Comparison of Three Methods of Measuring Residual Stresses in Welded Joints of High-Strength Steel S960QL
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Welding
2.2. The Tensile Test
2.3. Residual Stress Measurement
- (1)
- The magnetic method (no surface damage except in in the weld metal and partially in HAZ).
- (2)
- The XRD method (minimal surface damage due to electropolishing of the surface with NaCl).
- (3)
- The hole drilling method (drilling a ϕ 1.72 mm hole to a depth of 1 mm, which prevented any repetition of measurements at the same measuring point).
2.3.1. The Magnetic Method—MAS
2.3.2. The X-Ray Diffraction Method—XRD
2.3.3. The Hole Drilling Method—HD
2.4. Optical Microscopy
3. Results
3.1. Tensile Test Results
3.2. Results of the Magnetic Method
3.3. Results of the X-Ray Diffraction Method
3.4. Results of the Hole Drilling Method
3.5. Microstructure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sisodia, R.P.S.; Gáspár, M. An Approach to Assessing S960QL Steel Welded Joints Using EBW and GMAW. Metals 2022, 12, 678. [Google Scholar] [CrossRef]
- Lukács, J.; Gáspár, M. Fatigue crack propagation limit curves for high strength steels and their application for engineering critical assessment calculations. Adv. Mater. Res. 2014, 891–892, 563–568. [Google Scholar] [CrossRef]
- Sága, M.; Blatnická, M.; Blatnicky, M.; Dizo, J.; Gerlici, J. Research of the Fatigue Life of Welded Joints of High Strength Steel S960QL Created Using Laser and Electron Beams. Materials 2020, 13, 2539. [Google Scholar] [CrossRef] [PubMed]
- Hensel, J.; Nitschke-Pagel, T.; Dilger, K.; Schönborn, S. Effects of Residual Stresses on the Fatigue Performance of Welded Steels with Longitudinal Stiffeners. Mater. Sci. Forum 2014, 768–769, 636–643. [Google Scholar] [CrossRef]
- Schaupp, T.; Schroepfer, D.; Kromm, A.; Kannengiesser, T. Welding Residual Stress Distribution of Quenched and Tempered and Thermo-Mechanically Hot Rolled High Strength Steels. Adv. Mater. Res. 2014, 996, 457–462. [Google Scholar] [CrossRef]
- Türker, M. The Effect of Welding Parameters on Microstructural and Mechanical Properties of HSLA S960QL Type Steel with Submerged Arc Welding. J. Nat. Appl. Sci. 2017, 21, 673–682. [Google Scholar] [CrossRef]
- Gáspár, M.; Balogh, A. GMAW experiments for advanced (Q+T) high strength steels. Prod. Process. Syst. 2013, 6, 9–24. [Google Scholar]
- Madej, K.; Jachym, R. Welding of High Strength Toughened Structural Steel S960QL. Mater. Sci. Weld. Technol. 2017, 2017, 6–16. [Google Scholar] [CrossRef]
- Schubnell, J.; Carl, E.; Farajian, M.; Gkatzogiannis, S.; Knödel, P.; Ummenhofer, T.; Wimpory, R.C.; Eslami, H. Residual stress relaxation in HFMI-treated fillet welds after single overload peaks. Weld. World 2020, 64, 1107–1117. [Google Scholar] [CrossRef]
- SSAB AB. STRENX® Performace Steel—STRENX® 960 E/F. Available online: https://www.ssab.com/api/sitecore/Datasheet/Get?key=59e738903b6247a3b68df07d49f40239_en (accessed on 27 January 2025).
- Thyssenkrupp Steel Europe AG. S960QL/1.8933. Available online: https://www.thyssenkrupp-steel.com/media/content_1/publikationen/produktinformationen/gbq/april_2021/gbq-0055-s960ql-tkse-cpr-01042021.pdf (accessed on 27 January 2025).
- Goss, C.; Marecki, P.; Grzelak, K. Fatigue life of S960QL steel welded joints. Biul. WAT 2014, 63, 13–19. [Google Scholar] [CrossRef]
- Hensel, J.; Nitschke-Pagel, T.; Rebelo-Kornmeier, J.; Dilger, K. Experimental investigation of fatigue crack propagation in residual stress fields. Procedia Eng. 2015, 133, 244–254. [Google Scholar] [CrossRef]
- Garstka, T.; Szota, P.; Mroz, S.; Stradomski, G.; Grobarczyk, J.; Gryczkowski, R. Calibration Method of Measuring Heads for Testing Residual Stresses in Sheet Metal Using the Barkhausen Method. Materials 2024, 17, 4584. [Google Scholar] [CrossRef]
- Withers, P.J.; Bhadeshia, H.K.D.H. Residual stress. Part 1—Measurement techniques. Mater. Sci. Technol. 2001, 17, 355–365. [Google Scholar] [CrossRef]
- Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G. Methods of measuring residual stresses in components. Mater. Des. 2012, 35, 572–588. [Google Scholar] [CrossRef]
- Salvati, E.; Korsunsky, A.M. An analysis of macro- and micro-scale residual stresses of Type I, II and III using FIB-DIC micro-ring-core milling and crystal plasticity FE modelling. Int. J. Plast. 2017, 98, 123–138. [Google Scholar] [CrossRef]
- Glaissa, M.A.A.; Asmael, M.; Zeeshan, Q. Recent Applications of Residual Stress Measurement Techniques for FSW Joints: A Review. J. Kejuruter. 2020, 32, 357–371. [Google Scholar] [CrossRef]
- Arabul, E.; Lunt, A.J.G. A Novel Low-Cost DIC-Based Residual Stress Measurement Device. Appl. Sci. 2022, 12, 7233. [Google Scholar] [CrossRef]
- Kandil, F.A.; Lord, J.D.; Fry, A.T.; Grant, P.V. A Review of Residual Stress Measurement Methods—A Guide to Technique Selection; NFL Report MATC(A)O4; National Physical Laboratory,Teddington—Materials Centre: Teddington, UK, 2001; pp. 1–42. [Google Scholar]
- Guo, J.; Fu, H.Y.; Pan, B.; Kang, R.K. Recent progress of residual stress measurement methods: A review. Chin. J. Aeronaut. 2021, 34, 54–78. [Google Scholar] [CrossRef]
- Aminforoughi, B.; Degener, S.; Richter, J.; Liehr, A.; Niendorf, T. A Novel Approach to Robustly Determine Residual Stress in Additively Manufactured Microstructures Using Synchrotron Radiation. Adv. Eng. Mater. 2021, 23, 2100184. [Google Scholar] [CrossRef]
- Pardowska, A.M.; Price, J.W.H.; Finlayson, T.R. Poređenje tehnika merenja zaostalih napona primenjljivih na zavarenim čeličnim delovima, Comparison of Residual Stress Measurements Techniques Applicable to the Steel Welded Components (in translation). Zavar. I Zavarene Konstr. 2009, 54, 119–127. [Google Scholar]
- Rahimi, S.; Violatos, I. Comparison Between Surface and Near-Surface Residual Stress Measurement Techniques Using a Standard Four-Point-Bend Specimen. Exp. Mech. 2022, 62, 223–236. [Google Scholar] [CrossRef]
- Schajer, G.S.; Prime, M.B.; Withers, P.J. Why Is It So Challenging to Measure Residual Stresses? Exp. Mech. 2022, 62, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- ASTM E837-20; Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method. ASTM International: West Conshohocken, PA, USA, 2020; pp. 1–16.
- Deveci, M. Stresstech Bulletin 12: Measurement Methods of Residual Stresses. Available online: https://www.stresstech.com/stresstech-bulletin-12-measurement-methods-of-residual-stresses/ (accessed on 23 January 2025).
- Yang, Y.P.; Dull, R.; Huang, T.D.; Rucker, H.; Harbison, M.; Scholler, S.; Zhang, W.; Semple, J. Development of Weld Residual Stress Measurement Method for Primed Steels. In Proceedings of the Asme Pressure Vessels and Piping Conference, Waikoloa, HI, USA, 16–20 July 2017; Volume 6b. [Google Scholar]
- Wang, Z.Y.; Zhou, H.B.; Zhou, W.W.; Li, Z.Q.; Ju, X.; Peng, Y.C.; Duan, J.A. Experimental and numerical investigation of residual stress and post-weld-shift of coaxial laser diodes during the optoelectronic packaging process. Weld. World 2023, 67, 63–76. [Google Scholar] [CrossRef]
- Cooke, K.; Cozza, R.C. (Eds.) Engineering Principles-Welding and Residual Stresses; IntechOpen: Rijeka, Croatia, 2022; p. 338. [Google Scholar]
- Schajer, G.S.; Whitehead, P.S. Hole Drilling and Ring Coring. Practical Residual Stress Measurement Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 29–64. [Google Scholar]
- EN 15305:2008; Non-Destructive Testing—Test Method for Residual Stress Analysis by X-Ray Diffraction. European Committee for Standardization (CEN): Brussels, Belgium, 2008; pp. 1–85.
- ASTM E2860-20; Standard Test Method for Residual Stress Measurement by X-Ray Diffraction for Bearing Steels. ASTM International: West Conshohocken, PA, USA, 2020; pp. 1–19.
- Yang, Y.P.; Huang, T.D.; Rucker, H.J.; Fisher, C.R.; Zhang, W.; Harbison, M.; Scholler, S.T.; Semple, J.K.; Dull, R. Weld Residual Stress Measurement Using Portable XRD Equipment in a Shipyard Environment. J. Ship Prod. Des. 2019, 35, 231–240. [Google Scholar] [CrossRef]
- Vishay Precision Group, Micro-Measurements. Technical Note TN-503-6: Measurement of Residual Stresses by the Hole-Drilling Strain Gage Method; Vishay Precision Group, Micro-Measurements: Raleigh, NC, USA, 2010; pp. 19–33. [Google Scholar]
- Belassel, M. Residual Stress Measurement using X-Ray Diffraction Techniques, Guidelines and Normative Standards. SAE Int. J. Mater. Manuf. 2012, 5, 352–356. [Google Scholar] [CrossRef]
- Baig, M.; Khan, S.M.A.; El Rayes, M.M.; Seikh, A.H. Evaluation of residual stresses present in spirally welded API grade pipeline steel using the hole drilling method. Mater. Test. 2017, 59, 258–264. [Google Scholar] [CrossRef]
- Jo, W.; Woo, I.; Mikami, Y.; An, G. Residual Stress Characteristics in Spot Weld Joints of High-Strength Steel: Influence of Welding Parameters. Appl. Sci. 2024, 14, 11971. [Google Scholar] [CrossRef]
- Wang, L.T.; Xu, C.J.; Feng, L.B.; Wang, W.J. A Survey of the Magnetic Anisotropy Detection Technology of Ferromagnetic Materials Based on Magnetic Barkhausen Noise. Sensors 2024, 24, 7587. [Google Scholar] [CrossRef]
- Besevic, M. Experimental investigation of residual stresses in cold formed steel sections. Steel Compos. Struct. 2012, 12, 465–489. [Google Scholar] [CrossRef]
- Buttle, D.J.; Moorthy, V.; Shaq, B. A National Measurement Good Practice Guide No. 88—Determination of Residual Stresses by Magnetic Methods; National Physical Laboratory: Teddington, UK, 2006; pp. 1–52. [Google Scholar]
- Islamović, F.; Gačo, D.; Hodžić, D.; Bajramović, E. Determination of Stress-Strain State on Elements of Cylindrical Tank Structure. In Proceedings of the 9th Scientific Conference on Defensive Technologies OTEH 2020, Belgrade, Serbia, 15–16 October 2020; pp. 429–435. [Google Scholar]
- Suominen, L.; Khurshid, M.; Parantainen, J. Residual stresses in welded components following post-weld treatment methods. Procedia Eng. 2013, 66, 181–191. [Google Scholar] [CrossRef]
- Raghawendra, P.S.S.; Gáspár, M.; Sepsi, M.; Mertinger, V. Dataset on full width at half maximum of residual stress measurement of electron beam welded high strength structural steels (S960QL and S960M) by X-ray diffraction method. Data Brief 2021, 38, 107341. [Google Scholar]
- EN 10025-6:2019+A1:2023; Hot Rolled Products of Structural Steels—Part 6: Technical Delivery Conditions for Flat Products of High Yield Strength Structural Steels in the Quenched and Tempered Condition. European Committee for Standardization (CEN): Brussels, Belgium, 2023; pp. 1–28.
- EN ISO 4063:2023; Welding, Brazing, Soldering and Cutting—Nomenclature of Processes and Reference Numbers. European Committee for Standardization (CEN): Brussels, Belgium, 2023; pp. 1–25.
- ISO 16834:2012; Welding Consumables—Wire Electrodes, Wires, Rods and Deposits for Gas Shielded ARC welding of High Strength Steels—Classification. International Organization for Standardization: Geneva, Switzerland, 2012; pp. 1–14.
- EN 1011-2:2001; Welding—Recommendations for Welding of Metallic Materials—Part 2: Arc Welding of Ferritic Steels. The European Committee for Standardization (CEN): Brussels, Belgium, 2001; pp. 1–57.
- EN ISO 6892-1:2019; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. European Committee for Standardization (CEN): Brussels, Belgium, 2019; pp. 1–87.
- EN ISO 4136:2022; Destructive Tests on Welds in Metallic Materials—Transverse Tensile Test. European Committee for Standardization (CEN): Brussels, Belgium, 2022; pp. 1–17.
Element—Mass Fraction/wt. % | ||||
---|---|---|---|---|
C—0.174 | B—0.0027 | Cr—0.623 | N—0.0015 | Ti—0.002 |
Si—0.297 | P—0.007 | Cu—0.043 | Nb—0.027 | V—0.002 |
Mn—1.070 | S—0.0017 | Mo—0.612 | Ni—0.052 | Zr—0.001 |
Thickness/mm | Rp0.2/MPa | Rm/MPa | A/% | KV/J |
---|---|---|---|---|
15.0 | 1014 | 1049 | 13 | 150, 153, 156 (−40 °C, long.) |
1024 | 1060 | 13 | 45, 43, 49 (−40 °C, tran.) |
Element—Mass Fraction/wt. % | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | P | S | Cr | Mo | Ni | V | Cu | Ti | Al | Zr |
0.09 | 0.78 | 1.79 | 0.008 | 0.008 | 0.36 | 0.70 | 2.15 | <0.01 | 0.04 | 0.06 | <0.01 | <0.01 |
Welding Process: MAG − 135 According to EN ISO 4063:23; Filler Wire Diameter ϕ = 1 mm; Current DC+ | |||||||
---|---|---|---|---|---|---|---|
Run | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Welding current/A | 208 | 230 | 240 | 240 | 252 | 258 | 266 |
Welding voltage/V | 27.5 | 26.5 | 26.8 | 26.8 | 28 | 29 | 30 |
Wire speed/m∙min−1 | 10.7 | 11.5 | 12 | 12 | 14 | 14.3 | 16 |
Travel speed/cm∙min−1 | 40 | 38 | 38 | 38 | 35 | 34 | 30 |
Heat input/kJ∙cm−1 | 6.8 | 7.6 | 8.1 | 8.1 | 9.6 | 10.5 | 12.7 |
Shielding gas/l∙min−1 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Preheating/°C | 100 | - | - | - | - | - | - |
Max. interpass T/°C | - | 150 | 150 | 150 | 150 | 150 | 150 |
Location | X/mm | Y/mm | Area in the Weld Joint * |
---|---|---|---|
M1 | 350 | −120 | BM |
M2 | 350 | −70 | BM |
M3 | 350 | −30 | BM |
M4 | 350 | −14 | HAZ |
M5 | 350 | 0 | WM |
M6 | 350 | +14 | HAZ |
M7 | 350 | +30 | BM |
M8 | 350 | +70 | BM |
M9 | 350 | +120 | BM |
Specimen | Measured Ultimate Tensile Strength Rm/MPa | Reduction in Area Z/% | Ultimate Tensile Strength of the Base Metal Rmp/MPa |
---|---|---|---|
TT-1 | 1025 | 39 | 980–1150 * |
TT-2 | 1038 | 33 | 980–1150 * |
Measurement Point | Signal σ1–σ2/mV | Subtraction of Principal Stresses σ1–σ2/MPa | |
---|---|---|---|
M9 | BM | 57.6 | 185 |
M8 | BM | 39.7 | 127 |
M7 | BM | 44.0 | 141 |
M6 | HAZ | 152.1 | 531 |
M5 | WM | 29.4 | 93 |
M4 | HAZ | 181.4 | 658 |
M3 | BM | 46.6 | 149 |
M2 | BM | 7.9 | 25 |
M1 | BM | −18.6 | −59 |
Measurement Point | Residual Stresses in Longitudinal Direction σlong/MPa | Residual Stresses in Transverse Direction σtran/MPa | Subtraction of Long. and Tran. Residual Stresses σlong–σtran/MPa | |
---|---|---|---|---|
M9 | BM | −130 | −85 | −45 |
M8 | BM | 25 | −80 | 105 |
M7 | BM | −57 | −7 | −50 |
M6 | HAZ | 52 | −19 | 71 |
M5 | WM | 53 | 119 | −66 |
M4 | HAZ | 186 | −415 | 601 |
M3 | BM | −22 | −31 | 9 |
M2 | BM | −125 | −413 | 288 |
M1 | BM | −349 | −228 | −121 |
Measurement Point | Principal Stress σ1/MPa | Principal Stress σ2/MPa | Huber–Hencky–Von Mises Stresses σHH/MPa | Angle of Principal Stresses β/° | Longitudinal Stress σlong/MPa | Transverse Stress σtran/MPa | Shear Stress τxy/MPa | Subtraction of Long. and Tran. Stresses σlong–σtran/MPa | |
---|---|---|---|---|---|---|---|---|---|
M1 | BM | −41 | 147 | 153 | −26.2 | −4 | 110 | 57 | −114 |
M2 | BM | −162 | −42 | 167 | 49.8 | −92 | −112 | −10 | 20 |
M3 | BM | −55 | 98 | 112 | −36.3 | −1 | 44 | 22 | −45 |
M4 | HAZ | 136 | 553 | 569 | −69.4 | 501 | 188 | −156 | 313 |
M5 | WM | −90 | 176 | 198 | 85.6 | 175 | −88 | −132 | 263 |
M6 | HAZ | 93 | 644 | 651 | −74.8 | 607 | 131 | −238 | 476 |
M7 | BM | 41 | 97 | 105 | 59.5 | 82 | 55 | −13 | 27 |
M8 | BM | −162 | −42 | 167 | 49.8 | −92 | −112 | −10 | 20 |
M9 | BM | −339 | −19 | 153 | 65.9 | −72 | −285 | −106 | 213 |
Method | Type of Residual Stress | Advantages of the Method | Disadvantages of the Method |
---|---|---|---|
MAS | type I + type II + type III + type IV |
|
|
XRD | type I + type II |
|
|
HD | type I |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manjgo, M.; Lojen, G.; Gubeljak, N.; Karpe, B.; Vuherer, T. Comparison of Three Methods of Measuring Residual Stresses in Welded Joints of High-Strength Steel S960QL. Materials 2025, 18, 950. https://doi.org/10.3390/ma18050950
Manjgo M, Lojen G, Gubeljak N, Karpe B, Vuherer T. Comparison of Three Methods of Measuring Residual Stresses in Welded Joints of High-Strength Steel S960QL. Materials. 2025; 18(5):950. https://doi.org/10.3390/ma18050950
Chicago/Turabian StyleManjgo, Mirza, Gorazd Lojen, Nenad Gubeljak, Blaž Karpe, and Tomaž Vuherer. 2025. "Comparison of Three Methods of Measuring Residual Stresses in Welded Joints of High-Strength Steel S960QL" Materials 18, no. 5: 950. https://doi.org/10.3390/ma18050950
APA StyleManjgo, M., Lojen, G., Gubeljak, N., Karpe, B., & Vuherer, T. (2025). Comparison of Three Methods of Measuring Residual Stresses in Welded Joints of High-Strength Steel S960QL. Materials, 18(5), 950. https://doi.org/10.3390/ma18050950