Innovative Short Process of Preparation and Nitriding of Porous 316L Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Research Methods
3. Determination of Nitriding Process
- : nitrogen partial pressure
- : nitrogen atom separation activation energy
- kB: Boltzmann’s constant
- T: absolute temperature (K)
4. Effects of Nitriding on Properties of Porous 316L Stainless Steel
4.1. Phase Composition of Nitrided Samples
4.2. Forms of Nitrogen Presence
4.3. Microscopic Morphology of Nitrided Samples
5. Mechanical Properties of Porous 316L Stainless Steel After Nitriding
5.1. Vickers Hardness
5.2. Compressive Strength
5.3. Electrochemical Analysis of Nitrided Specimens
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Jubouri, S.M.; Al-Batty, S.; Al-Hamd, R.K.S.; Sims, R.; Hakami, M.W.; Sk, M.H. Sustainable environment through using porous materials: A review on wastewater treatment. Asia-Pac. J. Chem. Eng. 2023, 18, e2941. [Google Scholar] [CrossRef]
- Vinodh, R.; Gopi, C.V.V.M.; Kummara, V.G.R.; Atchudan, R.; Ahamad, T.; Sambasivam, S.; Yi, M.; Obaidat, I.M.; Kim, H.-J. A review on porous carbon electrode material derived from hypercross-linked polymers for supercapacitor applications. J. Energy Storage 2020, 32, 101831. [Google Scholar] [CrossRef]
- Kujawa, J.; Głodek, M.; Koter, I.; Li, G.; Knozowska, K.; Kujawski, W. Bioconjugation Strategy for Ceramic Membranes Decorated with Candida Antarctica Lipase B—Impact of Immobilization Process on Material Features. Materials 2022, 15, 671. [Google Scholar] [CrossRef]
- Rastegar, N.; Ershad-Langroudi, A.; Parsimehr, H.; Moradi, G. Sound-absorbing porous materials: A review on polyurethane-based foams. Iran. Polym. J. 2022, 31, 83–105. [Google Scholar] [CrossRef]
- Wanasinghe, D.; Aslani, F. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Compos. Part B Eng. 2019, 176, 107207. [Google Scholar] [CrossRef]
- Skotniczny, G.; Kozioł, M.; Korol, J.; Poneta, P. Production and Evaluation of Synthetic Lightweight Aggregates Based on Mixture of Fluidized Bed Fly Ash and Post-Mining Residues. Materials 2022, 15, 660. [Google Scholar] [CrossRef]
- Shen, Y.-W.; Tsai, Y.-S.; Hsu, J.-T.; Shie, M.-Y.; Huang, H.-L.; Fuh, L.-J. Biomechanical Analyses of Porous Designs of 3D-Printed Titanium Implant for Mandibular Segmental Osteotomy Defects. Materials 2022, 15, 576. [Google Scholar] [CrossRef]
- Tadepalli, L.D.; Gosala, A.M.; Kondamuru, L.; Bairi, S.C.; Subbiah, R.; Singh, S.K. A review on effects of nitriding of AISI409 ferritic stainless steel. Mater. Today Proc. 2020, 26 Pt 2, 1014–1020. [Google Scholar] [CrossRef]
- Ceschini, L.; Lanzoni, E.; Sambogna, G.; Bordiga, V.; Schild, T. Tribological Behavior and Corrosion Resistance of Kolsterized AISI316L Austenitic Stainless Steel: Existing Applications in the Automotive Industry. J. ASTM Int. 2005, 3, 13884. [Google Scholar] [CrossRef]
- Riazi, H.; Ashrafizadeh, F.; Hosseini, S.R.; Ghomashchi, R. Influence of simultaneous aging and plasma nitriding on fatigue performance of 17-4 PH stainless steel. Mater. Sci. Eng. A 2017, 703, 262–269. [Google Scholar] [CrossRef]
- Borgioli, F.; Galvanetto, E.; Bacci, T. Surface modification of austenitic stainless steel by means of low pressure glow-discharge treatments with nitrogen. Coatings 2019, 9, 604. [Google Scholar] [CrossRef]
- Mani, S.P.; Rajendran, N. Corrosion and interfacial contact resistance behavior of electrochemically nitrided 316L SS bipolar plates for proton exchange membrane fuel cells. Energy 2017, 133, 1050–1062. [Google Scholar] [CrossRef]
- Xu, X.B.; Liu, P.S.; Chen, G.F.; Li, C.P. Sound Absorption Performance of Highly Porous Stainless Steel Foam with Reticular Structure. Met. Mater. Int. 2020, 27, 3316–3324. [Google Scholar] [CrossRef]
- Yang, K.; Wang, J.; Yang, B.J.; Tang, H.P. Fabrication of Industrial-Scale Porous Stainless Steel Membrane Tubes and Their Applications. Miner. Met. Mater. Soc. 2020, 72, 4576–4582. [Google Scholar] [CrossRef]
- Zhu, Y.; Lin, G.; Khonsari, M.; Zhang, J.; Yang, H. Material characterization and lubricating behaviors of porous stainless steel fabricated by selective laser melting. J. Mech. Work. Technol. 2018, 262, 41–52. [Google Scholar] [CrossRef]
- Fousová, M.; Kubásek, J.; Vojtěch, D.; Fojt, J.; Čapek, J. 3D printed porous stainless steel for potential use in medicine. IOP Conf. Ser. Mater. Sci. Eng 2017, 179, 012025. [Google Scholar] [CrossRef]
- Junior, J.S.d.R.; Brito, M.C.d.S.; de Oliveira, P.A.; Libório, M.S.; Monção, R.M.; Nunes, M.S.; Júnior, C.A.A.; Rossino, L.S.; Costa, T.H.d.C.; Feitor, M.C.; et al. Influence of Quenching and Tempering on the Tribological and Corrosion Behavior of Plasma-Nitrided Society of Automotive Engineers 52100. Steel Res. Int. 2024, 95, 2300512. [Google Scholar] [CrossRef]
- Babur, M.Z.; Iqbal, Z.; Shafiq, M.; Naz, M.Y.; Makhlouf, M.M. Hybrid TiN-CCPN coating of AISI-201 stainless steel by physical vapor deposition combined with cathodic cage plasma nitriding for improved tribological properties. J. Build. Eng. 2022, 45, 103512. [Google Scholar] [CrossRef]
- Ordonez, M.F.C.; Amorim, C.L.G.; Krindges, I.; Aguzzoli, C.; Baumvol, I.J.; Figueroa, C.A.; Sinatora, A.; Souza, R.M.; Farias, M.C.M. Microstructure and micro-abrasive wear of sintered yttria-containing 316L stainless steel treated by plasma nitriding. Surf. Coat. Technol. 2019, 374, 700–712. [Google Scholar] [CrossRef]
- Manne, V.; Singh, S.; Sateesh, N.; Subbiah, R. A review on influence of nitriding on AISI430 ferritic stainless steel. Mater. Today Proc. 2020, 26, 1010–1013. [Google Scholar] [CrossRef]
- Luiz, L.A.; Kurelo, B.C.E.S.; de Souza, G.B.; de Andrade, J.; Marino, C.E.B. Effect of nitrogen plasma immersion ion implantation on the corrosion protection mechanisms of different stainless steels. Mater. Today Commun. 2021, 28, 102655. [Google Scholar] [CrossRef]
- Zhang, F.; Ding, Y.; Yan, S.; He, J.; Yin, F. Microstructure evolution and mechanical performance of Cr-N/Al-Cr multilayer coatings produced by plasma nitriding Cr-coated Al alloy. Vacuum 2020, 180, 109540. [Google Scholar] [CrossRef]
- Prasanna, G.L.; Tanyaa, B.; Subbiah, R.; Kumar, V.V. Effect of nitriding on duplex stainless steel—A review. Mater. Today Proc. 2020, 26, 950–955. [Google Scholar] [CrossRef]
- Deepak, T.L.; Mithra, G.A.; Lokesh, K.; Chandra, B.S.; Subbiah, R. Stability of expanded austenite by gas nitriding process on austenitic stainless steel material under low temperature conditions. Mater. Today Proc. 2020, 27, 1681–1684. [Google Scholar] [CrossRef]
- Kücükyildiz, Ö.C.; Grumsen, F.B.; Christiansen, T.L.; Winther, G.; Somers, M.A. Anisotropy effects on gaseous nitriding of austenitic stainless steel single crystals. Acta Mater. 2020, 194, 168–177. [Google Scholar] [CrossRef]
- Yazıcı, M.; Çomaklı, O.; Yetim, T.; Yetim, A.F.; Çelik, A. Investigation of mechanical, tribological and magnetic properties after plasma nitriding of AISI 316L stainless steel produced with different orientations angles by selective laser melting. Surf. Coat. Technol. 2023, 467, 129676. [Google Scholar] [CrossRef]
- Ura-Bińczyk, E.; Krawczyńska, A.; Sitek, R.; Lewandowska, M. Mechanical properties and corrosion resistance of hydrostatically extruded 316 LVM stainless steel after low-temperature plasma nitriding. Surf. Coat. Technol. 2019, 375, 565–572. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Fan, H.; Pan, D. Erosion–corrosion resistance properties of 316L austenitic stainless steels after low-temperature liquid nitriding. Appl. Surf. Sci. 2018, 440, 755–762. [Google Scholar] [CrossRef]
- Deng, P.; Karadge, M.; Rebak, R.B.; Gupta, V.K.; Prorok, B.C.; Lou, X. The Origin and Formation of Oxygen Inclusions In Austenitic Stainless Steels Manufactured By Laser Powder Bed Fusion. Nanotechnol. Wkly. 2020, 35, 101334. [Google Scholar] [CrossRef]
- Lee, W.-B.; Kim, T.; Son, S.; Jeong, M.; Kim, Y.-M. Microstructural and Phase Evolution Behavior of Compound Layers of Controlled Gaseous Nitrided AISI 1015 Steel. Met. Mater. Trans. A 2024, 55, 1150–1159. [Google Scholar] [CrossRef]
- Hussain, P.; Mahmoud, H.; Basha, S.N.; I Mohamad, A. Correlation between microstructure and micro-hardness of 316L nitrided austenitic stainless steel. IOP Conf. Ser. Mater. Sci. Eng. 2020, 863, 12–25. [Google Scholar] [CrossRef]
- Bianco, M.; Poitel, S.; Hong, J.-E.; Yang, S.; Wang, Z.-J.; Willinger, M.; Steinberger-Wilckens, R.; Van Herle, J. Corrosion behaviour of nitrided ferritic stainless steels for use in solid oxide fuel cell devices. Corros. Sci. 2020, 165, 108414. [Google Scholar] [CrossRef]
- Jayalakshmi, M.; Huilgol, P.; Bhat, B.R.; Bhat, K.U. Microstructural characterization of low temperature plasma-nitrided 316L stainless steel surface with prior severe shot peening. Mater. Des. 2016, 108, 448–454. [Google Scholar] [CrossRef]
- Monteiro, W.A.; Pereira, S.A.L.; Vatavuk, J. Nitriding Process Characterization of Cold Worked AISI 304 and 316 Austenitic Stainless Steels. J. Met. 2017, 2017, 1052706. [Google Scholar] [CrossRef]
- Wang, W.; Ren, Y.; Yang, K. Effect of high temperature nitriding process on the organisation and mechanical properties of high nitrogen nickel-free stainless steel. Met. Heat Treat. 2012, 37, 98–102. [Google Scholar] [CrossRef]
- Hoffmann, R. Nitriding and Nitrocarburizing Processes Below 700 °C[R/OL]//Technical Report on High-Temperature Thermochemical Treatments. (Publication Date Unknown). Available online: http://www.mianfeiwendang.com/doc/0eb9e312df8764c4d6842032 (accessed on 17 February 2025).
- Bryar, J.; Jacobs, M.; Ashworth, M. Surface modification of tial based intermetallics by pressure nitriding. Surf. Eng. 2000, 16, 107–115. [Google Scholar] [CrossRef]
- Ma, P.; Ou, Y.; Fu, J. Ammonia nitriding treatment of austenitic stainless steel. Met. Prod. 2010, 36, 43–45. Available online: https://api.semanticscholar.org/CorpusID:138422525 (accessed on 18 February 2025).
- Selvabharathi, R.; Muralikannan, R. Influence of shot peening and plasma ion nitriding on tensile strength of 2205 duplex stainless steel using A-PAW. Mater. Sci. Eng. A 2018, 709, 232–240. [Google Scholar] [CrossRef]
- Shahri, M.G.; Salehi, M.; Hosseini, S.; Naderi, M. Effect of nanostructured grains on martensite formation during plasma nitriding of AISI 321 austenitic stainless steel. Surf. Coat. Technol. 2017, 310, 231–238. [Google Scholar] [CrossRef]
- Liu, D.; Liu, D.; Wu, Y.; Yang, J.; Xu, X.; Li, M.; Li, S.; Ma, A.; Liang, Y. Insight into nitriding behavior and corrosion mechanism in 17-4PH steel: The influence of nanocrystalline structure. J. Mater. Res. Technol. 2023, 27, 3761–3776. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, L. Formation and properties of nitrided layer on 2205 duplex stainless steel by anodic plasma-nitriding assisted with hollow cathode discharge. J. Mater. Res. Technol. 2024, 31, 3652–3660. [Google Scholar] [CrossRef]
- Yang, C.; Liu, J. Intermittent vacuum gas nitriding of TB8 titanium alloy. Vacuum 2019, 163, 52–58. [Google Scholar] [CrossRef]
- Danielsen, H.; Villa, M.; Guzmán, F.G.; Fæster, S.; Dahl, K.; Vegter, R.; Jensen, O.; Hummelshøj, T.; Lehmann, B.; Jacobs, G.; et al. New White Etch Cracking resistant martensitic stainless steel for bearing applications by high temperature solution nitriding. Wear 2023, 534–535, 205134. [Google Scholar] [CrossRef]
- Wang, B.; Christiansen, T.L.; Somers, M.A. Influence of ferrite-austenite distribution in 2205 duplex stainless steel on high-temperature solution nitriding behaviour. Surf. Coat. Technol. 2022, 453, 129134. [Google Scholar] [CrossRef]
- Tyunkov, A.; Andronov, A.; Oks, E.; Ostapenko, M.; Yushkov, Y.; Zolotukhin, D. Electron-beam nitriding of carbon steel alloy in the forevacuum pressure range. Vacuum 2024, 219, 112739. [Google Scholar] [CrossRef]
- Manova, D.; Mändl, S. Initial phase formation during nitriding of austenitic stainless steel. Surf. Coat. Technol. 2023, 456, 129258. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, L.; Wu, Y.; Hu, Y.; Liu, T.; Tang, K.; Wei, Q. Microstructure and corrosion resistance of Cr/Cr2N multilayer film deposited on the surface of depleted uranium. Corros. Sci. 2014, 82, 420–425. [Google Scholar] [CrossRef]
- Weddeling, A.; Lefor, K.; Hryha, E.; Huth, S.; Nyborg, L.; Weber, S.; Theisen, W. Nitrogen uptake of nickel free austenitic stainless steel powder during heat treatment-an XPS study. Surf. Interface Anal. 2015, 47, 413–422. [Google Scholar] [CrossRef]
- Staśko, R.; Adrian, H.; Adrian, A. Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel. Mater. Charact. 2005, 56, 340–347. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, J.; Yang, Z.; Zhang, X.; Dong, Y.; Jiang, J.; Wang, J.; Ren, Z. Surface melt nitriding and strengthening mechanism of plasma torched M50 bearing steel. J. Manuf. Process. 2024, 124, 1214–1226. [Google Scholar] [CrossRef]
- Somers, M.A.; Christiansen, T.L. Surface hardening of iron and steels-nitriding and nitrocarburizing. In Comprehensive Materials Processing, 2nd ed.; Elsevier: Oxford, UK, 2024; pp. 65–94. [Google Scholar] [CrossRef]
- Funch, C.V.; Christiansen, T.L.; Somers, M.A. Gaseous nitriding of additively manufactured maraging steel; nitriding kinetics and microstructure evolution. Surf. Coat. Technol. 2022, 432, 128055. [Google Scholar] [CrossRef]
- Lin, G.-W.; Chen, T.-C.; Hsu, H.-H.; Tsay, L.-W. Synergetic effects of micro-shot peening and gas nitriding on the fatigue performance of AISI 4140 steel. Surf. Coat. Technol. 2024, 485, 130856. [Google Scholar] [CrossRef]
- Yadav, A.S.; Kürnsteiner, P.; Jägle, E.A.; Sasidhar, K.N.; Meka, S.R. Nitride Dispersion Strengthened Steel Development after Sintering of Nitrided Fe-4.6 at% Al Alloy Powder. Steel Res. Int. 2021, 92, 2100174. [Google Scholar] [CrossRef]
- Reddy, C.A.K.; Venkatesh, B.; Mayurnath, D.; Narendra, T.; Ajay, K.; Jhala, G. Effect of the nitride layer on mechanical properties of bearing steel. Mater. Today Proc. 2024. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, Y.; Zhang, Q.; Wang, Y.; Reddy, K.M.; Wang, X. Effects of nitrogen on the microstructure and mechanical properties of an austenitic stainless steel with incomplete recrystallization annealing. Mater. Today Commun. 2023, 35, 105799. [Google Scholar] [CrossRef]
- Baigonakova, G.A.; Marchenko, E.S.; Mamazakirov, O.; Volinsky, A.A. Porosity and phase composition effects on SHS-NiTi structure and mechanical properties. Adv. Powder Technol. 2024, 35, 104395. [Google Scholar] [CrossRef]
- Farinha, A.; Vieira, M.; Mendes, R. Explosive consolidation of 316L stainless steel powder—Effect of phase composition. Adv. Powder Technol. 2014, 25, 1469–1473. [Google Scholar] [CrossRef]
- Fu, Q.; Gui, X.; Gyawali, G.; Yang, Y.; Li, D.; Xiang, T.; Nouri, M.; Zhang, S. Improved tribo-corrosion performance of duplex treatment on H13 steel by plasma nitriding and CrAlN coating. Surf. Interfaces 2025, 56, 105738. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, W.; Yin, Z.; Dong, B.; Zhao, Y.; Fan, Y.; Wu, J.; Zhang, Z.; Li, X. Effects of the Addition of Cu and Ni on the Corrosion Behavior of Weathering Steels in Corrosive Industrial Environments. J. Mater. Eng. Perform. 2020, 29, 2531–2541. [Google Scholar] [CrossRef]
C | Cr | Ni | Mo | S | P | N | Fe |
---|---|---|---|---|---|---|---|
0.025 | 16.790 | 12.000 | 2.490 | 0.015 | 0.020 | 0.000 | Bal. |
Nitriding Temperatures/°C | 0.02 MPa | 0.04 MPa | 0.06 MPa | 0.08 MPa | ||||
---|---|---|---|---|---|---|---|---|
Ecorr/v | Icorr/(A/cm2) | Ecorr/v | Icorr/(A/cm2) | Ecorr/v | Icorr/(A/cm2) | Ecorr/v | Icorr/(A/cm2) | |
700 | −0.460 | 0.001220 | −0.435 | 0.000046 | −0.430 | 0.000080 | −0.434 | 0.000118 |
750 | −0.436 | 0.000192 | −0.405 | 0.000078 | −0.452 | 0.000249 | −0.486 | 0.000120 |
800 | −0.412 | 0.000146 | −0.396 | 0.000027 | −0.490 | 0.000542 | −0.492 | 0.000211 |
850 | −0.481 | 0.000283 | −0.475 | 0.000530 | −0.515 | 0.000137 | −0.525 | 0.000237 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Zhang, F.; Zhang, L.; Peng, J.; Chang, H.; Wang, Y. Innovative Short Process of Preparation and Nitriding of Porous 316L Stainless Steel. Materials 2025, 18, 1564. https://doi.org/10.3390/ma18071564
Liu C, Zhang F, Zhang L, Peng J, Chang H, Wang Y. Innovative Short Process of Preparation and Nitriding of Porous 316L Stainless Steel. Materials. 2025; 18(7):1564. https://doi.org/10.3390/ma18071564
Chicago/Turabian StyleLiu, Chunheng, Fang Zhang, Lei Zhang, Jun Peng, Hongtao Chang, and Yongbin Wang. 2025. "Innovative Short Process of Preparation and Nitriding of Porous 316L Stainless Steel" Materials 18, no. 7: 1564. https://doi.org/10.3390/ma18071564
APA StyleLiu, C., Zhang, F., Zhang, L., Peng, J., Chang, H., & Wang, Y. (2025). Innovative Short Process of Preparation and Nitriding of Porous 316L Stainless Steel. Materials, 18(7), 1564. https://doi.org/10.3390/ma18071564