 20 J/cm2/session, applied at 4 points (5.1 J/cm2/point). LED: 150 mW, 20 J/cm2, applied at 1 point over the defect. | Every 48 h for 2 weeks; evaluation at 15 and 30 days post-treatment. | Short follow-up (30 days); LED phototherapy less effective in bone maturation. | PBM enhanced bone repair in grafted defects, boosting CaHA deposition. | Pinheiro et al., 2017 [38] |
Combination of 50% autogenous bone (AB) and 50% CaHA | Maxillary sinus floor bone | Humans, 48.12 years (20–60 years). Exclusion: smokers, uncontrolled systemic/local issues, prior head/neck radiotherapy. | Gallium-Aluminum-Arsenide (GaAlAs) laser (λ 830 nm) | 40 mW, continuous mode irradiation at 4 points around the sinus cavity (5.32 J/point, 0.57 W/cm2). | No further applications during the 6-month follow-up. | Small sample size; results limited to 6 months; no subjective clinical data (e.g., postoperative comfort). | No differences in vital bone or immunohistochemistry; PBM sped up remodeling but not formation. | Theodoro et al., 2018 [19] |
Coagulum, deproteinized bovine bone, and biphasic ceramic | Mandibular ramus region | Male Holtzman rats (Rattus norvegicus), ≈0.55 lb | Gallium-Aluminum-Arsenide (GaAlAs) laser (λ 808 nm) | 100 mW, 1 J/point, 4 J/session, total 28 J. Beam diameter: 600 µm, fluence: ~354 J/cm2 | Every 48 h for 13 days | Mechanical properties of repaired tissue not assessed; long-term effects beyond 90 days not evaluated. | PBM increased tissue mineralization and bone formation, especially after 90 days. | De Oliveira et al., 2018 [15] |
Calcium phosphate | Tibia | Male New Zealand rabbits, ≈7.7 lb | GaAlAs, 808 nm, infrared laser | 100 mW, continuous, 4 J/cm2 per point, 16 J/cm2 per session, total dose 122 J/cm2 | Immediately after surgery, every 48 h for 7 days. | Animal model, short period (6 weeks), limited generalization. | CaP + LLLT accelerates initial osseointegration and improves fixation. | Do Prado et al., 2018 [39] |
Bovine bone graft | Calvaria | Wistar rats, average weight ≈0.66 lb | Gallium-Aluminum-Arsenide (GaAlAs) laser (808 nm) | 450 mW, continuous, 18.9 J per session Fluence: 24.075 J/cm2 | Every 48 h for 14, 21, and 30 days | Small sample size; short-term effects; possible xenograft shielding of laser; results specific to rat calvarial defects. | PBM was most effective at 14 days, with reduced effects by 21 and 30 days | Luca et al., 2020 [40] |
Deproteinized bovine bone and biphasic ceramic composed of CaHA and β-tricalcium phosphate | Tibia | Male Holtzman rats, ≈0.66 lb | Gallium-Aluminum-Arsenide (GaAlAs) laser (808 nm) | 100 mW, ~0.60 mm diameter, continuous wave, 1 J per point, 4 points irradiated per session (total 4 J/session). Fluence: ~354 J/cm2 per point. | Every 48 h for 13 days | Laser penetration is limited by tissue thickness; LLLT timing and osseointegration need optimization. | PBM enhanced implant osseointegration in grafted areas, boosting bone formation and maturation proteins. | De Oliveira et al., 2020 [41] |
Biphasic calcium phosphate | Calvaria | Male Wistar rats, 0.55 lb | GaAlAs (gallium-aluminum arsenide), 830 nm | 30 mW; continuous, dose per point 6.2 J/cm2, dose per session 24.8J/cm2 | Immediately after surgery and three times a week until euthanasia. | The interaction between PBM and the materials was not thoroughly investigated. | PBM and biphasic calcium phosphate favored bone regeneration. | Della Colleta et al., 2021 [42] |
Biphasic calcium phosphate | Calvarial Periosteum | -Human BMSCs and human umbilical vein endothelial cells (HUVECs) -C57BL/6 female mice | GaAlAs, 808 nm | -In vitro: 40 mW; 4.5 J/cm2; 40 mW; dose per point 1.8 J/cm2, irradiation area 4 cm2 | Immediately after surgery, every day until euthanasia | No analysis of long-term clinical viability. | PBM improved angiogenesis and osteogenesis. | Bai et al., 2021 [43] |
100% pure hydroxyapatite | Dental alveolus (mandible) | Male Wistar rats, 0.66 lb | LED (850 nm) | 100 mW, continuous, 2.8 cm2, 60 s of exposure, 35.7 mW/cm2 of irradiance, total: 48 J | 15 days of irradiation with evaluations at 15 and 30 days | LED and biomaterial protocols need standardization for consistent, safe bone repair use. | LED and biomaterial improved bone maturation, density, and inflammation control. | Dalapria et al., 2022 [44] |
Hydroxyapatite/tricalcium phosphate (BCP) and heterologous fibrin biopolymer | Calvaria | Male Wistar rats, ≈0.55 lb | GaAlAs laser (830 nm) | 30 mW, continuous, 258.6 mW/cm2, energy density 6.2 J/cm2, beam area 0.116 cm2, total 2.9 J | 3 times per week until euthanasia at 14 and 42 days | Further studies are needed optimize PBM parameters for effective bone repair with biomaterials. | PBM, especially with biomaterials, enhanced bone formation, indicating a synergistic effect in repair. | Reis et al., 2022 [10] |
Biphasic calcium phosphate | Calvaria | Male Wistar rats, 0.66 lb | GaAlAs, 660 nm | 30 mW, continuous, total dose 45 J/cm2 | Single trans-surgical application | No analysis of long-term clinical viability. | PBM alone accelerated bone regeneration. | De Marco et al., 2022 [45] |
Culture of human dental pulp stem cells (hDPSCs) with biphasic calcium phosphate | Subcutaneous implant in nude mice | Human dental pulp stem cells | Blue light and infrared LEDs LED (405 nm) NIR laser wavelength (810 nm) | Blue light: 1.2, 3.6, 12.0 mJ/cm2; NIR light: 87.8, 85.4, 77.0 mJ/cm2 for respective groups | Daily radiation for 5 weeks | Requires optimization of blue light dose to avoid cytotoxic effects while maximizing osteogenesis | Blue light with NIR boosted osteogenic differentiation, alkaline phosphatase, and calcium deposition more than NIR alone. | Kim et al., 2023 [46] |
Biphasic calcium phosphate | Femur | Pomerian, ≈7.2 lb | Not specified | Not specified | Not specified | Exclusive use of a single clinical case | Accelerated bone union and vascularization. | Cho et al., 2023 [47] |
Nano-amorphous calcium phosphate | Tibia | Male New Zealand rabbits, ≈7.7 lb | Diode laser, 650 nm | 150 mW, continuous, 12 J/cm2 | 7 sessions spread over 2 weeks | Graft barrier may have reduced laser effectiveness. | Isolated laser increased bone density and healing. | Allam et al., 2024 [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, C.P.C.; Cruel, P.T.E.; Buchaim, D.V.; da Cunha, M.R.; Ervolino, E.; Issa, J.P.M.; Miglino, M.A.; Buchaim, R.L. Calcium Hydroxyapatite Combined with Photobiomodulation for Bone Tissue Repair: A Systematic Review. Materials 2025, 18, 1120. https://doi.org/10.3390/ma18051120
dos Santos CPC, Cruel PTE, Buchaim DV, da Cunha MR, Ervolino E, Issa JPM, Miglino MA, Buchaim RL. Calcium Hydroxyapatite Combined with Photobiomodulation for Bone Tissue Repair: A Systematic Review. Materials. 2025; 18(5):1120. https://doi.org/10.3390/ma18051120
Chicago/Turabian Styledos Santos, Camila Pascoal Correia, Paola Tatiana Espinosa Cruel, Daniela Vieira Buchaim, Marcelo Rodrigues da Cunha, Edilson Ervolino, João Paulo Mardegan Issa, Maria Angelica Miglino, and Rogerio Leone Buchaim. 2025. "Calcium Hydroxyapatite Combined with Photobiomodulation for Bone Tissue Repair: A Systematic Review" Materials 18, no. 5: 1120. https://doi.org/10.3390/ma18051120
APA Styledos Santos, C. P. C., Cruel, P. T. E., Buchaim, D. V., da Cunha, M. R., Ervolino, E., Issa, J. P. M., Miglino, M. A., & Buchaim, R. L. (2025). Calcium Hydroxyapatite Combined with Photobiomodulation for Bone Tissue Repair: A Systematic Review. Materials, 18(5), 1120. https://doi.org/10.3390/ma18051120